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THE CYLINDRICAL WIDTH OF TRANSITIVE SETS

ASHWIN SAH, MEHTAAB SAWHNEY, AND YUFEI ZHAO

Abstract. We show that for every 1 ≤ k ≤ d/(log d)C , every finite transitive set of unit vectors in

Rd lies within distance O(1/
√

log(d/k)) of some codimension k subspace, and this distance bound
is best possible. This extends a result of Ben Green, who proved it for k = 1.

1. Introduction

The following counterintuitive fact was conjectured by the third author and proved by Green [4].
It says that every finite transitive subset of a high dimensional sphere is close to some hyperplane.
Here a subset X of a sphere in Rd is transitive if for every x, x′ ∈ X, there is some g ∈ O(Rd)
so that gX = X and gx = x′. We say that X has width at most 2r if it lies within distance r
of some hyperplane. The finiteness assumption is important since otherwise the whole sphere is a
counterexample.

Theorem 1.1 (Green [4]). Let X be a finite transitive subset of the unit sphere in Rd. Then the
width of X is at most O(1/

√
log d). Furthermore, this upper bound is best possible up to a constant

factor.

The bound in the theorem is tight since the set X obtained by taking all permutations and
coordinate-wise ± signings of the unit vector (1, 1/

√
2, . . . , 1/

√
d)/

√
Hd, where Hd = 1+1/2+ · · ·+

1/d ∼ log d, has width on the order of 1/
√
log d.

Green’s proof uses a clever induction scheme along with sophisticated group theoretic arguments,
including an application of the classification of finite simple groups.

We generalize Green’s result by showing that a finite transitive set lies not only near some
hyperplane, but in fact it lies near a subspace of codimension k, as long as k is not too large.

We say that X ⊂ Rd has k-cylindrical width at most 2r if X lies within distance r of some affine
codimension k subspace. The case k = 1 corresponds to the usual notion of width. Our main result
below implies that every finite transitive subset of the unit sphere in Rd has k-cylindrical width
O(1/

√

log(d/k)) as long as k is not too large.

Theorem 1.2. There is an absolute constant C > 0 so that the following holds. Let 1 ≤ k ≤
d/(log(3d))C . Let X be a finite transitive subset of the unit sphere in Rd. Then there is a real
k-dimensional subspace W such that

sup
x∈X

‖projW x‖2 .
1

√

log(d/k)
.

Here and throughout a . b means that a ≤ C ′b for some absolute constant C ′. We write ‖x‖2
for the usual Euclidean norm of a vector x. Also projW is the orthogonal projection onto W .

We deduce the above theorem from a complex version using a theorem on restricted invertibility
(see Section 6). A transitive subset of the complex unit sphere is defined to be the orbit of a point
under the action of some subgroup of the unitary group.
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Theorem 1.3. There is an absolute constant C > 0 so that the following holds. Let 1 ≤ k ≤
d/(log(3d))C . Let X be a finite transitive subset of the unit sphere in Cd. Then there is a complex
k-dimensional subspace W such that

sup
x∈X

‖projW x‖2 .
1

√

log(d/k)
.

We suspect that the 1 ≤ k ≤ d/(log(3d))C hypothesis is unnecessary in both Theorems 1.2
and 1.3.

Conjecture 1.4. Let 1 ≤ k ≤ d. Let X be a finite transitive subset of the unit sphere in Cd. Then
there is a complex k-dimensional subspace W such that

sup
x∈X

‖projW x‖2 .
1

√

log(2d/k)
.

One particularly intriguing special case of Conjecture 1.4 is that every finite transitive set of unit
vectors in Rd has k-cylindrical width o(1) for all k = o(d).

We prove a matching lower bound on the cylindrical radius (See Section 7 for proof.)

Theorem 1.5. Let 1 ≤ k ≤ d. There exists a transitive set X in Rd such that for any (real or
complex) k-dimensional subspace W we have

sup
x∈X

‖projW x‖2 &
1

√

log(2d/k)
.

We propose another closely related conjecture: every finite transitive set in Rd lies inside a small
cube.

Conjecture 1.6. Let X be a finite transitive subset of the unit sphere in Rd (or Cd). Then there
is a unitary basis L such that

sup
x∈X,v∈L

|〈v,x〉| . 1√
log d

. (1.1)

Establishing an upper bound that decays to zero as d → ∞ would already be interesting. Note
that Theorem 1.3 implies the existence of a set L of orthonormal vectors with |L| ≥ d0.99 so that
(1.1) holds (and likely extendable to |L| ≥ d/(log d)C via our techniques). Proving either conjecture
in full appears to require additional ideas.

Remark. Green’s proof [4] of Theorems 1.2 and 1.3 in the case k = 1 contains two errors. The first
error is due to a missing supremum inside the integral in the first and second lines of the last display
equation in proof of Proposition 2.1 on page 560. The second error occurs at the final equality step
of the top display equation on page 569, after right after (4.4); here an orthogonality relation was
incorrectly applied as it requires an unjustified exchange of the integral and supremum. Our proof
here corrects these errors. Green has also updated the arXiv version of his paper [4] incorporating
these corrections.

2. Proof strategy

The subspace W in Theorem 1.3 must vary according to the transitive set X. On other hand,
the strategy is to construct a single probability distribution µ (depending only on the symmetry
group G 6 U(Cd) but not on X) on the set GrC(k, d) of k-dimensional subspaces of Cd. This is an
important idea introduced by Green (for k = 1).

Definition 2.1. Let 1 ≤ k ≤ d. Let fk(d) be the smallest value so that for every finite G 6 U(Cd),
there is a probability measure µ on GrC(k, d) such that for all v ∈ S(Cd),

∫

sup
g∈G

‖projW (gv)‖22dµ(W ) ≤ fk(d)
2
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The values fk(d) are well defined since the space of probability measures µ in question is closed
under weak limits.

Our main result about fk(d) is stated below.

Theorem 2.2. If k ≤ d/(log d)20, then

fk(d) .
1

√

log(d/k)
.

