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OPTIMAL AND ALGORITHMIC NORM REGULARIZATION OF RANDOM

MATRICES

VISHESH JAIN, ASHWIN SAH, AND MEHTAAB SAWHNEY

Abstract. Let A be an n × n random matrix whose entries are i.i.d. with mean 0 and variance
1. We present a deterministic polynomial time algorithm which, with probability at least 1 −

2 exp(−Ω(ǫn)) in the choice of A, finds an ǫn× ǫn sub-matrix such that zeroing it out results in Ã
with

‖Ã‖ = O(
√

n/ǫ).

Our result is optimal up to a constant factor and improves previous results of Rebrova and Ver-
shynin, and Rebrova. We also prove an analogous result for A a symmetric n × n random matrix
whose upper-diagonal entries are i.i.d. with mean 0 and variance 1.

1. Introduction

Recall that the operator norm of an n× n real-valued matrix A is defined as

‖A‖ := sup
x∈Sn−1

‖Ax‖2,

where ‖·‖2 denotes the Euclidean norm and S
n−1 denotes the unit sphere in R

n. The operator norm
is a fundamental quantity of interest in the non-asymptotic theory of random matrices (see, e.g.,
[8] and the references therein). A classical result of Bai, Krishnaiah, and Yin [12] shows that if the
entries of an n × n random matrix A are i.i.d. random variables with 0 mean, unit variance, and
bounded fourth moment, then

‖A‖ = (2 + o(1))
√
n.

The finite fourth moment hypothesis is sharp in the sense that for a sequence of n × n random
matrices An with entries that are i.i.d. random variables with mean 0, unit variance, and infinite
fourth moment, Bai, Silverstein, and Yin [12] showed that

lim sup
‖A‖√
n

= ∞ almost surely.

Motivated by works of Feige and Ofek [2] and Le, Levina, and Vershynin [4] on the regularization
of the norm of adjacency matrices of random graphs, Rebrova and Vershynin [7] asked whether
enforcing the bound ‖A‖ = O(

√
n) is a “local problem” or a “global problem”. Specifically, they

considered an n×n random matrix A with i.i.d. entries and asked what assumptions (if any) on the

distribution of the entries guarantees that, with high probability, ‖Ã‖ = O(
√
n) for some matrix

Ã obtained by modifying A on a small sub-matrix. They showed [7, Theorem 1.3] that this is not
possible if the distribution has either non-zero mean or infinite variance; in other words, in this
case, there is a “global problem”. On the other hand, they showed that if the distribution has zero
mean and bounded variance, then the problem is “local”.

Theorem 1.1 ([7, Theorem 1.1]). Consider an n × n random matrix A with i.i.d. entries that
have zero mean and unit variance. There exist absolute constants C1.1, c1.1 > 0 such that for any
ǫ ∈ (0, 1/2], with probability at least 1 − 2 exp(−c1.1ǫn), there exists an ǫn × ǫn sub-matrix of A
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such that replacing all of its entries with zero gives a matrix Ã with

‖Ã‖ ≤ C1.1
log ǫ−1

√
ǫ

√
n.

The work of Rebrova and Vershynin [7] leaves open several natural questions.

1.1. Optimal norm regularization. Let ǫ ∈ (0, 1/10). It is easily seen [7, Remark 1.2] that for the
n×n random matrix A whose entries are i.i.d. random variables taking the values 0 with probability
1− (2ǫ/n) and ±

√
n/(2ǫ) with probability ǫ/n each, with probability at least 1− 2 exp(−c′ǫn),

‖Ã‖ &

√
n

ǫ

for every matrix Ã obtained by modifying A on a cǫn × cǫn matrix. Here, c, c′ > 0 are absolute

constants. This example shows that the dependence of the bound on ‖Ã‖ in Theorem 1.1 is optimal
up to a possible factor of log ǫ−1. In [7, Section 11], Rebrova and Vershynin asked whether this
factor of log ǫ−1 is necessary. We show that it is not, thereby obtaining a result which is optimal
up to constants.

Theorem 1.2. Consider an n × n random matrix A with i.i.d. entries that have zero mean and
unit variance. There exist absolute constants C1.2, c1.2 > 0 such that for any ǫ ∈ (0, 1/2], with
probability at least 1− 2 exp(−c1.2ǫn), there exists an ǫn × ǫn sub-matrix of A such that replacing

all of its entries with zero gives a matrix Ã with

‖Ã‖ ≤ C1.2

√
n

ǫ
.

1.2. Norm regularization of random symmetric matrices. The regularization results in [2,4]
were proved for adjacency matrices of random graphs, whereas the main result of [7] holds only for
random matrices with i.i.d. entries. Answering a question in [7, Section 11], our next result provides
a symmetric counterpart of Theorem 1.2.

Theorem 1.3. Consider an n × n random symmetric matrix A with i.i.d. entries on and above
the diagonal that have zero mean and unit variance. There exist absolute constants C1.3, c1.3 > 0
such that for any ǫ ∈ (0, 1/2], with probability at least 1 − 2 exp(−c1.3ǫn), there exists an ǫn × ǫn

sub-matrix of A such that replacing all of its entries with zero gives a matrix Ã with

‖Ã‖ ≤ C1.3

√
n

ǫ
.

