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A GAUSSIAN FIXED POINT RANDOM WALK

YANG P. LIU, ASHWIN SAH, AND MEHTAAB SAWHNEY

Abstract. In this note, we design a discrete random walk on the real line which takes steps 0,±1
(and one with steps in {±1, 2}) where at least 96% of the signs are ±1 in expectation, and which
has N (0, 1) as a stationary distribution. As an immediate corollary, we obtain an online version of
Banaszczyk’s discrepancy result for partial colorings and ±1, 2 signings. Additionally, we recover
linear time algorithms for logarithmic bounds for the Komlós conjecture in an oblivious online
setting.

1. Introduction

In the (oblivious) online vector discrepancy problem an adversary fixes vectors {vi}i∈[t] in advance
and the objective is to assign signs ǫi ∈ {−1, 1} based only on vectors v1, . . . , vi to maintain that
‖∑i≤t′ ǫivi‖∞ is small at all times t′ ∈ [t]. Vector balancing includes a number of different problems

in discrepancy theory including Spencer’s [17] work on set discrepancy. Spencer’s “six standard
deviations suffice” result states that given vectors v1, . . . , vn ∈ {0, 1}n there exists a ±1-signing
such that ‖∑i≤n ǫivi‖∞ ≤ 6

√
n. Conjecturally, however, the restriction to {0, 1}n vectors can be

relaxed to a norm condition. In particular, the Komlós conjecture states that given v1, . . . , vt, each
of at most unit length, there exists a sequence of signs ǫ1, . . . , ǫt such that ‖∑i≤t ǫivi‖∞ = O(1).
Despite substantial effort, the Komlós conjecture is still open and the best known bounds due to
Banaszczyk [4] give the existence of a sequence of signs so that ǫ1, . . . , ǫt such that ‖∑i≤t ǫivi‖∞ =

O(
√

min(log n, log t)). However, these original proofs were by their nature non-algorithmic.
More recent research in theoretical computer science has focused on developing algorithmic ver-

sions of these results starting with the Bansal [5] and Lovett-Meka [15] polynomial-time algorithms
for Spencer’s [17] “six standard deviations suffice”. Since then, there have been several other con-
structive discrepancy minimization algorithms [16, 14, 6, 8, 7, 13]. Notably for our purposes, Bansal,
Dadush, Garg [6] and Bansal, Dadush, Garg, Lovett [7] have made the work of Banaszczyk [4] al-
gorithmic. However in all cases these algorithms require all vectors to be known at the start and
hence do not extend to the online setting.

In the online setting, significant work has been devoted to the case where vi are drawn from
a fixed (and known) distribution p supported on [−1, 1]n. In the setting where p is uniform on
[−1, 1]n, Bansal and Spencer [11] showed one can maintain maxt′≤t‖

∑

i≤t′ ǫivi‖∞ ≤ O(
√
n log t). In

the more general setting where p is a general distribution supported on [−1, 1]n, Aru, Narayanan,
Scott, and Venkatesan [3] achieved a bound of On(

√
log t) (where the implicit dependence on n is

super-exponential) and Bansal, Jiang, Meka, Singla, and Sinha [9] (building on work of Bansal,
Jiang, Singla, and Sinha [10]) achieved an ℓ∞ guarantee of O(

√
n log(nt)4).

In this work we focus on the online setting where the only guarantee is ‖vi‖2 ≤ 1. The only
previous work in this oblivious online setting is the following result of Alweiss, the first author, and
the third author [1].

Theorem 1.1 ([1, Theorem 1.1]). For any vectors v1, v2, · · · , vt ∈ R
n with ‖vi‖2 ≤ 1 for all

i ∈ [t], there exists an online algorithm Balance(v1, · · · , vt, δ) which maintains ‖∑i≤t′ ǫivi‖∞ =

O (log(nt/δ)) for all t′ ∈ [t] with probability at least 1− δ.
1
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The proof in [1] relies on a coupling procedure which compares the distribution of
∑

i≤t ǫivi to a
Gaussian at each stage via a stochastic domination argument and then deduces the necessary tail
bounds. In this work, we recover Theorem 1.1 (in fact with a slightly improved dependence) as well
as the following corollary.