Proof of Theorem 1.3 given Theorem 2.2. Let our transitive set X be the orbit of v ∈ S(Cd) under
the action of the the finite subgroup G 6 U(Cd). By Theorem 2.2 and Definition 2.1, there is a
measure µ on GrC(k, d) such that

∫

sup
g∈G

‖projW (gv)‖22dµ(W ) ≤ fk(d)
2.

Therefore there is some k-dimensional subspace W with

sup
g∈G

‖projW (gv)‖2 ≤ fk(d) .
1

√

log(d/k)
. �

To prove Theorem 2.2 , we will decompose G to “smaller”, more restricted cases, namely irre-
ducible and primitive representations. We will also need to consider permutation groups (for both
the reduction step as well as the primitive case).

2.1. Preliminaries.

Definition 2.3. We say that G 6 U(Cd) is imprimitive if there is a system of imprimitivity : a
decomposition

Cd =
ℓ
⊕

i=1

Vi

with 0 < dimVi < d such that for every g ∈ G and i ∈ [ℓ] one has gVi = Vj for some j ∈ [ℓ]. (The
subspaces Vi need not be orthogonal.) Otherwise we say that G is primitive.

Remark. Both primitivity and irreducibility are properties of a representation, rather than intrinsic
to a group. We identify G 6 U(Cd) with its natural representation on Cd.

It follows from Maschke’s theorem that primitive group representations are irreducible.

Definition 2.4. Given v = (v1, . . . , vd) ∈ Cd, let

v≻ = (|vσ(1)|, . . . , |vσ(d)|) ∈ Rd

where σ is a permutation of [d] so that

|vσ(1)| ≥ · · · ≥ |vσ(d)|.
We write v≻i for the i-th coordinate of v≻. Let

Dom(v) = {w ∈ Cd : w≻
i ≤ v≻i for all i ∈ [d]}.

Let (here Sd denotes the symmetric group)

Γd := Sd ⋉ (S1)d ≤ U(Cd)

be the group that acts on Cd be permuting its coordinates and multiplying individual coordinates
by unit complex numbers. Then Dom(v) is the convex hull of the Γd-orbit of v.

We define some variants of fk(d) when the group G is restricted to special types.
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Definition 2.5. Given k ∈ [d], let f irredk (d) (resp. fprimk (d)) be the smallest value so that for every

finite G 6 U(Cd) which is irreducible (resp. primitive), there is a probability measure µ on GrC(k, d)
such that for every v ∈ S(Cd),

∫

sup
g∈G

‖projW (gv)‖22dµ(W ) ≤ f irredk (d)2 (resp. fprimk (d)2).

The permutation action on Cd deserves special attention.

Definition 2.6. Let f symk (d) be the smallest value so that there is a probability measure µ on

GrC(k, d) such that for every v ∈ S(Cd),
∫

sup
u∈Dom(v)

‖projW (u)‖22dµ(W ) ≤ f symk (d)2.

Define faltk (d) to be the same with the additional constraint that µ is supported on the set of
k-dimensional subspaces of the hyperplane x1 + · · ·+ xd = 0.

We will often equivalently consider, instead of µ on GrC(k, d), the corresponding measure µ∗

on the complex Stiefel manifold Vk(C
d), that is, µ∗ is derived from µ by first sampling a µ-

random k-dimensional subspace W of Cd, and then outputting a uniformly sampled a unitary

basis (w1, . . . ,wk) of W . We have ‖projW (u)‖22 =
∑k

ℓ=1|〈gv1,wℓ〉|2.

2.2. Reductions. We first reduce the general problem to the irreducible case.

Proposition 2.7. If 1 ≤ k < ℓ ≤ d then

fk(d) ≤ max
{
√

k/ℓ, sup
d′≥d/(2ℓ)

f irred⌈2kd′/d⌉(d
′)
}

.

We then reduce the irreducible case to the primitive case and the alternating case.

Proposition 2.8. If k ≤ d/2, then

f irredk (d) ≤ max
d1d2=d

(

min
{

fprim⌈k/d1⌉
(d2), f

alt
k (d1) + 1k≥d1

})

.

The symmetric and alernating cases can be handled explicitly, yielding the following.

Proposition 2.9. If k ≤ d/(log d)5, then

f symk (d) ≤ faltk (d) . 1/
√

log(d/k).

This leaves the primitive case, which we prove by invoking an group theoretic result proved by
Green [4, Proposition 4.2] that allows us to once again reduce to the alternating case once again.

Proposition 2.10. There is an absolute constant c > 0 such that for k ≤ cd/(log d)4 we have

fprimk (d) . sup
d′≥cd/(log d)4

faltk (d′).

2.3. Putting everything together. We are now in position to derive Theorem 2.2 using the
preceding statements.

Proposition 2.11. If k ≤ 2d/(log d)10 then fprimk (d) . 1/
√

log(d/k).

Proof. Combine Propositions 2.9 and 2.10. �

Proposition 2.12. If k ≤ d/(log d)10 then f irredk (d) . 1/
√

log(d/k).
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Proof. By Proposition 2.8, we have

f irredk (d) ≤ max
d1d2=d

(min(fprim⌈k/d1⌉
(d2), f

alt
k (d1) + 1k≥d1)).

First consider the case d1 ≤ k. We have

⌈k/d1⌉ ≤
2d

d1(log d)10
≤ 2d2

(log d2)10
.

By Proposition 2.11, we have

fprim⌈k/d1⌉
(d2) .

1
√

log(d2/⌈k/d1⌉)
≤ 1
√

log(d/(2k))
.

Now consider the case d1 > k. Since d2(d1/k) = d/k, we have max{d1, d2/k} ≥
√

d/k. If

d2 ≥
√

d/k, then

fprim⌈k/d1⌉
(d2) = fprim1 (d2) .

1√
log d2

.
1

√

log(d/k)
.

On the other hand, if d1/k ≥
√

d/k, then d1/k ≥ (log d)5 so

k ≤ d1
(log d)5

≤ d1
(log d1)5

.

Hence Proposition 2.9 yields

faltk (d1) .
1

√

log(d1/k)
.

1
√

log(d/k)
.

