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SINGULARITY OF DISCRETE RANDOM MATRICES

VISHESH JAIN, ASHWIN SAH, AND MEHTAAB SAWHNEY

Abstract. Let ξ be a non-constant real-valued random variable with finite support, and let Mn(ξ)
denote an n× n random matrix with entries that are independent copies of ξ.

For ξ which is not uniform on its support, we show that

P[Mn(ξ) is singular] = P[zero row or column] + (1 + on(1))P[two equal (up to sign) rows or columns],

thereby confirming a folklore conjecture.
As special cases, we obtain:
• For ξ = Bernoulli(p) with fixed p ∈ (0, 1/2),

P[Mn(ξ) is singular] = 2n(1− p)n + (1 + on(1))n(n− 1)(p2 + (1− p)2)n,

which determines the singularity probability to two asymptotic terms. Previously, no result
of such precision was available in the study of the singularity of random matrices.

• For ξ = Bernoulli(p) with fixed p ∈ (1/2, 1),

P[Mn(ξ) is singular] = (1 + on(1))n(n− 1)(p2 + (1− p)2)n.

Previously, only the much weaker upper bound of (
√
p+ on(1))

n was known due to the work
of Bourgain-Vu-Wood.

For ξ which is uniform on its support:
• We show that

P[Mn(ξ) is singular] = (1 + on(1))
n
P[two rows or columns are equal].

• Perhaps more importantly, we provide a sharp analysis of the contribution of the ‘compressible’
part of the unit sphere to the lower tail of the smallest singular value of Mn(ξ).

1. Introduction

Let Mn(ξ) be an n×n random matrix, each of whose entries is an independent copy of a random
variable ξ. We will restrict attention to when ξ is a real-valued random variable whose support is
finite and contains at least two points (which we call discrete). What is the probability that Mn(ξ)
is singular? This question, which has been studied since the 1960s, has attracted considerable
attention over the years. A well-known folklore conjecture is that the dominant contribution to the
probability of singularity is from the events that a row or column is zero, or that two rows or two
columns are equal (possibly up to a sign). In order to facilitate discussion, let us introduce some
notation. For a vector v ∈ R

n, we define the event

Ev := {Mn(ξ)v = 0}.
We will also denote the canonical basis vectors of R

n by e1, . . . , en. Then, the aforementioned
conjecture may be stated as follows.

Conjecture 1.1. Let ξ be a discrete random variable, and let Mn(ξ) be an n × n random matrix
whose entries are independent copies of ξ. Then

P[Mn(ξ) is singular] = (1 + on(1))

(
2nP[Ee1 ] + n(n− 1)P[Ee1−e2 ] + n(n− 1)P[Ee1+e2 ]

)
.

In this paper, as our first main result, we confirm a stronger version of Conjecture 1.1 for all
discrete distributions which are not uniform on their support. Let sn(Mn) denote the least singular
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value of an n× n matrix Mn; recall that sn(Mn) = infx∈Sn−1‖Mnx‖2, where S
n−1 denotes the unit

sphere in R
n and ‖·‖2 denotes the standard Euclidean norm on R

n.

Theorem 1.2. Let ξ be a discrete random variable which is not uniform on its support. There exist
cξ, Cξ > 0 so that for all sufficiently large n, and for all t ≥ 0,

P[sn(Mn(ξ)) ≤ t/
√
n] ≤ Cξt+2nP[Ee1 ]+(1+O(exp(−cξn)))

(
n(n−1)P[Ee1+e2 ]+n(n−1)P[Ee1−e2 ]

)
.

By applying Theorem 1.2 with t = 0 for the upper bound, and considering the probability that
a row or column is zero, or that two rows or two columns are the same (up to a sign) for the
lower bound (cf. the corresponding calculation in [13, Section 3.2]), we thus establish the following
strengthening of Conjecture 1.1 for discrete distributions which are not uniform on their support.

Corollary 1.3. Let ξ be a discrete random variable which is not uniform on its support. There
exists cξ > 0 such that

P[Mn(ξ) is singular] = 2nP[Ee1 ] + (1 +O(exp(−cξn)))

(
n(n− 1)P[Ee1+e2 ] + n(n− 1)P[Ee1−e2 ]

)
.

In particular, for fixed p ∈ (0, 1), p 6= 1/2, there exists cp > 0 for which

P[Mn(Ber(p)) is singular] = 2n(1− p)n + (1 +O(exp(−cpn)))n(n − 1)(p2 + (1− p)2)n.

Remark. Let us discuss the implications of this corollary for ξ = Ber(p).