Corollary 1.2. For any vectors v1, v2, · · · , vt ∈ R
n with ‖vi‖2 ≤ 1 for all i ∈ [t], there exists an

online algorithm which assigns ǫi ∈ {±1, 2} and maintains ‖∑i≤t′ ǫivi‖∞ = O(
√

log(nt/δ)) for all

t′ ∈ [t] with probability at least 1− δ.

This result essentially recovers the best known bound on the Komlós conjecture due to Banaszczyk
[4] in an online algorithmic fashion, with the slight defect of requiring a +2-signing option. Further-
more due to the online nature of the algorithm, the algorithm will run in essentially input-sparsity
time which is substantially faster than the Gram-Schmidt walk [7] which gives an algorithmic proof
of the result of [4] (without the defect of requiring a +2-signing option).

Our results are based on the observation that there exists Markov chains on R with transition steps
of 0,±1 or ±1, 2 such that N (0, 1) is a stationary distribution (as well as N (0, σ2) for appropriate

values of σ). Note that no such walk exists for ±1 steps as
∑

n∈Z(−1)ne−n2/2 6= 0 and therefore
any ±1 walk fails the natural “parity constraint” that the total mass on even integers is mapped to
the odd integers and vice versa under one step.

The remainder of the paper is organized as follows. In Section 2 we construct the required Markov
chain on R with transition steps of 0,±1 such that N (0, σ2) is a stationary distribution. In Section 3
we extend this to a walk with transition steps of ±1, 2 as long as σ ≥ 1. Finally, in Section 4 we
deduce the various algorithmic consequences.

1.1. Notation. Throughout this paper let N (µ, σ2) denote the Gaussian random variable with
mean µ and variance σ2. Furthermore, let nnz({vi}i∈S) denote the total number of non-zero entries
of the vectors {vi}i∈S .

2. 0,±1 walk

Definition 2.1. Given σ > 0 and f ∈ [−1/2, 1/2], consider the following random walk on f + Z.
For n ≥ 1 the state n+ f moves to n+1+ f with probability pσ(n+ f) and to n− 1+ f otherwise,
and the state −n+ f moves to −n− 1+ f with probability pσ(n− f) and to −n+1+ f otherwise.
Finally, the state f moves to 1+ f with probability pσ(f), to state −1+ f with probability pσ(−f),
and stays at f with probability rσ(f). Here

pσ(x) =
∑

j≥1

(−1)j−1 exp

(

− j2 + 2xj

2σ2

)

rσ(f) =

∞
∑

j=−∞

(−1)j exp
(

− j2 + 2fj

2σ2

)

for all x ∈ R.

These series clearly absolutely converge. We prove that these indeed correspond to consistent
probabilities giving a walk, and additionally show that this walk preserves the discrete Gaussian
distribution on f + Z (i.e., N (0, σ2)|f+Z).

Lemma 2.2. For σ > 0 and f ∈ [−1/2, 1/2], we have that pσ(n ± f) ∈ (0, 1) for all n ≥ 0, that

pσ(f) + rσ(f) + pσ(−f) = 1, that rσ(f) ∈ [0, 1], and that furthermore

rσ(f) ≤ e−σ2

if σ ≥ 1/2. Additionally, N (0, σ2)|f+Z is stationary under a step of random walk defined in

Definition 2.1 with parameters σ, f .
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Proof. First, note that exp(−(j2 + 2xj)/σ2) is strictly decreasing on integers j ≥ 1 as long as
x ≥ −1/2. Therefore pσ(x) is given by an alternating series with strictly decreasing terms, and we
immediately deduce

0 < pσ(x) ≤ exp

(

− j2 + 2xj

2σ2

)

< 1.