Thus it follows that, for all d1d2 = d,

min(fprim⌈k/d1⌉
(d2), f

alt
k (d1) + 1k≥d1) .

1
√

log(d/k)
,

and the result follows. �

Now we show the main result assuming the above statements.

Proof of Theorem 2.2. Let ℓ = ⌈
√
dk⌉ ≥ 2k. We have

k/ℓ .
√

k/d .
1

√

log(d/k)
.

Also, if d′ ≥ d/(2ℓ) then
⌈

2kd′

d

⌉

≤ d′

d/(2ℓ)
≤ d′

(log d)10
≤ d′

(log d′)10
.

By Proposition 2.12, we have

f irred⌈2kd′/d⌉(d
′) .

1
√

log(d′/⌈2kd′/d⌉)
.

1
√

log(d/(2ℓ))
.

1
√

log(d/k)
.

Applying Proposition 2.7 to k and ℓ = ⌈
√
dk⌉, we find

fk(d) ≤ max(
√

k/ℓ, sup
d′≥d/(2ℓ)

f irred⌈2kd′/d⌉(d
′)) .

1
√

log(d/k)
. �

2.4. Paper outline. In Section 3, we prove the two key reductions, Propositions 2.7 and 2.8. In
Section 4, we prove the key estimate for the symmetric and alternating cases, Proposition 2.9. In
Section 5, we prove the primitive case, Proposition 2.10. Finally, in Section 6 we deduce a real
version from the complex version, proving Theorem 1.2. In Section 7 we demonstrate optimality of
our results by exhibiting the matching lower bound Theorem 1.5.
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3. Reduction to primitive representations

We first reduce the general case to the alternating and irreducible cases.

Proof of Proposition 2.7. Consider G 6 U(Cd). By Maschke’s theorem, we can decompose into
irreducible representations of G:

Cd =

m
⊕

j=1

Vj.

Let dj = dimVj. Let

J = {j ∈ [m] : dj ≥ d/(2ℓ)}.

First suppose
∑

j∈J dj ≥ d/2. Then in each such Vj, we consider the probability measure µj
that witnesses f irred⌈2kdj/d⌉

(dj) for the irreducible representation of G on Vj . That is, µj samples a

⌈2kdj/d⌉-dimensional subspace of Vj and satisfies

∫

sup
g∈G

‖projW (gv)‖22dµj(W ) ≤ f irred⌈2kd′/d⌉(dj)
2‖v‖22

for each v ∈ Vj . We define µ to be a uniformly random k-dimensional subspace of
⊕

j∈J Wj, where

each Wj is an independent µj-random ⌈2kdj/d⌉-dimensional subspace of Vj. (Note the Wj ’s are
orthogonal as the Vj ’s are.) The total dimension of this direct sum is at least k, so µ is well-defined.

Given v ∈ Cd, write v =
∑m

j=1 vj with vj ∈ Vj. We have

∫

sup
g∈G

‖projW (gv)‖22dµ(W ) ≤
∫

sup
g∈G

‖proj⊕
j∈J Wj

(gv)‖22
∏

j∈J

dµj(Wj)

≤
∑

j∈J

∫

sup
g∈G

‖projWj
(gv)‖22dµj(Wj)

≤
∑

j∈J

f irred⌈2kdj/d⌉
(dj)

2‖vj‖22

≤ sup
d′≥d/(2ℓ)

f irred⌈2kd′/d⌉(d
′)2‖v‖22

by orthogonality of the Vj.
Next suppose

∑

j∈J dj < d/2. Then |[m]\J | ≥ ℓ. Let I be an ℓ-element subset of [m]\J . Choose

arbitrary wj ∈ S(Vj) ⊆ Cd for j ∈ I, which are clearly orthogonal. Let µ be the probability measure

on k-dimensional subspaces of Cd obtained by taking the span of k uniform random elements in
{w1, . . . ,wℓ}.

For each g ∈ G, write

ug = (〈gv,w1〉, . . . , 〈gv,wℓ〉)

and

v′ = (‖projV1
v‖2, . . . , ‖projVℓ

v‖2).
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Given S ⊆ [ℓ], let projS take the projection of an ℓ-dimensional vector down to that subset of
coordinates. We have

∫

sup
g∈G

‖projW (gv)‖22dµ(W ) =
1
(ℓ
k

)

∑

S∈([ℓ]k )

sup
g∈G

‖projS(ug)‖22

≤ 1
(ℓ
k

)

∑

S∈([ℓ]k )

∑

j∈S

(v′j)
2

=
k

ℓ

ℓ
∑

j=1

(v′j)
2 ≤ k

ℓ
‖v‖22.

The first equality follows by the definition of µ, the subsequent inequality follows by |〈gv,wj〉| ≤ v′j ,
and the last line is by direct computation and orthogonality of the Vj . �

We next reduce the irreducible case to the primitive case. We first collect a few facts proved in
[4] regarding systems of imprimitivity.

Lemma 3.1 ([4, Section 2]). Let G 6 U(Cd) be irreducible but imprimitive. Consider a system
imprimitivity

Cd =

d1
⊕

j=1

Vj

with d1 maximal over all such systems of primitivity. Let H = {g ∈ G : gV1 = V1} and choose
γ1, . . . , γd1 such that γjV1 = Vj. Then the following hold:

1. The Vj are orthogonal and have the same dimension, and G acts transitively on them.
2. H has primitive action on V1 (i.e. the representation of H on V1 is primitive).
3. γ1, . . . , γd1 form a complete set of left coset representatives for H in G.
4. For each g ∈ G there is σg ∈ Sd1 so that γ−1

σg(j)
gγj ∈ H for all j ∈ [d1] (i.e., σg records how

g permutes {V1, . . . , Vd1}).

Now we are ready to prove Proposition 2.8, which recall says that for all k ≤ d/2,

f irredk (d) ≤ max
d1d2=d

(

min
{

fprim⌈k/d1⌉
(d2), f

alt
k (d1) + 1k≥d1

})

.

