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ANTICONCENTRATION VERSUS THE NUMBER OF SUBSET SUMS

VISHESH JAIN, ASHWIN SAH, AND MEHTAAB SAWHNEY

Abstract. Let ~w = (w1, . . . , wn) ∈ R
n. We show that for any n−2 ≤ ǫ ≤ 1, if

#{~ξ ∈ {0, 1}n : 〈~ξ, ~w〉 = r} ≥ 2−ǫn · 2n

for some r ∈ R, then

#{〈~ξ, ~w〉 : ~ξ ∈ {0, 1}n} ≤ 2O(
√
ǫn)

.

This exponentially improves a recent result of Nederlof, Pawlewicz, Swennenhuis, and Węgrzycki
and leads to a similar improvement in the parameterized (by the number of bins) runtime of bin
packing.

1. Introduction

For ~w := (w1, . . . , wn) ∈ R
n and a real random variable ξ, recall that the Lévy concentration

function of ~w with respect to ξ is defined for all r ≥ 0 by

Lξ(~w, r) = sup
τ∈R

P[|w1ξ1 + · · ·+ wnξn − τ | ≤ r],

where ξ1, . . . , ξn are i.i.d. copies of ξ. In combinatorial settings (where ~w ∈ Z
n) a particularly

natural and interesting case is when r = 0 and ξ is a Bernoulli random variable, i.e., ξ = 0 with
probability 1/2 and ξ = 1 with probability 1/2. For lightness of notation, we will denote this special
case by

ρ(~w) = LRad(~w, 0) = sup
τ∈R

P[〈~w, ~ξ〉 = τ ].

In this note, we study the following question.

Question 1.1. For a vector ~w = (w1, . . . , wn) ∈ R
n with ρ(~w) ≥ ρ, how large can the range

R(~w) = {w1ξ1 + · · ·+ wnξn : ξi ∈ {0, 1}}
be?

The two extremal examples here are ~w = (0, 0, . . . , 0), which corresponds to ρ(~w) = 1, |R(~w)| = 1
and ~w = (1, 10, . . . , 10n−1), which corresponds to ρ(~w) = 2−n, |R(~w)| = 2n. Motivated by these
examples, one may ask if there is a smooth trade-off between ρ(~w) and |R(~w)|. This turns out
not to be the case. Indeed, for any ǫ > 0, Wiman [6] gives an example of a ~w ∈ Z

n for which

|R(~w)| ≥ 2(1−ǫ)n and ρ(~w) ≥ 2−0.7447n. At the other end of the spectrum, when ρ(~w) ≥ 2−ǫn, the
so-called inverse Littlewood–Offord theory [4,5] heuristically suggests that ~w is essentially contained
in a low-rank generalized arithmetic progression of ‘small’ volume so that |R(~w)| is also ‘small’.
However, the number of ‘exceptional elements’ in the inverse Littlewood–Offord theorems (cf. [3])
is unfortunately too large to be able to rigorously establish such a statement.

Nevertheless, in a recent work on the parameterized complexity of the bin packing problem (see
Section 1.1), Nederlof, Pawlewics, Swennenhuis and Węgrzycki [2] showed that for any ǫ > 0,

ρ(~w) ≥ 2−ǫn =⇒ |R(~w)| ≤ 2δ(ǫ)n,
1
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where

δ(ǫ) = O

(

log log(ǫ−1)
√

log(ǫ−1)

)

. (1.1)

In particular, δ(ǫ) → 0 as ǫ → 0. Moreover, we must have δ(ǫ) ≥ (2 − o(1))ǫ, as can be seen by
considering

~w = (C1, . . . , C1, C2, . . . , C2, . . . , Cn/k, . . . , Cn/k) ∈ R
n,

where each Ci is repeated k times, and Ci is sufficiently small compared to Ci+1 for all i. Indeed,

for such ~w, we have ρ(~w) = 2−( 1
2
+ok(1))

n

k
log2 k while |R(~w)| ≤ 2(1+ok(1))

n

k
log2 k.