Since n+ f, n− f ≥ −1/2 for n ≥ 0, we see that pσ(n± f) ∈ (0, 1), as desired. Second, note that

pσ(−f) + rσ(f) + pσ(f) = 1

holds as trivially everything except the j = 0 term of the sum for rσ(f) cancels. Third, we have for
u = exp(−1/(2σ2)) and v =

√
−1 exp(−f/(2σ2)) that |u| < 1 and v 6= 0, hence the Jacobi triple

product identity (see [2] for a short but slick proof) yields

rσ(f) =

∞
∑

j=−∞

uj
2

v2j =

∞
∏

j=1

(1− u2j)(1 + u2j−1v2)(1 + u2j−1v−2)

=

∞
∏

j=1

(1− e−j/σ2

)(1 − e−(2j+2f−1)/(2σ2))(1− e−(2j−2f−1)/(2σ2)). (2.1)

Since f ∈ [−1/2, 1/2] we see each term is nonnegative and clearly less than 1, so rσ(f) ∈ [0, 1] is
immediate. Therefore we indeed have a well-defined walk. In fact, we see that

rσ(f) ≤ rσ(0) ≤
∞
∏

j=1

(1− e−j/σ2

)3 ≤
⌊σ2⌋
∏

j=1

(1− e−j/σ2

)3 ≤ (1− e−1)3⌊σ
2⌋.

This is at most exp(−σ2) for σ ≥ 2, and we can further numerically check that rσ(0) ≤ exp(−σ2)
for σ ∈ [1/2, 2].

Now we show that this walk preserves N (0, σ2)|f+Z. Note that

1− pσ(x) =
∑

j≥0

(−1)j exp
(

− j2 + 2xj

2σ2

)

.

Therefore

pσ(x− 1) exp

(

− (x− 1)2

2σ2

)

+ (1− pσ(x+ 1)) exp

(

− (x+ 1)2

2σ2

)

=
∑

j≥1

(−1)j−1 exp

(

− (j + x− 1)2

2σ2

)

+
∑

j≥0

(−1)j exp
(

− (j + x+ 1)2

2σ2

)

= exp

(

− x2

2σ2

)

.

Since the pdf of N (0, σ2)|f+Z at n + f is proportional to exp(−(n + f)2/(2σ2)), we find that the
random walk preserves this distribution at n + f for all n 6= 0 (applying the above equation at
values x = n± f). Furthermore, the final distribution is clearly still supported on f + Z, therefore
the probability at n = 0 is also preserved as the total sum is 1. �

We immediately derive a walk which preserves N (0, σ2) by piecing together all f ∈ [−1/2, 1/2).
Let Jσ

x be the random variable defined by writing x = n + f , where f ∈ [−1/2, 1/2), and then
performing a step according to Definition 2.1.

Lemma 2.3. If Z = N (0, σ2) then Z + Jσ
Z is distributed as N (0, σ2).

3



3. ±1, 2 walk

We now consider a variant of the above random walk with discrete ±1 and 2 steps. Recall the
definition of pσ(x) and rσ(f) from earlier. We will require the following numerical estimate which
is deferred to Appendix A.

Lemma 3.1. If σ ≥ 1 and f ∈ [−1/2, 1/2] then

pσ(1 + f) ≥ rσ(f) exp

(

2f + 1

2σ2

)

.

Remark. This inequality is immediate for large σ as the left uniformly tends to 1/2 and the right
uniformly decays to zero.

Definition 3.2. Given σ ≥ 1 and f ∈ [−1/2, 1/2], consider the following random walk on f + Z.
For n ≥ 2 the state n+ f moves to n+1+ f with probability pσ(n+ f) and to n− 1+ f otherwise.
For n ≥ 1 the state −n + f moves to −n − 1 + f with probability pσ(n − f) and to −n + 1 + f
otherwise. The state f moves to 1 + f with probability pσ(f), to state −1 + f with probability
pσ(−f), and moves to 2 + f with probability rσ(f). Finally, for n = 1 the state 1 + f moves to
2 + f with probability pσ(1 + f)− rσ(f) exp((2f + 1)/(2σ2)) and to f otherwise.

Lemma 3.3. For σ ≥ 1 and f ∈ [−1/2, 1/2], we have that the walk in Definition 3.2 is well-defined,

and that N (0, σ2)|f+Z is stationary under a step of the walk with parameters σ, f .