Proof of Proposition 2.8. Let G 6 U(Cd) be irreducible but imprimitive. Consider a system of
imprimitivity

Cd =

d1
⊕

j=1

Vj

with d1 maximal among all systems of imprimitivity. By Lemma 3.1, the spaces Vj are orthogonal
and all the dimVj are equal. Let d2 = dimV1, so that d1d2 = d. Furthermore, H = {g ∈ G : gV1 =
V1} acts primitively on V1, that G acts transitively on the Vj , and that there are γ1, . . . , γd1 so that
γjV1 = Vj which form a complete set of left coset representatives for H in G. For each g ∈ G we

have some σg ∈ Sd1 so that γ−1
σg(j)

gγj ∈ H for all j ∈ [d1]. Define h(g, j) = γ−1
σg(j)

gγj .

Let v ∈ Cd. There is a unique orthogonal decomposition

v =

d1
∑

j=1

γjvj
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where vj ∈ V1 for all j ∈ [d1]. We have

gv =

d1
∑

j=1

gγjvj =

d1
∑

j=1

γjh(g, σ
−1
g (j))vσ−1

g (j).

Finally, if

w =

d1
∑

j=1

λjγjx

for some λ = (λ1, . . . , λd1) ∈ Cd1 and x ∈ V1 then we see from the above and orthogonality that

〈gv,w〉 =
d1
∑

j=1

λj〈h(g, σ−1
g (j))vσ−1

g (j),x〉.

Now we return to the situation at hand: we need to choose a k-dimensional space with a good
projection for our transitive set. Consider the map ψ : V1 × Cd1 → Cd given by

ψ(x,λ) =

d1
∑

j=1

λjγjx.

It clearly maps the pair of unit spheres into the unit sphere. Given probability measures µ1 on
GrC(k1, V1) and µ2 on GrC(k2,C

d1), we define the pushforward measure µ on GrC(k1k2, d) by
taking the image of these two subspaces under ψ. Equivalently, suppose µ∗1 samples a unitary basis
x1, . . . ,xk1 of a subspace of V1 and µ∗2 samples a unitary basis λ1, . . . ,λk2 of a subspace of Cd1 ,
then µ samples the subspace of Cd with basis {ψ(xi,λj) : i ∈ [k1], j ∈ [k2]}. It is easy to check this
basis is in fact unitary.

Next, we choose µ1 and µ2 based on the sizes of d1 and d2.
First let k1 = ⌈k/d1⌉ ≤ d2 (as k ≤ d/2) and k2 = d1. We let µ1 be the measure guaranteed by

Definition 2.1 so that
∫

sup
h∈H

‖projW (hu)‖22dµ1(W ) ≤ fprimk1
(d2)

2‖u‖22

for all u ∈ V1 and let µ2 be the atom on the space Cd1 in GrC(d1, d1). Let µ be the ψ-pushforward
of (µ1, µ2) as described earlier. We find

∫

sup
g∈G

‖projW (gv)‖22dµ(W ) =

∫

sup
g∈G

k1
∑

ℓ=1

d1
∑

j=1

|〈gv, ψ(xℓ, ej)〉|2dµ∗1(x1, . . . ,xk1)

=

∫

sup
g∈G

k1
∑

ℓ=1

d1
∑

j=1

|〈h(g, σ−1
g (j))vσ−1

g (j),xℓ〉|2dµ∗1(x1, . . . ,xk1)

=

∫

sup
g∈G

k1
∑

ℓ=1

d1
∑

j=1

|〈h(g, j)vj ,xℓ〉|2dµ∗1(x1, . . . ,xk1)

≤
d1
∑

j=1

∫

sup
g∈G

k1
∑

ℓ=1

|〈h(g, j)vj ,xℓ〉|2dµ∗1(x1, . . . ,xk1)

≤
d1
∑

j=1

∫

sup
h∈H

k1
∑

ℓ=1

|〈hvj ,xℓ〉|2dµ∗1(x1, . . . ,xk1)

≤
d1
∑

j=1

fprimk1
(d2)

2‖vj‖22 = fprimk1
(d2)

2‖v‖22.
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The last equality is by orthogonality of V1, . . . , Vd1 and unitarity of γj for j ∈ [d1].
Now suppose that k < d1. Let k1 = 1 and k2 = k. Choose an arbitrary unit vector x ∈ V1 and

µ1 be an atom on GrC(1, V1) supported on the line Cx. Let µ2 be guaranteed by Definition 2.6 so
that

∫

sup
u∈Dom(w)

k
∑

ℓ=1

|〈u,λℓ〉|2dµ∗2(λ1, . . . ,λk) ≤ faltk (d1)
2‖w‖22

for all w ∈ V1. Let µ be the ψ-pushforward of (µ1, µ2) as described earlier. We find

∫

sup
g∈G

‖projW (gv)‖22dµ(W ) =

∫

sup
g∈G

k
∑

ℓ=1

|〈gv,wℓ〉|2dµ∗(w1, . . . ,wk)

=

∫

sup
g∈G

k
∑

ℓ=1

|〈gv, ψ(x,λℓ)〉|2dµ∗2(λ1, . . . ,λk)

=

∫

sup
g∈G

k
∑

ℓ=1

∣

∣

∣

∣

d1
∑

j=1

λℓ,j〈h(g, σ−1
g (j))vσ−1

g (j),x〉
∣

∣

∣

∣

2

dµ∗2(λ1, . . . ,λk)

≤
∫

sup
u∈Dom(y)

k
∑

ℓ=1

|〈u,λℓ〉|2dµ∗2(λ1, . . . ,λk),

where y has coordinates yj = suph∈H |〈hvj ,x〉| for j ∈ [d1]. We immediately deduce

∫

sup
g∈G

‖projW (gv)‖22dµ(W ) ≤
∫

sup
u∈Dom(y)

k
∑

ℓ=1

|〈u,λℓ〉|2dµ∗2(λ1, . . . ,λk)

≤ faltk (d1)
2‖y‖22 ≤ faltk (d1)

2
d1
∑

j=1

‖vj‖22 = faltk (d1)
2‖v‖22.