Remark. The symmetric version of the example given above shows that the dependence of the bound

on ‖Ã‖ is optimal in terms of ǫ. Also, one can allow for the diagonals to be arbitrary independent
random variables with zero mean and unit variance; this is a straightforward modification of the
proof and we leave the details to the interested reader.

1.3. Constructive norm regularization. The norm regularization result of Rebrova and Ver-
shynin (Theorem 1.1) is only an existential result and does not provide a way to efficiently find an
appropriate ǫn × ǫn sub-matrix to zero out. In contrast, the regularization procedures of [2, 4] are
algorithmic in nature. In [7, Section 11], Rebrova and Vershynin asked whether one can obtain an
explicit description of an ǫn× ǫn matrix whose removal regularizes the norm.

This question was the focus of the work of Rebrova [6] who showed [6, Corollary 1.3] that for an
n × n random matrix A with i.i.d. entries having a symmetric distribution and unit variance, for
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any ǫ ∈ (0, 1/2], and for any r ≥ 1, there is a deterministic, polynomial time algorithm to zero out

an ǫn× ǫn sub-matrix in order to obtain Ã satisfying

‖Ã‖ . r3/2 ·
√

log log n · log ǫ−1 ·
√

n

ǫ

such that the algorithm succeeds with probability 1 − n0.1−r (in the choice of A). Compared to
the existential regularization results for i.i.d. matrices discussed earlier, this result requires that the
common distribution of the entries is symmetric (as opposed to only mean 0), loses an additional

factor of
√

log log n · log ǫ−1 in the bound on ‖Ã‖, and moreover, the failure probability (over the
choice of A) of the regularization procedure is much larger than for the existential results.

Our final result remedies these shortcomings, thereby providing constructive versions of Theorems 1.2
and 1.3

Theorem 1.4. The ǫn × ǫn matrices guaranteed in Theorems 1.2 and 1.3 can be found via a
deterministic polynomial time algorithm which is guaranteed to succeed with probability at least
1− 2 exp(−c1.4ǫn) (in the choice of A). Here, c1.4 > 0 is an absolute constant.

1.4. Organization. As in [7], we follow the natural high-level strategy of decomposing A into a
number of parts based on the magnitude of the entries as well as controlling the operator norm of
the part with the smallest entries using a version of the Grothendieck-Pietsch factorization theo-
rem. Section 4 contains our treatment of “medium entries” and “large entries” while Section 2 and
Section 3.1 contains our treatment of “small entries”. Finally, these results are combined in Section 5
to prove Theorems 1.2 to 1.4.

1.5. Notation. Given an n×n matrix A and a subset J ⊆ [n], we let AJ denote the matrix obtained
from A by zeroing out the columns Jc. Given an n × n matrix A and a subset S ⊆ [n] × [n], we
denote by AS the matrix obtained from A by zeroing out all entries not in S.

For the sake of uniformity in our arguments, we will deduce all statements for n × n random
matrices with i.i.d. entries above the diagonal and 0 on and below the diagonal. For brevity, we will
refer to such matrices as i.i.d. random upper triangular matrices and will typically denote them by
T .

1.6. Acknowledgements. We thank Liza Rebrova for useful discussions.

2. Controlling 2 → ∞ norm

As in [7], we begin by regularizing ‖·‖2→∞ for the “small” part of the matrix.

Proposition 2.1. Let ǫ ∈ (0, 1/2). Consider an n × n upper triangular matrix T with i.i.d. en-

tries satisfying ET 2
ij ≤ 1 and |Tij | ≤

√
n/ log ǫ−1 almost surely. There exist absolute constants

C2.1, c2.1 > 0 such that with probability at least 1− 2 exp(−c2.1ǫn), there is a subset J ⊆ [n] with
|J | ≤ C2.1ǫn for which

‖TJc‖2→∞ ≤ C2.1
√
n.

Furthermore, this set can be found algorithmically without access to the underlying distribution.

Compared to [7, Lemma 5.1], the above proposition is valid for i.i.d. upper triangular matrices

(as opposed to only i.i.d. matrices) and does not lose a factor of
√

log ǫ−1 in the bound on ‖·‖2→∞,
although this comes at the cost of restricting the bound on |Tij | by a corresponding factor of

1/
√

log ǫ−1.
The key step in the proof of Proposition 2.1 is the following, which is closely related to [7,

Theorem 4.2].
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Lemma 2.2. Let ǫ ∈ (0, 1/2) and let ξ ∈ [0, n/ log ǫ−1] be such that Eξ ≤ 1. Let X1, . . . ,Xn as
well as Y1, . . . , Yn2/8 be independent samples of ξ. There exist absolute constants C2.2, c2.2 > 0 for

which the following holds. For all n ≥ C2.2 log ǫ
−1, there exist random variables W1, . . . ,Wn ∈ [0, 1]

depending only on X1, . . . ,Xn, Y1, . . . , Yn2/8 (and not the distribution of ξ) such that with probability

at least 1− 2 exp(−c2.2n log ǫ−1) over Y1, . . . , Yn2/8, we have

n∑

j=1

WjXj ≤ C2.2n almost surely over X1, . . . ,Xn, and

1 ≤ EX1,...,Xn

( n∏

i=1

Wi

)−1

≤ 1 + ǫ.