• For fixed p ∈ (1/2, 1), Corollary 1.3 provides the leading term in the asymptotic expansion
of the singularity probability of Mn(Ber(p)). Prior to this work, even the correct value of
limn→∞ n−1 log P[Mn(Ber(p)) is singular)] had not been determined; compared to the true
value of (p2 + (1 − p)2) for this quantity, the previous best-known result of Bourgain, Vu,
and Wood [2] provides a weaker upper bound of

√
p. The reason that the case p ∈ (1/2, 1)

is more challenging than p ∈ (0, 1/2) (treated in [1, 4, 13], see the discussion below) is that
in the former case, the dominant contribution to the probability of singularity comes from
the event of two rows or columns being equal to each other, whereas in the latter case, the
dominant contribution comes from the much simpler event of a single row or column being
zero.

• However, even for fixed p ∈ (0, 1/2), we obtain more precise results than those in the recent
work of Litvak and Tikhomirov [13] as well as [7, 23]. Namely, Corollary 1.3 provides the
first two terms in the asymptotic expansion of the singularity probability of Mn(Ber(p)); a
result of this precision was not available before in any context.

For general discrete distributions, we determine the value of limn→∞ n−1 log P[Mn(ξ) is singular].
The only case not covered by Theorem 1.2 is that of uniform distributions, which we handle with a
non-exact main term.

Theorem 1.4. Let ξ be a discrete random variable. There exists Cξ > 0 such that for any fixed
ǫ > 0 and for all sufficiently large n and all t ≥ 0,

P[sn(Mn) ≤ t/
√
n] ≤ Cξt+ 2nP[Ee1 ] + (1 + ǫ)nP[Ee1−e2 ].

Remark. For non-uniform discrete distributions, Theorem 1.2 is strictly stronger.

1.1. Previous work. Let us put Theorems 1.2 and 1.4 in the context of known results. For con-
venience, we will use qn(ξ) to denote P[Mn(ξ) is singular]. The work of Komlós [11] was the first to
show that qn(Ber(1/2)) = on(1). Much later, an exponential bound on qn(Ber(1/2)) was obtained
by Kahn, Komlós, and Szemerédi [9]. Subsequently, the base of the exponent was improved to 0.939
and 3/4+ on(1) in a series of works by Tao and Vu [21,22], and later to 1/

√
2+ on(1) by Bourgain,

2



Vu, and Wood [2]. Finally, a truly breakthrough result of Tikhomirov [23] in 2018 established that
qn(Ber(p)) = (1− p+ on(1))

n for fixed p ∈ (0, 1/2]. As mentioned earlier, for fixed p ∈ (1/2, 1), the
analogous result was not known prior to this work.

Conjecture 1.1 has been most accessible for sparse Bernoulli distributions, in which case, the
right hand side simplifies considerably to (1 + on(1)) · 2nP[Ee1 ]. Here, by the Bernoulli distribution
with parameter p, which we will henceforth denote by Ber(p), we mean the two point distribution
which attains the value 1 with probability p and the value 0 with probability 1 − p. Basak and
Rudelson [1] confirmed the conjecture for ξ = Ber(pn) for pn in a certain range of sparsity limited to
n−1 lnn−ωn(n

−1) ≤ pn ≤ n−1 lnn+ on(n
−1 ln lnn). Subsequently, Litvak and Tikhomirov showed

that the conjecture also holds for ξ = Ber(pn) for Cn−1 lnn ≤ pn ≤ c, where c > 0 is a small absolute
constant and C > 0 is a large absolute constant. Recent work of Huang [4] was able to bridge the
gap between the regimes covered in [1] and [4], leaving open the regime p ∈ (c, 1/2). Establishing
Conjecture 1.1 (as opposed to the stronger Theorem 1.2) in this regime does not require the full
strength of the ideas in this paper – since this is a case of substantial interest (see Problem 8.2 in
the recent work of Litvak and Tikhomirov [13]), we have provided the much simpler details in the
self-contained companion note [7], which also serves as a gentle introduction to the present work
and contains complete details of some relatively standard arguments which are only sketched in the
present work.

For general discrete distributions ξ, the only previous systematic study in the literature is the
work of Bourgain, Vu, and Wood [2]. They show [2, Corollary 1.2] that if ξ is a discrete distribution
with supr∈R P[ξ = r] =: p, then qn(ξ) ≤ (

√
p + on(1))

n, which is far from optimal (the true bound
is never more than (p + on(1))

n, although it may be much smaller). On the other hand, up to a
possible on(1) term, Theorem 1.4 in this work always obtains the correct base of the exponent.

For certain specific distributions, Bourgain, Vu, and Wood obtain the correct base of the exponent
(again, up to a on(1) term). Specifically, they show [2, Corollaries 3.1, 3.2] that if ξ1,µ is a random
variable taking on the value 0 with probability 1 − µ and ±1 with probability µ/2 each, and if
ξ2,µ is a random variable taking on the value 0 with probability 1− µ and ±1,±2 with probability
µ/4 each, then qn(ξ1,µ) = (1 − µ + on(1))

n for all µ ∈ (0, 1/2) and qn(ξ2,µ) = (1 − µ + on(1))
n

for all µ ∈ (0, 16/25). For these random variables, Theorem 1.4 determines the correct base of the
singularity probability for all fixed µ ∈ (0, 1), and Theorem 1.2 determines the leading order in the
asymptotic expansion for µ ∈ (0, 1), µ 6= 2/3 in the first case, and µ ∈ (0, 1), µ 6= 4/5 in the second
case. In fact, for µ ∈ (0, 2/3) in the first case, and µ ∈ (0, 4/5) in the second case, Theorem 1.2
determines the first two terms in the asymptotic expansion.