We conjecture that this example is essentially the worst possible, so that δ(ǫ) ≤ 2ǫ. We are able
to show that

δ(ǫ) = O(
√
ǫ), (1.2)

thereby obtaining an exponential improvement over (1.1). More precisely,

Theorem 1.2. Let ǫ > 0. For any n ≥ ǫ−1/2 and any ~w ∈ R
n satisfying ρ(~w) ≥ exp(−ǫn), we have

|R(~w)| ≤ exp(C1.2ǫ
1/2n),

where C1.2 is an absolute constant.

We prove this theorem in Section 2.

1.1. Application to bin packing. The bin packing problem is a classic NP-complete problem
whose decision version may be stated as follows: given n items with weights w1, . . . , wn ∈ [0, 1] and
m bins, each of capacity 1, is there a way to assign the items to the bins without violating the
capacity constraints? Formally, is there a map f : [n] → [m] such that

∑

i∈f−1(j) wi ≤ 1 for all

j ∈ [m]?

Björklund, Husfeldt, and Koivisto [1] provided an algorithm for solving bin packing in time Õ(2n)
where the tilde hides polynomial factors in n. It is natural to ask whether the base of the exponent
may be improved at all i.e. is there a (possibly randomized) algorithm to solve bin packing in time

Õ(2(1−ǫ)n) for some absolute constant ǫ > 0?
In recent work, Nederlof, Pawlewics, Swennenhuis and Węgrzycki [2] showed that this is true

provided that the number of bins m is fixed. More precisely, they showed that there exists a
function σ : N → R

>0 and an algorithm for solving bin packing which, on instances with m bins,
runs in time Õ(2(1−σ(m))n), where Õ hides polynomials in n as well as exponential factors in m.
Their analysis, which crucially relies on (1.1), gives a very small value of σ(m) satisfying

σ(m) ≤ 2−1/m9
. (1.3)

Using Theorem 1.2 instead of (1.1) in a black-box manner in the analysis of [2], we exponentially
improve the bound on σ(m).

Corollary 1.3. With notation as above, the algorithm of [2] solves bin packing instances with m

bins in time Õ(2(1−σ(m))n) for σ : N → R
>0 satisfying

σ(m) = Ω̃(m−12), (1.4)

where Ω̃ hides logarithmic factors in m.

We remark that the conjecturally optimal bound δ = O(ǫ), plugged into the analysis of [2], would

lead to σ(m) = Ω̃(m−6).
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1.2. Notation. We use Ber(1/2) to denote the balanced {0, 1} Bernoulli distribution and Bin(k) to
denote the binomial distribution on k trials with parameter 1/2. Recall that Bin(k) is the sum of k
independent Ber(1/2) random variables. We also use the following standard additive combinatorics
notation: C + D = {c + d : c ∈ C, d ∈ D} is the sumset (if C,D are subsets of the same abelian
group), and for a positive integer k, k · C = C + · · ·+ C (k times) is the iterated sumset.

2. Proof of Theorem 1.2

We begin by recording the following key comparison bound, which will be proved at the end of
this section.

Lemma 2.1. Let n ≥ k ≥ C2.1, where C2.1 is an absolute constant and let δ > 0. For any

A ⊆ {0, 1}n with |A| ≤ exp(δn), the following holds. Let ~x,~b ∼ Bin(k)⊗n be independent n-
dimensional random vectors. Then,

E~x

[

sup
~a∈A

P~b
[~b = ~x− ~a]

P~b[
~b = ~x]

]

≤ exp

(

C2.1

(

1

k
+

√

δ

k

)

n

)

.

Let ~w be as in Theorem 1.2. Let τ be such that P[〈~w, ~ξ〉 = τ ] = ρ(~w), where ~ξ is a random vector
with i.i.d. Ber(1/2) components. Let

B = {~ξ ∈ {0, 1}n : 〈~w, ~ξ〉 = τ}.
In particular, |B| ≥ exp(−ǫn) · 2n. Let |R(~w)| = exp(δn). For each r ∈ R(~w), let ~ξ(r) be a fixed

(but otherwise arbitrary) element of {0, 1}n such that 〈~w, ~ξ(r)〉 = r. Let

A = {~ξ(r) ∈ {0, 1}n : r ∈ R(~w)}.
Note that, by definition, for any distinct ~a1,~a2 ∈ A, we have that 〈~w,~a1〉 6= 〈~w,~a2〉 and that
|A| = |R(~w)| = exp(δn).