Note that the above constructed measures in both cases are independent of v. The second con-
struction is only valid when k < d1. Therefore since the f values are clearly bounded by 1, we have
an upper bound of

fprimk (d) ≤ max
d1d2=d

(min(fprim⌈k/d1⌉
(d2), f

alt
k (d1) + 1k≥d1)),

as claimed. �

4. Permutation groups

In this section, we establish upper bounds for f symk (d) and faltk (d), extending the previous con-
struction [4, Section 3] for k = 1.

A useful high dimensional intuition is that, for small k, a random k-dimensional subspace of Rd

has the property that all its unit vectors have distribution of coordinate magnitudes similar to that
of a random Gaussian vector.

We first need the existence of a large dimension subspace of Rd with certain delocalization prop-
erties. We encode this through the following norm.

Definition 4.1. Given v ∈ Rd, let

‖v‖2T = sup
∅(S⊆[d]

log4(2d/|S|)
∑

j∈S

v2j

and let

T ∗ = {t ∈ Rd : |〈t,w〉| ≤ 1 whenever ‖w‖T ≤ 1}.
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Remark. Note that ‖·‖T is a norm as it can be represented as a supremum of seminorms. Hence

‖w‖T = sup
t∈T ∗

|〈t,w〉|.

We next recall a classical lemma regarding the concentration of norms on Gaussian space (see
e.g. [5]); we provide a short proof for convenience.

Lemma 4.2. There is an absolute constant C > 0 so that for all p ≥ 1, a Gaussian random vector
w ∼ N (0, Id) satisfies

(Ew1+···+wd=0‖w‖pT )1/p ≤ (E‖w‖pT )1/p ≤ E‖w‖T +C
√
p sup
t∈T ∗

‖t‖2.

Proof. For first inequality note that w ∼ N (0, Id) can be written as w′ + G1 where w′ is drawn
from N (0, Id) conditioned on having coordinate sum zero and G ∈ N (0, 1) is independent of w′.
Then by convexity note that

(E‖w‖pT )1/p = (E‖w′ +G1‖pT )1/p ≥ (Ew′‖E[w′ + v′|w′]‖pT )1/p = (Ew1+···+wd=0‖w‖pT )1/p.
To prove the second inequality first note that

‖w‖T − ‖v‖T ≤ ‖w − v‖T = sup
t∈T∗

|〈t,w − v〉| ≤ ‖w − v‖2 sup
t∈T∗

‖t‖2.

Therefore if L = supt∈T ∗‖t‖2 then w 7→ ‖w‖T is an L-Lipschitz function with respect to Euclidean
distance. Therefore by Gaussian concentration for Lipschitz functions (see e.g. [1, p. 125]) we have
that

P[|‖w‖T − E[‖w‖T ]| ≥ t] ≤ 2 exp(−ct2/L2)

where c is an absolute constant. Using standard moment bounds for sub-Gaussian random variables
(see e.g. [8, Proposition 2.5.2]), we find that

(E|‖w‖T − E‖w‖T |p)1/p ≤ C
√
p sup
t∈T ∗

‖t‖2

for an absolute constant C > 0. Finally, Minkowski’s inequality implies that

(E‖w‖pT )1/p ≤ E‖w‖T + (E|‖w‖T − E‖w‖T |p)1/p

and therefore the result follows. �

We now prove an upper bound for E[‖w‖T ].

Lemma 4.3. A Gaussian random vector w ∼ N (0, Id) satisfies E‖w‖T .
√
d.

Proof. Recall w≻
i from Definition 2.4. We have

E(w≻
i )

2 =

∫ ∞

0
P[w≻

i ≥
√
t]dt ≤

∫ ∞

0
min

(

1,

(

d

i

)

(2e−t/2)i
)

dt

≤
∫ ∞

0
min(1, (2de1−t/2/i)i)dt . log(2d/i).

Therefore

(E‖w‖T )2 ≤ E‖w‖2T ≤
d
∑

i=1

log4(2d/i)(w≻
i )

2 .

d
∑

i=1

log5(2d/i)

≤ d

∫ 1

0
log(2/x)5 dx = d

∫ ∞

0
(y + log 2)5e−y dy . d. �

We are in position to derive a high-probability version.
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Lemma 4.4. With probability at least 1 − exp(−2d/(log d)4), a standard Gaussian vector w ∼
N (0, Id) satisfies ‖w‖T .

√
d. In fact, the same is true after conditioning w to have coordinate

sum 0.

Proof. Note that if t ∈ T ∗, then

‖t‖22 = ‖t‖T
∣

∣

∣

∣

〈

t,
t

‖t‖T

〉
∣

∣

∣

∣

≤ ‖t‖T ≤ log2(2d)‖t‖2.

Hence
sup
t∈T ∗

‖t‖2 ≤ log2(2d).

To deduce the claimed bound, note that

P[‖w‖T ≥ K
√
d] ≤ (K

√
d)−pE[‖w‖pT ]

≤ (K
√
d)−p(E‖w‖T + C

√
p sup
t∈T ∗

‖t‖2)p

≤ (K
√
d)−p(C ′

√
d+ C ′√p log2(2d))p

for appropriate absolute constants C,C ′ > 0, using Lemmas 4.2 and 4.3 and the above inequality.
Letting p = d/(log d)4 and K > 0 be a sufficiently large absolute constant yields

P[‖w‖T ≥ K
√
d] ≤ exp(−2p),

as desired. The same holds is we condition on sum 0, using the moment bound for the conditional
variable derived in Lemma 4.2 instead. �

Lemma 4.5. There is a ⌈d/(log d)4⌉-dimensional subspace of the hyperplane 1⊥ in Rd such that
each of its unit vectors v satisfies

‖v‖T . 1.

Proof. We can assume d is sufficiently large. Let k = ⌈d/(log d)4⌉, and consider a uniformly random
k-dimensional subspace W of 1⊥. Let U be a d × k matrix whose columns form an orthonormal
basis of W , chosen uniformly at random.