Proof. Let K = 1/ log ǫ−1 so that ξ ∈ [0,Kn] and n = Ω(1/K). Let t = ⌈log2(Kn)⌉. Let q−1 =
q0 = 0, qt+1 = Kn, and for k ∈ [t], let

qk = sup{r ≥ 0 : P[ξ ≥ r] ≥ 2−k}.

Let P̂ denote the empirical measure generated by Y1, . . . , Yn2/8. Let q̂0 = 0, q̂t+1 = 2Kn, and for
k ∈ [t], let

q̂k = sup{r ≥ 0 : P̂ [[r,∞)] ≥ 2−k}.
Let G denote the event, measurable with respect to Y1, . . . , Yn2/8, that

qk−1 ≤ q̂k ≤ qk+1 ∀k ∈ [t].

Then, it follows from a staightforward application of the Chernoff bound and the union bound that

PY1,...,Yn2/8
[G] ≥ 1−

t∑

k=1

exp

(
−Ω

(
n2

2k

))
≥ 1− 2 exp(−Ω(n/K)).

Now, fix a realisation of Y1, . . . , Yn2/8 and the associated quantities q̂0, . . . , q̂t+1. Let k0 = 0 and
inductively define

ki+1 = max{ki + 1,max{j ∈ (ki, t+ 1] : q̂j < 2q̂ki}}.
Here, the maximum of the empty set is −∞. Let ℓ denote the first index for which kℓ = t+1. Note
that for all i ∈ {0, 1, . . . , ℓ− 1},

2−ki q̂ki+1
. 2−ki q̂ki + 2−ki+1 q̂ki+1

.

Let L ≥ 1 be a sufficiently large absolute constant to be specified later. For a realisation of
X1, . . . ,Xn and for i ∈ {0, 1, . . . , ℓ− 1}, let

νi = #{j ∈ [n] : Xj ∈ [q̂ki , q̂ki+1
)} and wi = min

(
1,

L2−kin

νi

)
.

Also, for j ∈ [n], we let i(j) denote the unique (by construction) index i ∈ {0, 1, . . . ℓ− 1} for which
Xj ∈ [q̂ki , q̂ki+1

). For j ∈ [n] and i ∈ {0, 1, . . . , ℓ− 1}, let

Wj = wi(j) and Zi =
∏

j:i(j)=i

W−1
j .

Then, on the event G, we have

n∑

j=1

WjXj =

ℓ−1∑

i=0

∑

j:i(j)=i

WjXj ≤
ℓ−1∑

i=0

Ln · 2−ki q̂ki+1
.

t+1∑

k=0

Ln · 2−k q̂k
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. Ln+

t∑

k=1

Ln · 2−kqk+1 . Ln (1 + Eξ) . Ln.

Moreover, on the event G, we have for any i ∈ {0, 1, . . . , ℓ− 1} that

EX1,...,Xn [Zi] ≤ 1 + E

[( νi
L2−kin

)νi
1νi>L2−kin

]

≤ 1 +
∑

s>L2−kin

( s

L2−kin

)s
P[νi = s]

≤ 1 +
∑

s>L2−kin

( s

L2−kin

)s(n
s

)
P[ξ ≥ q̂ki]

s

≤ 1 +
∑

s>L2−kin

( e

L2−ki

)s
P[ξ ≥ qki−1]

s

≤ 1 +
∑

s>L2−kin

(
4e

L

)s

≤ exp

(
2

(
8e

L

) Ln

2
2+ki

)
,

for a sufficiently large absolute constant L. Then, since the random variables |ν0|, . . . , |νℓ−1| are
negatively associated and since Zi is an increasing function of |νi|, it follows that

EX1,...,Xn




n∏

j=1

W−1
j


 = E

[
ℓ−1∏

i=0

Zi

]
≤

ℓ−1∏

i=0

E[Zi]

≤ exp

(
2

(
8e

L

)L/(8K)
)

≤ 1 + ǫ

for a sufficiently large absolute constant L, where the final inequality uses that K = 1/ log ǫ−1. �

We can now quickly deduce Proposition 2.1.

Proof of Proposition 2.1. We may assume that n = Ω(ǫ−1) as otherwise, the desired probability
bound is negative. Moreover, by adding an extra row and column of zeros (if necessary), we may
assume that n is even. Recall that the diagonal entries of T are 0. Consider the n/2×n/2 matrices

Nij = Ti,n/2+j , and

N ′
ij =





Ti+n/2,j+n/2 if j > i and i < n/2

Tn/2−i,n/2−j+1 if j ≤ i and i < n/2

0 if i = n/2.