We will make use of the simple, but crucial, observation from [2] that A and k · B have a full
sumset for all k ≥ 1.

Lemma 2.2 ([2, Lemma 4.2]). The map (~a,~c) 7→ ~a+ ~c from A× (k · B) to A+ k · B is injective.

Proof. Indeed, if ~a1 + (~b
(1)
1 + · · · +~b

(1)
k ) = ~a2 + (~b

(2)
1 + · · · +~b

(2)
k ), where ~ai ∈ A and ~b

(i)
j ∈ B, then

taking the inner product of both sides with ~w and using 〈~w,~b〉 = τ for all b ∈ B, we see that
〈~w,~a1〉 = 〈~w,~a2〉, which implies that ~a1 = ~a2 by the definition of A. �

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. Let k ≥ 2 be a parameter which will be chosen later depending on ǫ. By
Lemma 2.2, for each ~x ∈ {0, . . . , k + 1}n for which there exist ~a ∈ A and ~c ∈ k · B with ~a+ ~c = ~x,
there exists a unique such choice ~a = ~a(~x) ∈ A.

Now, let ~a be uniform on A, let ~b1, . . . ,~bk be uniform on B, and let ~v1, . . . , ~vk be uniform on
{0, 1}n. Let Ci ⊆ {0, . . . , k + 1}n be the set of vectors with i coordinates equal to k + 1. For
~x ∈ {0, . . . , k + 1}n, we let ~x∗ ∈ {0, . . . , k}n denote the vector obtained by setting every occurrence
of k + 1 in ~x to k. We have

1 = P[~a+~b1 + · · ·+~bk ∈ {0, . . . , k + 1}n]

=

n
∑

i=0

∑

~x∈Ci

P[~a+~b1 + · · ·+~bk = ~x]

3



≤
n
∑

i=0

∑

~x∈Ci

P[~a = ~a(~x)]P[~b1 + · · ·+~bk = ~x− ~a(~x)]

≤ 1

|A|
n
∑

i=0

∑

~x∈Ci

(

2n

|B|

)k

P[~v1 + · · ·+ ~vk = ~x− ~a(~x)]

≤ ekǫn

|A|
n
∑

i=0

∑

~x∈Ci

P[~v1 + · · ·+ ~vk = ~x∗] sup
~a∈A

P[~v1 + · · ·+ ~vk = ~x− ~a]

P[~v1 + · · ·+ ~vk = ~x∗]

=
ekǫn

|A|
n
∑

i=0

(1/2k)i
∑

S∈([n]
i
)

E~x∼Bin(k)⊗([n]\S)×{k+1}S

[

sup
~a∈A

P[~v1 + · · ·+ ~vk = ~x− ~a]

P[~v1 + · · ·+ ~vk = ~x∗]

]

.

Let AS be the set of elements in A ⊆ {0, 1}n whose support contains S. Let

A′
S = {~a′ ∈ {0, 1}[n]\S : ∃~a ∈ AS with ~a|[n]\S = ~a′}.

Recall that |A| = exp(δn). Abusing notation so that the supremum of an empty set is 0, can
continue the above chain of inequalities to get that

1 ≤ ekǫn

|A|
n
∑

i=0

(1/2k)i
∑

S∈([n]
i
)

E~x∼Bin(k)⊗([n]\S)×{k+1}S

[

sup
~a∈A

P[~v1 + · · · + ~vk = ~x− ~a]

P[~v1 + · · ·+ ~vk = ~x∗]

]

=
ekǫn

|A|
n
∑

i=0

(1/2k)i
∑

S∈([n]
i
)

E~x∼Bin(k)⊗([n]\S)

[

sup
~a∈AS

P[~v1 + · · ·+ ~vk = ~x− ~a× {0}S ]
P[~v1 + · · · + ~vk = ~x× {k}S ]