Proof. That all probabilities are valid follows from Lemma 2.2, except that we need to additionally
verify

pσ(1 + f) ≥ rσ(f) exp

(

2f + 1

2σ2

)

.

This is precisely Lemma 3.1.
To verify that N (0, σ2)|f+Z is preserved under the walk defined in Definition 3.2, recall that

N (0, σ2)|f+Z is preserved under walk defined in Definition 2.1 by Lemma 2.2. This walk only
differs in its probabilities that f goes to f, 2 + f and that 1 + f goes to f, 2 + f . Therefore the
probabilities at n + f for n ∈ Z \ {0, 2} are correct. Since the probabilities sum to 1, it is enough
to check the probability at 2 + f is correct. It therefore suffices to show that

rσ(f) exp

(

− f2

2σ2

)

+

(

pσ(1 + f)− rσ(f) exp

(

2f + 1

2σ2

))

exp

(

− (1 + f)2

2σ2

)

+ (1− pσ(3 + f)) exp

(

− (3 + f)2

2σ2

)

= exp

(

− (2 + f)2

2σ2

)

.

We already verified in the proof of Lemma 2.2 that

pσ(x− 1) exp

(

− (x− 1)2

2σ2

)

+ (1− pσ(x+ 1)) exp

(

− (x+ 1)2

2σ2

)

= exp

(

− x2

2σ2

)

.

Plugging in x = 2 + f gives the desired identity, upon canceling the terms containing rσ(f). �

Again, we immediately derive a walk which preserves N (0, σ2) by piecing together all f ∈
[−1/2, 1/2). Let Rσ

x be the random variable defined by writing x = n + f , where f ∈ [−1/2, 1/2),
and then performing a step according to Definition 2.1.

Lemma 3.4. If σ ≥ 1 and Z = N (0, σ2) then Z +Rσ
Z is distributed as N (0, σ2).
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Algorithm 1: PartialColoringσ(v1, · · · , vt)
1 w0 ← N (0, σ2In)

2 for 1 ≤ i ≤ t do

3 σ′ ← σ/‖vi‖2
4 x′ ← 〈wi−1, vi〉/‖vi‖2
5 wi ← wi−1 + Jσ′

x′ vi.

6 w← wt − w0

Algorithm 2: Balancingσ(v1, · · · , vt)
1 w0 ← N (0, σ2In)

2 for 1 ≤ i ≤ t do

3 σ′ ← σ/‖vi‖2
4 x′ ← 〈wi−1, vi〉/‖vi‖2
5 wi ← wi−1 +Rσ′

x′vi.

6 w← wt − w0

4. Algorithmic Applications

We now derive a number of algorithmic consequences.
In both Balacingσ and PartialColoringσ, J and R are sampled independently every time.

Additionally, note that Balacingσ is only well-defined when σ ≥ 1. Finally, we clearly see that
PartialColoringσ assigns a sign of ±1 to each given vector online, or chooses to omit it (a sign
of 0), while Balancingσ does the same except that the sign 2 is the additional alternative.

Our first algorithm application is a (weak version) of the partial coloring lemma.

Theorem 4.1. Let ‖v1‖2, . . . , ‖vt‖2 ≤ 1 and δ ∈ (0, 1/2). With probability at least 1 − δ we have

that wℓ − w0 in PartialColoring1(v1, . . . , vt) is 2
√

2 log(2nt/δ)-bounded for all times ℓ ∈ [t].

Furthermore, with probability at least 1−δ we have that wt−w0 is 2
√

2 log(2n/δ)-bounded. Finally,

at least 96.3% of vectors are used with probability 1− exp(−Ω(t)).
Proof. By Lemma 2.3 we immediately see that wi ∼ N (0, σ2In) for all i ∈ [t]. The discrepancy
results follow by trivial Gaussian estimates. For example, we see that the jth coordinate of wℓ is
√

2 log(2nt/δ)-bounded with probability at least δ/(2nt). Taking a union bound over 0 ≤ ℓ ≤ t and
j ∈ [n] yields that w0, . . . , wt are bounded with probability at least 1− δ. Therefore each difference
is also bounded.