Then, it is straightforward to see that if we can find O(ǫn) columns in N and N ′ to zero-out such
that the resulting matrices have ‖·‖2→∞ norm O(

√
n), then the same is true for T and in fact, the

choice of columns used for N and N ′ correspond to an obvious choice of columns for T .
By taking the union bound, it suffices to show the following: with probability at least 1 −

2 exp(−Ω(n log ǫ−1)) over the realisation of N ′, with probability at least 1−2 exp(−Ω(ǫn)) over the
realization of N , we can algorithmically find a set of O(ǫn) columns of N to zero-out such that the
resulting matrix has ‖·‖2→∞ norm O(

√
n). This follows from a direct application of Lemma 2.2.

Indeed, we treat the entries (N ′
ij)

2 for i < n/2 as the i.i.d. samples Y1, . . . , Yn2/8. Then, by

Lemma 2.2, with probability at least 1−2 exp(−Ω(n log ǫ−1)) over the realization of N ′, the following
5



holds. For any i ∈ [n/2], we can find Wi1, . . . ,Wi,n/2 ∈ [0, 1] depending only on Ni1, . . . , Ni,n/2 and
N ′ such that

n/2∑

j=1

WijN
2
ij ≤ C2.2n and

1 ≤ ENi1,...,Ni,n/2

( n/2∏

j=1

Wij

)−1

≤ exp(ǫ).

Let

Vj =

n/2∏

i=1

Wij, j ∈ [n/2].

Then, Wij ≤ Vj for all i ∈ [n/2] so that

n/2∑

j=1

VjN
2
ij ≤ C2.2n ∀i ∈ [n/2] and (2.1)

1 ≤ EN

( n/2∏

j=1

Vj

)−1

≤ exp(ǫn). (2.2)

Let J = {j ∈ [n/2] : Vj < e−2}. By (2.2) and Markov’s inequality, it follows that |J | ≤ ǫn with
probability at least 1 − exp(−ǫn) over the choice of N . Moreover, by (2.1), it follows that for all
i ∈ [n/2],

∑
j∈Jc N2

ij ≤ e2 · C2.2n, which completes the proof. �

3. Controlling ∞ → 2 and operator norms

3.1. ∞ → 2 norm. In this subsection, we will show how to turn a bound on ‖·‖2→∞ into a bound
on ‖·‖∞→2. In contrast to the corresponding step in [7], we will be able to accomplish this without
removing any additional columns, which will be useful for our algorithmic regularization procedure.
The goal of this subsection is to prove the following Seginer-type [10] result for the ‖·‖∞→2 norm.

Proposition 3.1. Let T be an n × n upper triangular matrix with i.i.d. entries of mean 0 and
variance at most 1. There exists an absolute constant C3.1 > 0 such that with probability at least
1− 4−n, the following holds:

‖TI‖∞→2 ≤ C3.1(
√
n‖TI‖2→∞ + n) for all I ⊆ [n], |I| ≥ n/2.

The proof of Proposition 3.1 will be presented at the end of this subsection following a series of
preparatory lemmas. We begin with the following tight relationship between ‖·‖2→∞, ‖·‖∞→2, and
‖·1‖2, proved in [7] for a completely i.i.d. matrix.

Lemma 3.2 ([7, Lemmas 6.3 and 6.4]). Let A be a random n× n matrix with i.i.d. entries. Then

E‖A‖∞→2 ≤ C3.2(
√
nE‖A‖2→∞ + E‖A1‖2),

and with probability at least 1− e−n,

‖A‖∞→2 ≤ C3.2(
√
nE‖A‖2→∞ + E‖A1‖2).

We establish an analogous version for random upper triangular matrices with i.i.d. entries.

Lemma 3.3. Let T be a random upper triangular n × n matrix with i.i.d. entries, and let J be a
subset of columns with |J | ≥ n/2. Then with probability at least 1− 2e−n,

‖TJ‖∞→2 ≤ C3.3(
√
nE‖TJ‖2→∞ + E‖TJ1‖2).
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During the course of our proof, we will make use of the following estimates regarding random
matrix models of different “shapes”.

Lemma 3.4. Let R ⊆ S ⊆ [n]× [n]. Then

E‖AR‖∞→2 ≤ 2E‖AS‖∞→2

and

E‖AR1‖2 ≤ 2E‖AS1‖2.
Proof. Let µ = Eξ. We have

E‖AR‖∞→2 = E‖AR + E[AS\R − EAS\R]‖∞→2

≤ E‖AR +AS\R − EAS\R‖∞→2 ≤ E‖AS‖∞→2 + ‖µ1S\R‖∞→2

≤ E‖AS‖∞→2 + ‖µ1S‖∞→2 = E‖AS‖∞→2 + ‖EAS‖∞→2

≤ 2E‖AS‖∞→2,

where we have used Jensen’s inequality twice. An analogous proof establishes the second inequality
as well. �

We can now prove Lemma 3.3.