]

=
ekǫn

|A|
n
∑

i=0

(1/2k)i
∑

S∈([n]
i
)

E~x∼Bin(k)⊗([n]\S)

[

sup
~a∈AS

P[~v1 + · · ·+ ~vk = ~x− ~a]

P[~v1 + · · ·+ ~vk = ~x]

]

≤ ekǫn

|A|





n/2
∑

i=0

·+
n
∑

i=n/2

2−ki · 2n ·
(

max
ℓ

( k
ℓ±1

)

(k
ℓ

)

)i




≤ ekǫn

|A|





n/2
∑

i=0

·+ n · 2−kn/2 · 2n · kn




≤ ekǫn

|A|

( n/2
∑

i=0

2−ki exp(C2.1(k
−1 + δ1/2k−1/2)n) + 2−kn/4

)

≤ exp(−δn) exp
(

O(kǫ+ k−1 + δ1/2k−1/2)n
)

by Lemma 2.1 applied to AS , as long as n/2 ≥ k ≥ C2.1 ≥ 10. Hence,

δ ≤ C(kǫ+ k−1 + δ1/2k−1/2)

for some absolute constant C > 0. Now letting k = ǫ−1/2/2 (note that this satisfies 2k = ǫ−1/2 ≤ n),
we find that

δ = O(ǫ1/2),

as desired. �

The proof of Lemma 2.1 relies on the following preliminary estimate.
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Lemma 2.3. If 1 ≤ s ≤ k/(16π), then

Ex∼Bin(k)

(

x

k + 1− x

)s

≤ exp(10πs2/k) + 2ks(4/5)k .

Proof. We let x ∼ Bin(k) and y = x− k/2 ∼ Bin(k)− k/2 throughout. We let z ∼ N (0, kπ/8). We
have

Ex∼Bin(k)

(

x

k + 1− x

)s

= Ey

(

1 +
2y − 1

k/2 + 1− y

)s

≤ Ey

(

1 +
2y

k/2 + 1− y

)s

1|y|≤k/3 + ksP[|y| ≥ k/3]

≤ Ey

(

1 +
2y

k/2 + 1− y

)s

1|y|≤k/3 + 2ks(4/5)k .

Since for |y| ≤ k/3,

2y

(k/2 + 1− y)
≤ 2y

k/2 + 1
+

8y2

(k/2 + 1)2
,

and using (1 + x) ≤ exp(x). we can continue the previous inequality as

≤ Ey

(

1 +
2y

k/2 + 1
+

8y2

(k/2 + 1)2

)s

1|y|≤k/3 + 2ks(4/5)k

≤ Ey exp

(

4sy

k + 2
+

32sy2

k2

)

+ 2ks(4/5)k.

Now, let z1, . . . , zk be i.i.d. N (0, 1) random variables. Then,

y ∼ 1

2
(sgn z1 + · · ·+ sgn zk) .

Moreover, for any −k ≤ ℓ ≤ k,

E[z1 + · · ·+ zk | sgn(z1) + · · · + sgn(zk) = ℓ] =

√

2

π
ℓ.

In particular, under this coupling of y, z1, . . . , zk, we have

E[z1 + · · ·+ zk | y] =
√

8

π
y.

Let z = z1 + · · · + zk, so that z ∼ N (0, k). Then, by the convexity of

f(r) = exp

(

4sy

k + 2
+

32sy2

k2

)

,

and using Jensen’s inequality, we have

Eyf(y) = Ey,z1,...,zkf(y)

= Ey,z1,...,zkf

(
√

π

8
E[z | y]

)

≤ Ezf(
√
πz/

√
8)

= Ew∼N (0,1) exp

(

s
√
2kπ

k + 2
w +

4sπ

k
w2

)

=

(

1− 8πs

k

)−1/2

exp

(

πs2k2

(k + 2)2(k − 8πs)

)

5



≤ exp

(

8πs

k
+

2πs2

k

)