By a standard volume packing argument (e.g., see [7, Lemma 4.3]), there exists N ⊂ S(Rk) with
|N | ≤ 6k such that for every v ∈ S(Rk) there is v′ ∈ N so that ‖v−v′‖2 ≤ 1/2. Thus if u is a unit
vector in the direction of v − v′, we have

‖Uv‖T ≤ ‖Uv′‖T + ‖U(v − v′)‖T ≤ ‖Uv′‖T +
1

2
‖Uu‖T .

We deduce

sup
v∈S(Rk)

‖Uv‖T ≤ sup
v′∈N

‖Uv′‖T +
1

2
sup

u∈S(Rk)

‖Uu‖T

and thus
sup

v∈S(Rk)

‖Uv‖T ≤ 2 sup
v′∈N

‖Uv′‖T .

Now fix some v ∈ N . Note the distribution of Uv is uniform among unit vectors in 1⊥ since W
was chosen uniformly. Now note that for any constant C we have that

P[‖Uv‖T ≥ C] = P[‖G/‖G‖2‖T ≥ C]

where G ∼ N(0, Id − (1T1)/d). Now since G/‖G‖2 and ‖G‖2 are independent we have that

P[‖G/‖G‖2‖T ≥ C] = P[‖G‖2 ≤ 2
√
d]−1P[‖G/‖G‖2‖T ≥ C and ‖G‖2 ≤ 2

√
d]

≤ 2P[‖G/‖G‖2‖T ≥ C and ‖G‖2 ≤ 2
√
d]

≤ 2P[‖G/‖G‖2‖T ≥ 2C
√
d].
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By Lemma 4.4, the last expression is at most 2 exp(−2d/(log d)4). The result follows upon taking
the union bound over at most 6k vectors in N , since 6 < e2. �

Finally, we will need a form of Selberg’s inequality (see [3, Chapter 27, Theorem 1]).

Lemma 4.6. For v1, . . . ,vm ∈ Cd we have that

sup
w∈S(Cd)

m
∑

i=1

|〈w,vi〉|2 ≤ sup
i∈[m]

m
∑

j=1

|〈vi,vj〉|.

Now we prove Proposition 2.9, which recall says that for k ≤ d/(log d)5, one has

f symk (d) ≤ faltk (d) . 1/
√

log(d/k).

The first inequality is immediate as the set of allowable µ’s in the definition of faltk is a subset of
those of f symk . So we just need to prove the second inequality.

Proof of Proposition 2.9. Let ei be the i-th coordinate vector. For each j with k ≤ 2j/(log 2j)4 ≤ d,
we apply Lemma 4.5 to the space Vj = spanR{e1, . . . , e2j}. Here the T -norm is defined with respect
to this 2j-dimensional space. In particular, there exists a k-dimensional (real) subspace of the
orthogonal complement of e1 + · · · + e2j within Vj, call it Wj , so that every unit vector u ∈ Wj

satisfies
∑

i∈S

u2i .
1

log4(2j+1/|S|)
for every nonempty S ⊆ [2j ]. Let V ′

j = spanC Vj and W ′
j = spanCWj . We immediately deduce that

every unit vector u ∈W ′
j satisfies

∑

i∈S

|ui|2 .
1

log4(2j+1/|S|) (4.1)

since we can write it as u = αur + β
√
−1uc where ur,uc ∈ Wj are real unit vectors and α, β ∈ R

satisfy α2 + β2 = 1.
Now we construct our random subspace as follows: let W = Wj where j is a random integer

uniformly chosen from
J = {⌈log2(2k log4 d)⌉, . . . , ⌊log2 d⌋}.

Let µ be the probability measure on GrC(k, n) that gives W .
For every v ∈ S(Cd), we have

sup
γ∈Γd

‖projW (γv)‖2 = sup
γ∈Γd

sup
w∈S(W )

|〈γv,w〉| = sup
w∈S(W )

〈v≻,w≻〉.

Therefore
∫

sup
γ∈Γd

‖projW (γv)‖22dµ(W ) =
1

|J |
∑

j∈J

sup
γ∈Γd

‖projWj
(γv)‖22 =

1

|J |
∑

j∈J

sup
w∈S(Wj)

〈v≻,w≻〉2.

Let w′
j ∈ S(Wj) be such that

sup
w∈S(Wj)

〈v≻,w≻〉2 = 〈v≻, (w′
j)

≻〉2,

which exists by compactness. For i, j ∈ J with i ≥ j, we have

|〈(w′
i)
≻, (w′

j)
≻〉| ≤ ‖projVi

((w′
j)

≻)‖2 .
1

log2(2i+1/2j)
.

The first inequality follows from w′
j ∈ Vj , which implies (w′

j)
≻ ∈ Vj . The second follows from (4.1)

applied to w′
j and S a subset of [2i] composed of the 2j largest magnitude coordinates of w′

j.
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Applying Lemma 4.6, we deduce
∫

sup
γ∈Γd

‖projW (γv)‖22dµ(W ) =
1

|J |
∑

j∈J

〈v≻, (w′
j)

≻〉2 ≤ sup
i∈J

1

|J |
∑

j∈J

|〈(w′
i)
≻, (w′

j)
≻〉|

.
1

|J |

(

∑

j∈J,j≥i

1

log2(2j+1/2i)
+

∑

j∈J,j<i

1

log2(2i+1/2j)

)

.
1

|J | .

This µ thus shows that faltk (d) . 1/
√

log(d/k). �

5. Primitive representations

We now turn to the case of bounding fprimk (d). First, we show that if the group G 6 U(Rd) is

sufficiently small, then a random basis achieves the necessary bound for fprimk (d). This is a minor
modification of [4, Proposition 4.1].

Proposition 5.1. Let G 6 U(Cd). Suppose that [G : Zd∩G] ≤ ed/ log d, where Zd := {λId : |λ| = 1}.
Then for k ∈ [d] there exists a probability measure µ on GrC(k, d) such that

∫

sup
g∈G

‖projW (gv)‖22dµ(W ) .
1

log(2d/k)
‖v‖22

for all v ∈ Cd.