Proof of Lemma 3.3. We may write TJ = AS for some S ⊆ [n]× [n], where note that S contains an
⌊n/4⌋ × ⌊n/4⌋ (not necessarily consecutive) block as a subset. Since zeroing out entries of a matrix
cannot increase the ‖·‖2→∞ norm, it follows that

E‖A‖2→∞ . E‖A⌊n/4⌋×⌊n/4⌋‖2→∞ ≤ E‖TJ‖2→∞ ≤ E‖A‖2→∞,

where the first inequality uses the triangle inequality along with the previously mentioned fact about
zeroing out entries. Moreover, we have

E‖A‖∞→2 . E‖A⌊n/4⌋×⌊n/4⌋‖∞→2 . E‖TJ‖∞→2 . E‖A‖∞→2,

where the first inequality uses the triangle inequality and Lemma 3.4 and the subsequent inequalities
use Lemma 3.4. Similarly,

E‖A1‖2 . E‖A⌊n/4⌋×⌊n/4⌋1‖2 . E‖TJ1‖2 . E‖A1‖2.
Next, write A = TJ +AS′ for S′ = ([n]× [n]) \ S. Then, for t ≥ 2E‖AS′‖∞→2, we have

P[‖A‖∞→2 ≥ t] ≥ P[‖AS′‖∞→2 ≤ t] · P[‖TJ‖∞→2 ≥ 2t]

≥ P[‖TJ‖∞→2 ≥ 2t]/2,

where the second line follows from Markov’s inequality. Since

E‖AS′‖∞→2 . E‖A‖∞→2 .
√
nE‖A‖2→∞ + E‖A1‖2 .

√
nE‖TJ‖2→∞ + E‖TJ1‖2,

where the first inequality is by Lemma 3.4, the second inequality is by Lemma 3.2, and the third is
by the previously established inequalities, we may choose

t = C(
√
nE‖TJ‖2→∞ + E‖TJ1‖2)

with C is a large absolute constant guaranteeing that

t ≥ (2 + C3.2)max(
√
nE‖A‖2→∞ + E‖A1‖2,E‖AS′‖∞→2).

Finally, for such a choice of C and t, we have by Lemma 3.2 that

P[‖TJ‖∞→2 ≥ 2t] ≤ 2P[‖A‖∞→2 ≥ t] ≤ 2e−n,

as desired. �
7



With the preceding lemma in hand, we can prove the following, which shows that with at least
some exponentially small probability, the ‖·‖2→∞ and ‖·‖∞→2 norms of the matrix are already
regularized.

Lemma 3.5. Let T be a random upper triangular n × n matrix with i.i.d. entries of mean 0 and
variance at most 1, and let J be a subset of columns with |J | ≥ n/2. For any δ ∈ (0, 1/2),

‖TJ‖2→∞ ≤ C3.5δ
−1√n and ‖TJ‖∞→2 ≤ C3.5δ

−1n

with probability at least exp(−δ2n)/2.

Proof. The proof is identical to that of [7, Lemma 6.5] with the application of [7, Lemma 6.4]
replaced by Lemma 3.3. �

Finally, we need the following symmetrization estimate from [7].

Lemma 3.6 (Proof of [7, Lemma 6.1]). Let A be an n × n matrix and let Ã denote the random

matrix with entries Ãij = ǫijAij , where ǫij are i.i.d. Rademacher random variables. There exists an
absolute constant c3.6 > 0 such that for all t ≥ 1, with probability at least 1− 2n exp(−c3.6tn),

‖Ã‖∞→2 ≤
√
2tn‖A‖2→∞.

We now have all the ingredients needed to prove Proposition 3.1.

Proof of Proposition 3.1. Fix I ⊆ [n] with |I| ≥ n/2, let B = TI , and let B̃ = B − B′, where B′

denotes an independent copy of TI . For t ≥ 1 and δ ∈ (0, 1/2), let

E(t) := {‖B̃‖∞→2 ≤
√
2tn‖B̃‖2→∞},

F(δ) := {‖B′‖2→∞ ≤ C3.5δ
−1√n ∧ ‖B′‖∞→2 ≤ C3.5δ

−1n}, and

G(t, δ) := {‖B‖∞→2 ≤ 2
√
2tn‖B‖2→∞ + (2C3.5δ

−1
√
2t+C3.5δ

−1)n}.
Then, by the triangle inequality, we have that on the event G(t, δ)c ∩ F(δ),

‖B̃‖2→∞ ≤ ‖B‖2→∞ + ‖B′‖2→∞ ≤ ‖B‖2→∞ + C3.5δ
−1√n, and

‖B̃‖∞→2 ≥ ‖B‖∞→2 − ‖B′‖∞→2 ≥ 2
√
2tn

(
‖B‖2→∞ +C3.5δ

−1√n

)
.

In particular, this implies
G(t, δ)c ∩ F(δ) ⊆ Ec(t).

Therefore, since G(t, δ) and F(δ) are independent, we have

P[G(t, δ)c] ≤ P[Ec(t)]

P[F(δ)]
≤ 2n exp(−c3.6tn)

exp(−δ2n)/2
,

where we have used Lemmas 3.5 and 3.6. Finally, choosing t = 1000/c3.6 , δ = 1/4, and taking the
union bound over at most 2n choices of I, we obtain the desired conclusion. �

3.2. Operator norm. Having thus established control over ‖·‖∞→2, we can apply a version of the
Grothendieck-Pietsch theorem [5, Proposition 15.11] as in [4,7] to establish control over the operator
norm.

Theorem 3.7. Let B be a k ×m real matrix and let δ > 0. There exists J ⊆ [m] with |J | ≤ δm
for which

‖BJc‖ ≤ 2√
δm

‖B‖∞→2.