≤ exp(10πs2/k). �

Finally, we can prove Lemma 2.1

Proof of Lemma 2.1. We may assume that δ ≥ 2000/k since the statement for δ < 2000/k follows
from the statement for δ = 2000/k. Also, note that δ ≤ log 2. For any t ∈ R, we have

P~x

[

sup
~a∈A

P~b
[~b = ~x− ~a]

P~b
[~b = ~x]

≥ etn
]

≤ |A| sup
~a∈A

P~x

[

P~b
[~b = ~x− ~a]

P~b
[~b = ~x]

≥ etn
]

≤ |A| sup
~a∈A

inf
s≥2

exp(−stn)E~x

[(

P~b
[~b = ~x− ~a]

P~b[
~b = ~x]

)s]

= |A| sup
~a∈A

inf
s≥2

exp(−stn)

n
∏

i=1

Ex∼Bin(k)

[(

P[Bin(k) = x− ai]

P[Bin(k) = x]

)s]

≤ |A| inf
s≥2

exp(−stn)

(

Ex∼Bin(k)

(

x

k + 1− x

)s)n

.

In the last line, we have used that

Ex∼Bin(k)

[(

x

k + 1− x

)s]

≥
(

Ex∼Bin(k)

[

x2

(k + 1− x)2

])s/2

=

( k−1
∑

ℓ=0

ℓ+ 1

k − ℓ

(

k

ℓ

)

2−k

)s/2

=

( k−1
∑

ℓ=0

(

k + 2

k
+

4(k + 1)(ℓ− k/2)

k2
+

(k + 1)(k − 2ℓ)2

k2(k − ℓ)

)(

k

ℓ

)

2−k

)s/2

≥
( k−1
∑

ℓ=0

(

k + 2

k
+

4(k + 1)(ℓ− k/2)

k2

)(

k

ℓ

)

2−k

)s/2

=

(

k + 2

k
− 3k + 4

k
2−k

)s/2

≥ 1

if k ≥ 3. Therefore, by Lemma 2.3, we have

P~x

[

sup
~a∈A

P~b
[~b = ~x− ~a]

P~b[
~b = ~x]

≥ etn
]

≤ |A| inf
s≥2

exp(−stn)

(

Ex∼Bin(k)

(

x

k + 1− x

)s)n

≤ |A| inf
2≤s≤k/(16π)

exp(−stn)

(

exp(10πs2/k) + 2ks(4/5)k
)n

≤ |A| inf
2≤s≤k/(10 log k)

exp(−stn)

(

exp(12πs2/k)

)n

≤







|A| exp
(

−kt2n
48π

)

if
√

96πδ
k ≤ t ≤ (log k)−1

|A| exp
(

− kn
48π(log k)2

)

if (log k)−1 ≤ t ≤ log k.

6



Here, the second case follows by plugging in s = k/(10 log k) and simplifying, and the first case
follows from plugging in s = kt/24π which satisfies 2 ≤ s ≤ k/10 log k by the restriction on t and δ.
Finally, since

0 ≤ sup
~a∈A

P~b
[~b = ~x− ~a]

P~b
[~b = ~x]

≤
(

max
ℓ

( k
ℓ±1

)

(k
ℓ

)

)n

≤ kn,

we have

E~x

[

sup
~a∈A

P~b
[~b = ~x− ~a]

P~b
[~b = ~x]

]

=

∫ log k

−∞
P

[

sup
~a∈A

P~b
[~b = ~x− ~a]

P~b
[~b = ~x]

≥ etn
]

netndt

≤
∫ log k

1/ log k
·+
∫ 1/ log k

√
96πδ/k

·+
∫

√
96πδ/k

−∞
netndt

≤ e
√

96πδ/kn +

∫ 1/ log k

√
96πδ/k

|A| exp
(

− kt2n

48π

)

netndt

+

∫ log k

1/ log k
|A| exp

(

− kn

48π(log k)2

)

netndt

≤ exp
(

O(
√

δ/k)n
)

+

∫ 1/ log k

√
96πδ/k

ne−tndt+ 1

≤ exp
(

O(
√

δ/k)n
)

. �
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