The fraction of vectors used being large follows from Chernoff’s inequality and the fact that at
every step, conditional on all previous choices, a vector is used with probability at least

min
f∈[−1/2,1/2]

(1− r1(f)) ≥ 0.9639. �

Our second algorithmic application recovers the online vector balancing results of Alweiss, the
first author, and the third author [1, Theorems 1.1, 1.2].

Theorem 4.2. Let ‖v1‖2, . . . , ‖vt‖2 ≤ 1, δ ∈ (0, 1/2), and set σ =
√

log(t/δ). With probability

at least 1− δ we have that wℓ − w0 in PartialColoringσ(v1, · · · , vt) is 2
√

2 log(t/δ) log(2nt/δ)-
bounded for all times ℓ ∈ [t]. Furthermore, with probability at least 1 − δ we have that wt − w0 is

2
√

2 log(t/δ) log(2n/δ)-bounded. Finally, all vectors are used with probability at least 1− δ.
5



Proof. The proof is essentially identical to that of Theorem 4.1. The only difference is that we see
that at each step, a vector is not used with probability at most

max
f∈[−1/2,1/2]

rσ(f) ≤ e−σ2

=
δ

t

due to our choice of σ, by the inequality in Lemma 2.2. A union bound shows that all vectors are
used with probability at least 1− δ. �

In fact, we can design an algorithm achieving the same bounds by using Algorithm 1 for any value
of σ ≥ 1 as follows. To do this, first run Algorithm 1, and then rerun Algorithm 1 on the vectors
which were given a 0 sign until no vectors remain (note that this can still be done in an online

manner). By Lemma 2.2, specifically rσ(f) ≤ e−σ2

, this process will terminate with probability
1− δ in O(σ−2 log(t/δ)) rounds. Each run produces a random vector with variance O(σ2) in every
coordinate, hence the total variance is O(log(t/δ)) per coordinate as desired.

Finally we recover an online version of Banaszczyk [4], except using ±1, 2-signings. The proof is
identical to that of Theorem 4.1 so we omit it.

Theorem 4.3. Let ‖v1‖2, . . . , ‖vt‖2 ≤ 1 and δ ∈ (0, 1/2). With probability at least 1−δ we have that

wℓ − w0 in Balancing1(v1, . . . , vt) is 2
√

2 log(2nt/δ)-bounded for all times ℓ ∈ [t]. Furthermore,

with probability at least 1− δ we have that wt − w0 is 2
√

2 log(2n/δ)-bounded.

All three algorithmic procedures are online.

4.1. Computational details. In the previous section the above idealized algorithms ignored the
cost of computing rσ(f) and pσ(n ± f) to sufficient precision in order to be used for algorithmic
purposes. The key claim is that one can approximate the above sums within δ in poly(log(σ/δ))-
time.

In order to do so first note that we can truncate the sums pσ(n± f) and rσ(f) to values of j ≥ 1
where (j2 + 2(n± f)j)/(2σ2) = O(log(σ/δ)). We now note that

∣

∣

∣

∣

ex −
m
∑

j=0

xj

j!

∣

∣

∣

∣

≤ xm+1

(m+ 1)!
emax(0,x),

so taking m = Θ(log(σ/δ)) gives a very good approximation to exp(−(j2+2(n± f)j)/(2σ2)) in the
range of terms considered. Now we can compute the desired sums by interpreting it as a sum of low
degree (i.e. O(log(σ/δ))) polynomials on a sequence of integers, which can be evaluated quickly.

In the implementation of the algorithms above, at time t if we are given a vector shorter than
1/(2t2), we deterministically add it but ignore it for the purposes of maintaining a Gaussian dis-
tribution. These vectors have total length at most 1, so contribute only O(1) discrepancy in each
coordinate. For the remaining vectors, we have σ ≤ 2t2. We thus can approximate the relevant
probabilities to within δ/(2t2) efficiently, and then sample appropriately. This will preserve the
Gaussians in question up to total variation distance of at most

∑

t≥1

δ

2t2
≤ δ.