Now, applying Propositions 2.1 and 3.1 and Theorem 3.7 in sequence immediately yields the
following result.
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Proposition 3.8. Let ǫ ∈ (0, 1/2) and consider an n×n upper triangular matrix T with i.i.d. mean

0 entries of variance at most 1, and such that |Tij | ≤
√

n/ log(1/ǫ) almost surely. Then with
probability at least 1− 2 exp(−c3.8ǫn), there is a subset J ⊆ [n] with |J | ≤ C3.8ǫn such that

‖TJc‖ ≤ C3.8

√
n

ǫ
.

4. Medium and Large Entries

In this section, we handle the “medium” and “large” entries. Let ǫ ∈ (0, 1/2), and recall that
Proposition 3.8 takes care of those entries of the matrix T which have absolute value at most√

n/ log ǫ−1. We split the remaining entries of T into three separate classes:

• |Ti,j| ∈
(√

n/ log ǫ−1,
√

n/(ǫ log2 ǫ−1)

]
,

• |Ti,j| ∈
(√

n/(ǫ log2 ǫ−1), 5
√

n/ǫ

]
, and

• |Ti,j| > 5
√

n/ǫ.

The first and third classes are handled using arguments similar to [7]. The second class requires a
more intricate argument, and will be considered at the end of this section.

We will need an elementary lemma from [7] which will allow us to combine different sub-matrices
that we zero out into one.

Lemma 4.1 ([7, Lemma 8.7]). Let M be an n× n matrix. Let I, J ⊆ [n]. Then

‖B −BI×J‖ ≤ ‖BIc×[n]‖+ ‖B[n]×Jc‖ ≤ 2‖B‖.

Proof. Indeed,

‖B −BI×J‖ ≤ ‖BIc×[n]‖+ ‖BI×Jc‖ ≤ ‖BIc×[n]‖+ ‖B[n]×Jc‖ ≤ 2‖B‖,

where the first inequality is the triangle inequality, and the remaining inequalities use that zeroing
out a subset of rows and/or columns cannot increase the operator norm. �

We also require the following bound on the operator norm of the matrix in terms of the ℓ1 norms
of its rows and columns, due to Schur [9].

Lemma 4.2. For any matrix A,

‖A‖ ≤ ‖A‖1/2∞→1‖AT ‖1/2∞→1.

Now, we proceed to the treatment of the three classes of entries. The easiest is the third class,
for which the result follows by a straightforward application of the Chernoff bound.

Lemma 4.3 (Modification of [7, Corollary 8.6]). Let ǫ ∈ (0, 1/2]. Consider an n×n random matrix
upper triangular matrix T with independent (but not necessarily identically distributed) entries Tij

such that Tij = 0 or |Tij | ≥ 5
√

n/ǫ, and which satisfy ET 2
ij ≤ 1. Then with probability 1−exp(−ǫn),

all nonzero entries of T are contained in an ǫn× ǫn matrix.

Remark. In [7], the above lemma is stated for identically distributed entries but as can be seen from
the proof, this assumption is unnecessary.

Next, we handle entries in the first class. The following lemma, and its proof (which we include
for completeness), are essentially identical to [7, Proposition 8.4].
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Lemma 4.4. Let ǫ ∈ (0, 1/2]. Let T be a random upper triangular n × n matrix with i.i.d. entries

of mean 0 and variance at most 1 such that Tij = 0 or |Tij | ∈ [
√

n/ log ǫ−1,
√

n/(ǫ log2 ǫ−1)] almost

surely. With probability at least 1 − 2 exp(−ǫn/4) we can zero out an ǫn × ǫn block to obtain T̃
satisfying

‖T̃‖ ≤ C4.4

√
n

ǫ
.

Proof. Let Bij = 1Tij 6=0. Since the Bij are independent Bernoulli random variables with mean

p ≤ (log ǫ−1)/n, it follows from [7, Corollary 8.2] that with probability at least 1 − 2 exp(−ǫn/4),
we can find an ǫn × ǫn sub-matrix of B to zero out so that the rows and columns of the resulting

matrix have at most O(log ǫ−1) ones each. Since |Tij | ≤
√

n/(ǫ log2 ǫ−1), this shows that we can

find an ǫn × ǫn sub-matrix of T to zero out so that the rows and columns of the resulting matrix
have ℓ1 norm at most O(

√
n/ǫ) each. An application of Lemma 4.2 gives the desired result. �

Finally, we handle entries in the second class.

Proposition 4.5. Let ǫ ∈ (0, 1/2]. Let T be a random upper triangular n×n matrix with i.i.d. en-

tries of mean 0 and variance at most 1 such that Tij = 0 or |Tij | ∈ [
√

n/(ǫ log2 ǫ−1), 5
√

n/ǫ] almost

surely. With probability at least 1 − 2 exp(−c4.5ǫn) we can zero out a square sub-matrix of size

C4.5ǫn× C4.5ǫn to obtain T̃ satisfying

‖T̃‖ ≤ C4.5

√
n

ǫ
.