Proof. We let µ be the uniform measure on GrC(k, d). By scaling, we may assume that v is a unit
vector. Furthermore let W ′ be the subspace generated by the first k coordinate vectors e1, . . . , ek.
Note that

PW

[

sup
g∈G

‖projW (gv)‖2 ≥ t

]

≤ ed/ log dPW [‖projW (v)‖2 ≥ t]

≤ ed/ log dPv′∈S(Cd)[‖projW ′(v′)‖2 ≥ t]

using a union bound and then orthogonal invariance. Now note that

E[‖projW ′(v′)‖2]2 ≤ E[‖projW ′(v′)‖22] = k/d

and that ‖projW ′(v′)‖ is a 1-Lipschitz function of v′. Therefore by Lévy concentration on the sphere
we have that

Pv′∈S(Cd)[‖projW ′(v′)‖2 ≥
√

k/d+ C/
√

log d] ≤ e−2d/ log d

for a suitably large absolute constant C. Finally, using
√

k/d . 1/
√

log(2d/k) and using the bound
‖projW ′(v′)‖2 ≤ 1, the desired result follows immediately. �

We need the following key group theoretic result from Green [4], which in turn builds on ideas
from Collins’ work on optimal bounds for Jordan’s theorem [2]. Roughly, it says that if [G : Zd∩G]
is large then G has a large normal alternating subgroup. The first part of the following theorem is
[4, Proposition 4.2], while the rest is implicit in the proof of [4, Proposition 1.11].

Theorem 5.2 ([4, Section 4]). Let G 6 U(Cd) be primitive and suppose that [G : Zd∩G] ≥ ed/ log d.
If d is sufficiently large then all of the following hold.

(1) G has a normal subgroup isomorphic to the alternating group An for some n & d/(log d)4.
(2) G has a subgroup of index at most 2 of the form An ×H, with the same n.
(3) The resulting representation ρ : An × H →֒ G →֒ U(Cd) decomposes into irreducible rep-

resentations, at least one of which (call it ρ1) is of the form ρ1 ≃ ψ ⊗ ψ′, where ψ′ is an
irreducible representation of H and ψ is the representation of An acting via permutation of
coordinates on {z ∈ Cn : z1 + · · · + zn = 0}.
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We are now in position to prove Proposition 2.10, which recall says that there is an absolute
constant c > 0 such that for every k ≤ cd/(log d)4 we have

fprimk (d) . sup
d′≥cd/(log d)4

faltk (d′).

The proof mirrors that of [4, Proposition 1.11], but we correct an error of Green ([4, p. 20]) involving
an incorrect orthogonality identity. This erroneous deduction is replaced by an argument which still
allows one to reduce the primitive case to the alternating case.

Proof of Proposition 2.10. We may assume d is sufficiently large. If [G : Zd∩G] ≤ ed/ log d, then the

result follows by Proposition 5.1. So we can assume [G : Zd∩G] ≥ ed/ log d, and thus by Theorem 5.2,
G has a normal subgroup isomorphic to An for some n & d/(log d)4 and that G has a subgroup of
index at most 2 which is of the form An ×H. If the index is 2, let τ be the nontrivial right coset
representative of An ×H in G (otherwise just let τ be the identity). Note that

sup
g∈G

‖projW (gv)‖22 ≤ sup
g∈An×H

‖projW (gv)‖22 + sup
g∈An×H

‖projW (gτv)‖22,

so it is easy to see that, up to losing a constant factor, we may reduce to studying groups of the form
G = An ×H where n & d/(log d)4 (but note that the representation may no longer be primitive, or
even irreducible).

Now Theorem 5.2 shows that the representation ρ : An×H → U(Cd) coming from this setup has
an irreducible component of the form ρ1 ≃ ψ⊗ψ′, where ψ′ is an irreducible representation of H and
ψ is the representation of An acting via permutation of coordinates on {z ∈ Cn : z1 + · · ·+ zn = 0}.

Note that dim ρ1 ≥ dimψ = n− 1 & d/(log d)4, so dim ρ1 ≥ k provided that c > 0 is sufficiently
small. We will choose a k-dimensional subspace of the irreducible component ρ1.

We explicitly present this situation as follows. Let V ′ be the space acted on by ψ′ (unitarily).
Consider V = 1⊥ ⊆ Cn, and consider the spaces V ⊗ V ′ ⊆ Cn ⊗ V ′, which has a natural unitary
structure given by the tensor product. Note ψ acts on V by permutation of coordinates when
represented in Cn. Every vector in V ⊗ V ′ is spanned by pure tensors v ⊗ v′ where v has zero
coordinate sum, and ρ1((a, h)) acts by ψ(a) ⊗ ψ′(h) on pure tensors. In fact, we can extend this
action to all of Cn ⊗ V ′ in the natural way (and the resulting representation is isomorphic to a
direct sum of ρ1 and trivAn ⊗ψ′). At this point, the analysis will be similar to that in the proof of
Proposition 2.8.

Let ν be the measure on GrC(k, n) which is guaranteed by Definition 2.6 (so is supported on
subspaces of V ⊆ Cn) and consider the measure which is supported on a single atom in GrC(1, V

′)
in the direction of a fixed unit vector x. Let µ be the tensor of these two measures, i.e., if ν∗ samples k
orthonormal (sum zero) vectors u1, . . . ,uk then we choose the subspace with basis u1⊗x, . . . ,uk⊗x.