Therefore, the running time of all probability computations is poly(log(t/δ)) at time t. Thus the
modified versions of the algorithms in Theorems 4.1 to 4.3 run in O

(

t poly(log(t/δ)) + n+ nnz({vi}i∈[t])
)

time with discrepancy guarantees that are an absolute multiplicative factor worse. (The second term
arises due to sampling the initial Gaussian point.) This running time essentially matches (up to
logarithmic factors) the results of [1] and make progress towards input-sparsity time algorithms for
discrepancy, a direction suggested by [12].

6



A variant of our algorithms which run in O
(

t poly(log(t/δ)) + n log t+ nnz({vi}i∈[t])
)

time is

achieved by “disregarding vectors” at time t which are shorter than 1/(2t2) (as above) and oth-
erwise grouping vectors by length into dyadic scales and running the algorithms separately with
independent randomness on each of the scales. Note that when vector lengths are forced to live in
a dyadic scale then sampling an appropriate Gaussian leads us to compute the above probabilities
only when σ ∈ [1, 2] and hence directly evaluation of the series is efficient.
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Appendix A. Proof of Lemma 3.1

Proof of Lemma 3.1. First note rσ(f) ≤ rσ(0) and rσ(0) ≤ r1(0) follow immediately from the Jacobi
triple product identity (2.1) and nonnegativity. Therefore it suffices to prove that

pσ(1 + f) ≥ exp(1/σ2)r1(0)

for all σ ≥ 1 and f ∈ [−1/2, 1/2].
First suppose that σ ∈ [1, 2]. Then since pσ(1+ f) is an alternating series with decreasing terms,

pσ(1 + f) ≥ exp

(

− 1 + 2(1 + f)

2σ2

)

− exp

(

− 2 + 2(1 + f)

σ2

)

.

Fixing σ, the right has derivative

− 1

σ2
exp

(

− 1 + 2(1 + f)

2σ2

)

+
2

σ2
exp

(

− 2 + 2(1 + f)

σ2

)

,

which we can check is positive for f underneath some cutoff and negative above this cutoff. Therefore
the earlier expression is minimized over f ∈ [−1/2, 1/2] at some f ∈ {±1/2}. Then, numerical
checking shows that for each case f ∈ {±1/2} the resulting expression is minimized on σ ∈ {1, 2}
for similar reasons. We find the true minimum is at f = 1/2 and σ = 1, which gives

pσ(1 + f) ≥ 0.12 ≥ er1(0) ≥ exp(1/σ2)r1(0).

Now we suppose that σ ≥ 2. Let 2k− 1 be the smallest odd integer larger than σ− 1− f , which
is clearly always a positive integer as σ ≥ 1 and f ≤ 1/2. We know that t 7→ exp(−t2/(2σ2)) is
convex for t ≥ σ, hence t 7→ exp(−(t2 + 2(1 + f)t)/(2σ2)) is certainly convex and decreasing for
t ≥ σ − 1− f . Therefore the difference between the values at j and j + 1 is at least the difference
between the values at j + 1 and j + 2 when j ≥ 2k − 1, yielding

pσ(1 + f) =
∑

j≥1

(−1)j−1 exp

(

− j2 + 2(1 + f)j

2σ2

)

≥
∑

j≥2k−1

(−1)j−1 exp

(

− j2 + 2(1 + f)j

2σ2

)

≥ 1

2

(

∑

j≥2k−1

(−1)j−1 exp

(

− j2 + 2(1 + f)j

2σ2

)

+
∑

j≥2k

(−1)j exp
(

− j2 + 2(1 + f)j

2σ2

))

=
1

2
exp

(

− (2k − 1)2 + 2(1 + f)(2k − 1)

2σ2

)

≥ 1

2
exp

(

− (σ + 1− f)2 + 2(1 + f)(σ + 1− f)

2σ2

)

≥ 1

2
exp

(

− 4σ2 + 16σ + 15

8σ2

)

≥ 1

2
exp(−71/32) exp(1/σ2)

≥ 0.05 exp(1/σ2) ≥ exp(1/σ2)r1(0). �
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