Proof. As always, we can assume n = Ω(ǫ−1) since otherwise, the target probability is negative.
Consider the matrix Bij = 1Tij 6=0. This is an upper triangular matrix with i.i.d. Ber(p) entries,

where p ≤ (ǫ log2 ǫ−1)/n. We will show that with probability 1−2 exp(−cǫn), one can remove O(ǫn)
rows of B to obtain B′ such that each row and each column of B′ has at most a single entry equal
to 1. Since |Tij | ≤ 5

√
n/ǫ, this shows that the corresponding matrix T ′ will satisfy ‖T ′‖ ≤ 5

√
n/ǫ.

By using the symmetry (i, j) 7→ (n− j, n− i), it follows that with probability 1− 2 exp(−cǫn), one

can remove O(ǫn) columns of T to obtain T ′′ with ‖T ′′‖ ≤ 5
√

n/ǫ. Finally, Lemma 4.1 shows that

the matrix T̃ obtained by removing the intersection of these O(ǫn) rows and O(ǫn) columns will

have operator norm bounded by O(
√

n/ǫ) as desired.
Therefore, consider B as above. Let t denote the number of rows of B with exactly one en-

try equal to 1 and let b denote the number of rows of B with at least two entries equal to 1.
Also, let B(1) denote the t × n sub-matrix of B in which each row has exactly one entry equal
to 1. Then, by the Chernoff–Hoeffding bound [3, Theorem 1], except with probability at most
2 exp(−cǫn log2 ǫ−1), we have t ≤ t∗ := ⌈2ǫn log2 ǫ−1⌉ and b = O(ǫn). Hence, with probability at
least 1−2 exp(−cǫn log2 ǫ−1), we have enough room to remove all rows of B with at least two entries
equal to 1.

It remains to deal with B(1). Let B(−) denote the sub-matrix of B(1) consisting of the first n−

columns and B(+) denote the sub-matrix of B(1) consisting of the remaining n+ columns, where n−

and n+ are chosen to be as close to each other as possible. We wish to bound the probability

P[B(±) ∈ B | t]
uniformly for all t ≤ t∗, where B denotes the collection of {0, 1}-valued t × n± matrices for which
the number of non-zero entries present in the union of all columns with at least two non-zero entries
is not O(ǫn). We present the bound for B(−), noting that the same argument also applies to B(+).
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Clearly, the probability is maximized for t = t∗. Moreover, since the rows of B(−) are independent
and since each row has the distribution

R ∼
{
0, w.p. n−/n,

ei, w.p. n+/(n− · n) for all i ∈ [n−],

it follows that for all t ≤ t∗ and n ≥ 10,

P[B(−) ∈ B | t] ≤ P[B(−) ∈ B | t∗] ≤ P[B̂ ∈ B],
where B̂ denotes a random t∗ × n− matrix whose entries are i.i.d. Ber(2/n) random variables. We
note that the above trick of splitting into B(±) and passing to the independent model is closely
related to the proof of [1, Theorem 4.1].

To bound P[B̂ ∈ B], we note two things. First, by the Chernoff-Hoeffding bound, with probability

at least 1− 2 exp(−cǫn), there are at most s∗ = ǫn/ log ǫ−1 columns of B̂ with at least two non-zero
entries. Second, assuming s∗ ≥ 1 (otherwise, we are already done) by the Chernoff-Hoeffding bound

and the union bound, the probability that any t∗ × ⌊s∗⌋ block of B̂ has more than O(ǫn) entries is

at most 2 exp(−cǫn). Combining these two facts shows that P[B̂ ∈ B] ≤ 4 exp(−cǫn).
To summarize, we have shown that except with probability O(exp(−cǫn)), the following hold

simultaneously: b = O(ǫn), B(−) /∈ B, B(+) /∈ B. On this event, we are guaranteed that there are
O(ǫn) rows of B which either have at least two non-zero entries, or which contain a non-zero entry
in a column of B(±) with at least two non-zero entries. Then, we can simply zero out all such rows
to obtain the desired conclusion. �

5. Proof of Theorems 1.2 to 1.4

We are now in position to prove all our results.

Proof of Theorems 1.2 to 1.4. We may assume that n = Ω(ǫ−1) since otherwise, the desired success
probability is negative and the statements are vacuously true. Moreover, it suffices to prove a version
of Theorem 1.4 for i.i.d. random upper triangular matrices since this readily implies Theorems 1.2
to 1.4. We decompose

T = S +M1 +M2 + L,

where S contains the entries with magnitude at most
√

n/ log ǫ−1, M1 contains the entries with
magnitude in

I1 = (
√

n/ log ǫ−1,

√
n/(ǫ log2 ǫ−1)],

M2 contains the entries with magnitude in

I2 = (

√
n/(ǫ log2 ǫ−1), 5

√
n/ǫ],

and L contains the entries with magnitude greater than 5
√

n/ǫ.
Since (M1)ij = Tij1|Tij |∈I1 , we see that M1 satisfies the assumptions of Lemma 4.4. Therefore,

with probability at least 1−2 exp(−ǫn/4), we can find an ǫn×ǫn sub-matrix of M1 to zero out so that

the resulting matrix ‖M̃1‖ has norm at most C4.4
√

n/ǫ. Moreover, the proof of [7, Corollary 8.2]
shows that this step can be done algorithmically. Indeed, one only needs to find the rows and
columns of M1 with more than O(log ǫ−1) non-zero entries and then zero out any ǫn × ǫn sub-
matrix containing all the entries contained in such rows and columns. This last step is easy since
[7, Corollary 8.2] guarantees that there are at most ǫn such entries so that they can be trivially
placed in an ǫn× ǫn sub-matrix.