Now consider some v in the space V ⊗ V ′ ⊆ Cn ⊗ V ′, and write it as

v =
n
∑

j=1

ej ⊗ v′
j

where the ej is the j-th coordinate vector of Cn. In fact, the v′
j must add up to 0 ∈ V ′. We see

that

‖v‖22 =
n
∑

j=1

‖v′
j‖22.
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We have
∫

sup
g∈An×H

‖projW (gv)‖22dµ(W )

=

∫

sup
a∈An,h∈H

k
∑

ℓ=1

∣

∣

∣

∣

〈 n
∑

j=1

ψ(a)ej ⊗ ψ′(h)v′
j ,wℓ

〉
∣

∣

∣

∣

2

dµ∗(w1, . . . ,wk)

=

∫

sup
a∈An,h∈H

k
∑

ℓ=1

∣

∣

∣

∣

n
∑

j=1

〈ψ(a)ej ,uℓ〉〈ψ′(h)v′
j ,x〉

∣

∣

∣

∣

2

dν∗(u1, . . . ,uk)

≤
∫

sup
w∈Dom(y)

k
∑

ℓ=1

|〈w,uℓ〉|2dν∗(u1, . . . ,uk)

≤ faltk (n)2‖y‖22,
where y ∈ Cn satisfies yj = suph∈H |〈ψ′(h)v′

j ,x〉|. The first inequality follows by noting that

〈ψ(a)ej ,uℓ〉 as j varies simply records the coordinates of uℓ in some permutation, and by considering
w = (w1, . . . , wn) defined via wj = 〈ψ′(h)v′

j ,x〉, which is clearly on Dom(y). Now we see

∫

sup
g∈An×H

‖projW (gv)‖22dµ(W ) ≤ faltk (n)2‖y‖22 ≤ faltk (n)2
n
∑

j=1

‖v′
j‖22 = faltk (n)2‖v‖22. �

This completes all the components of the proof of Theorem 1.3.

6. Real subspaces

We already proved Theorem 1.3, which finds a complex subspace. Now we use it to deduce
Theorem 1.2, which gives a real subspace. We will apply the following version of the restricted
invertibility theorem, which is a special case of [6, Theorem 6]. We write s1(M) ≥ s2(M) ≥ · · · for
the singular values of a matrix M .

Theorem 6.1 ([6, Theorem 6]). Let M be a real 2k × 4k matrix of rank 2k. There exists S ⊆ [4k]
with |S| = k such that MS, the restriction of M to the columns S, satisfies

sk(MS) &

√

∑4k
j=3k/2 sj(M)2

k
.

Proof of Theorem 1.2. Let 2k ≤ d/(log d)C , where C is as in Theorem 1.3. By embedding X in
S(Cd) and using Theorem 1.3 we can find a 2k-dimensional complex subspace W of Cd such that

sup
x∈X

‖projW x‖2 . 1/
√

log(d/k).

Let v1, . . . ,v2k be a unitary basis for the subspace W and let the matrix with these columns be
denoted by B. Now consider the matrix M which has 4k columns which are Rev1, . . . ,Rev2k and
Imv1, . . . , Imv2k. Note that M has s2k(M) ≥ 1/

√
2 as any vectors in C4k satisfying ivj = vj+2k

have ‖Mv‖ = ‖v‖/
√
2. Therefore by Theorem 6.1 one can select k columns such that the matrix

N with those k columns satisfies

sk(N) & 1.

Now consider any unit vector v in the image of N . Such a vector can be represented as v = Nw

where ‖w‖ . 1. It therefore suffices to prove that

sup
x∈X,w∈S(Rk)

|〈Nw,x〉| . 1/
√

log(d/k).
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To see this separate N into N1 and N2 where N1 corresponds to columns chosen from the real parts
of vectors vi and the columns are chosen from the complex parts of vi. Let these have ℓ and k − ℓ
columns respectively. Then

sup
x∈X,w∈S(Rk)

|〈Nw,x〉| ≤ sup
x∈X,w∈S(Rℓ)

|〈N1w,x〉|+ sup
x∈X,w∈S(Rk−ℓ)

|〈N2w,x〉|

≤ 2 sup
x∈X,w∈S(Ck)

|〈Bw,x〉|

. 1/
√

log(d/k). �

7. Lower Bound

Finally, we show a lower bound of Ω(1/
√

log(2d/k)), which demonstrates optimality of our results.

Proof of Theorem 1.5. We prove the real case; an analogous proof works over C by considering a
suitably fine discretization of Γd, or we can repeat the proof in Section 6 to transfer a lower bound
from real to complex.

The claim for k = 1 was already proved in [4, Sharpness after Theorem 1.3] (see the construction
at the beginning of this article right after Theorem 1.1). The case k = 1 implies the result also for
k ≤ d1−c for any constant c, since we can project from W onto a arbitrary 1-dimensional subspace
of W .

So from now on assume k ≥ d1/2. Consider the action of G = Sd⋉(Z/2Z)d on Rd by permutation
and signing. Let

a =

(

1
√

⌊k/2⌋ + 1
, . . . ,

1√
d
, 0, . . . , 0

)

.

Let X be the G-orbit of a/‖a‖2.
Let W be a k-dimensional subspace of Rd. We wish to show supx∈X‖projW x‖2 & 1/

√

log(2d/k).

Let y = (y1, . . . , yd) a uniform random vector in S(W ). Let σi = (Ey2i )
1/2. We have

σ21 + · · ·+ σ2d = E[y21 + · · · + y2d] = 1 (7.1)

and

σ2i =
1

k
‖projW (ei)‖2 ≤ 1

k
. (7.2)

Without loss of generality, assume that 1/
√
k ≥ σ1 ≥ · · · ≥ σd ≥ 0, so that σi ≤ 1/

√
i for each i.

We claim that

ai ≥
√

2

3
σi for all 1 ≤ i ≤ d− k/2.

Indeed, for i ≤ k, we have ai ≥ 1/
√

3k/2 ≥
√

3/2σi. For k < i ≤ d − ⌊k/2⌋, we have ai =

1/
√

⌊k/2⌋ + i ≥ σi
√

i/(⌊k/2⌋ + i) ≥
√

2/3σi.

We have E|yi| & (Ey2i )
1/2 = σi since yi is distributed as the first coordinate of a random point

on σi
√
k · S(Rk).

Putting everything together, we have

‖a‖2 sup
x∈X

‖projW x‖2 ≥ sup
g∈G

‖projW ga‖ ≥ E sup
g∈G

〈a, gy〉

≥ E
∑

1≤i≤d

ai|yi| &
d
∑

i=1

aiσi &

d−k/2
∑

i=1

σ2i ≥ 1

2
,

where the final step uses (7.1) and (7.2). Thus

sup
x∈X

‖projW x‖2 &
1

‖a‖2
& 1/

√

log(2d/k). �
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