Similarly, we can apply Proposition 4.5 to M2 in order to find a suitable ǫn× ǫn sub-matrices to
remove. In order to do this algorithmically, let R1 denote the set of rows with exactly one non-zero
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entry, let R2 denote the set of rows with at least two non-zero entries, let C2(R1) denote the set of
columns with at least two non-zero entries in rows in R1, and let R′

1 denote the set of rows in R1

such that the unique non-zero entry is in a column in C2(R1). Define C1, C2, R2(C1), C
′
1 similarly

with the role of rows and columns interchanged. Then, the proof of Proposition 4.5 shows that,
with probability at least 1− 2 exp(−c4.5ǫn), the intersection of the rows R2 ∪R′

1 and the columns
C2 ∪C ′

1 is contained in an C4.5ǫn×C4.5ǫn sub-matrix and zeroing it out suffices to regularize the
norm of M2.

To regularize the norm of L, we can apply Lemma 4.3. Again, this is algorithmic, since we only
need to remove a sub-matrix containing all non-zero entries (of which there are at most ǫn with
probability at least 1− exp(−ǫn), see the proof of [7, Corollary 8.6]).

Finally, we regularize the norm of S. Let ξ′ = ξ1
|ξ|≤

√
n/ log ǫ−1 where ξ denotes the common

distribution of the upper triangular entries of T and note that the upper triangular entries of S are
i.i.d. copies of ξ′. Since E[ξ′2] ≤ E[ξ2] ≤ 1, we can apply Proposition 2.1 to algorithmically find
(with probability at least 1− 2 exp(−c2.1ǫn) a set J0 ⊆ [n] of O(ǫn) columns such that

‖SJc
0
‖2→∞ = O(

√
n).

In order to be able to apply Proposition 3.1, we need such a result not for S but for S − ES. For
this, we note that

|Eξ′| =
∣∣∣Eξ1

|ξ|≤
√

n/ log ǫ−1

∣∣∣ =
∣∣∣E
[
ξ − ξ1

|ξ|>
√

n/ log ǫ−1

]∣∣∣

=
∣∣∣Eξ1

|ξ|>
√

n/ log ǫ−1

∣∣∣ ≤ (Eξ2)1/2P
[
|ξ| >

√
n/ log ǫ−1

]1/2
≤
√

log ǫ−1

n
.

Therefore, for all J ⊆ [n],

‖(ES)J‖2→∞ ≤
√

log ǫ−1, ‖(ES)J‖ ≤
√
n log ǫ−1.

In particular,

‖(S − ES)Jc
0
‖2→∞ = O(

√
n+

√
log ǫ−1) = O(

√
n).

Combining this with Proposition 3.1, we see that except with probability at least 1 − 4−n −
2 exp(−c2.1ǫn),

‖(S − ES)Jc
0
‖∞→2 = O(n). (5.1)

Therefore, by Theorem 3.7, we see that there exists some µ with |µ| ≤
√
log ǫ−1/n and a subset of

columns J1 with J1 = O(ǫn) such that for J∗ = J1 ∪ J0,

‖(S − µ11T )Jc
∗
‖ = O(

√
n/ǫ).

This immediately implies that

‖SJc
∗
‖ ≤ O(

√
n/ǫ) +O(

√
n log ǫ−1) = O(

√
n/ǫ).

In order to find µ and J1 algorithmically, it suffices to apply a deterministic version of Theorem 3.7
due to Tropp [11, Theorem 3.1] to the matrices

(S − j√
n
11

T )Jc
0
, j = 0,±1,±2, . . . ,±⌈

√
log ǫ−1⌉.

By (5.1), Theorem 3.7, and the bound on |Eξ′|, this procedure is guaranteed to succeed whenever
(5.1) holds. We note that alternatively, one may proceed by first learning the mean Eξ′ to within

additive error 1/
√
n and then using the algorithm of [11, Theorem 3.1] on the matrix (S − ÊS)Jc

0
,

where ÊS is our approximation for ES.
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Next, by symmetry, one may repeat this procedure to find a collection of O(ǫn) rows K∗ such
that

‖SKc
∗
‖ = O(

√
n/ǫ).

By Lemma 4.1, it follows that zeroing out the O(ǫn)×O(ǫn) sub-matrix formed by the intersection

of the rows in K∗ and columns in J∗ makes the norm of the resulting matrix O(
√

n/ǫ). We now
use Lemma 4.1 to combine the sub-matrices zeroed out for S,M1,M2, L and rescale ǫ to complete
the proof.

For the running time of the algorithm, the algorithmic Grothendieck-Pietsch factorization in [11]

can be performed in time Õ(n7/2) and everything else can clearly be performed in time Õ(n2). �
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