We remark that the results of [2] such as [2, Corollary 1.2] are also applicable to discrete random
variables valued in the complex numbers, and settings where the entries of Mn(ξ) are not identically
distributed, and a small number of rows of Mn(ξ) are possibly deterministic; we have not pursued
these extensions.

Finally, we remark that there was a recent paper of Irmatov [5] which claimed to resolve Conjecture 1.1
for Rademacher random matrices. Experts have informed us that there are some unresolved issues
in that work that its author is aware of, including [5, Theorem 3]. Furthermore, upon slight modi-
fication, the proof in [5] would appear to give impossibly good error terms.

1.2. Additional results. The next result addresses the main question left open by our work,
namely, the resolution of Conjecture 1.1 for discrete distributions ξ which are uniform on their
support. In this direction, we provide a sharp analysis of the contribution of a certain low-entropy
part of the unit sphere; in fact, it is this contribution which forms the leading term of the conjectured
asymptotic expansion of the singularity probability. This theorem is also central to the proofs of
Theorems 1.2 and 1.4.
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Theorem 1.5. Fix a discrete distribution ξ. There exist δ, ρ, η > 0 depending on ξ such that for
all sufficiently large n and t ≤ 1,

P

[
inf

x∈Cons(δ,ρ)
‖Mn(ξ)x‖2 ≤ t

]
≤ nP[Ee1 ] +

(
n

2

)
(P[Ee1−e2 ] + P[Ee1+e2 ]) + (t+ P[Ee1−e2 ])e

−ηn.

The set Cons(δ, ρ) appearing above is the set of unit vectors which have at least (1− δ)n coordi-
nates within distance ρ/

√
n of each other (see Definition 3.1), although a trivial modification shows

this result holds for any sufficiently low-entropy subset of the unit sphere.

Remark. In the companion note [7], as a natural consequence of our study of anti-concentration
on slices, we are able to resolve a conjecture of Nguyen [16, Conjecture 1.4] on the probability of
singularity for a certain combinatorial model of random matrices. Namely, let Qn be an n × n
random matrix with independent rows, each of which is chosen uniformly from among those vectors
in {0, 1}n which have sum exactly ⌊n/2⌋. In [16], Nguyen showed that P[Qn is singular] = OC(n

−C)
for any C > 0, and conjectured [16, Conjecture 1.4] that P[Qn is singular] = (1/2 + on(1))

n. After
intermediate work [3, 6], an exponential upper bound on the singularity probability was only very
recently obtained in work of Tran [24], the key difficulty being establishing even relatively coarse
inverse Littlewood–Offord type results for the slice. In [7], we settle [16, Conjecture 1.4] using the
techniques developed in this work.

Theorem 1.6 ([7, Theorem 1.4]). For every ǫ > 0, there exists Cǫ depending on ǫ such that for
all sufficiently large n, and for all t ≥ 0,

P[sn(Qn) ≤ t/
√
n] ≤ Cǫt+ (1/2 + ǫ)n.

1.3. Overview of the techniques. As in many works in this area, we use the high-level strat-
egy (going back to Kašin [10] and subsequently used in [12,18–20]) of dividing the unit sphere into
‘structured’ and ‘unstructured’ components, and estimating the contribution of each part separately.
However, compared to previous works, the treatment of both components require overcoming signif-
icant obstacles which unavoidably arise in the sharp analysis of the invertibility of random matrices
in any amount of generality.

For instance, in the analysis of structured vectors, we need to additionally capture the event that
two rows/columns of the matrix are equal (up to a sign) whereas previous considerations of sharp
invertibility only addressed scenarios where the dominant contribution to the probability of singu-
larity is due to a single row or column being zero. As discussed in the remark after Corollary 1.3,
this is a fundamental issue. Moreover, in the analysis of unstructured vectors, we need precise
metric entropy estimates for the anti-concentration problem with respect to random vectors on
general multi-slices. Obtaining partial estimates of this nature (which are not sufficient to prove
Conjecture 1.1) even for the special case of the Boolean slice is already a highly non-trivial endeavor
which is at the heart of the recent work of Litvak and Tikhomirov [13], where it is accomplished
using the substantially more involved notion of the ‘UDLCD’.

Structured vectors: The structured vectors in our work are ‘almost-constant vectors’ i.e. those
vectors on S

n−1 which have (1− δ)n coordinates within distance ρ/
√
n of each other, where δ, ρ > 0

are sufficiently small constants. This class of structured vectors arises naturally in the consideration
of the anti-concentration property of a sequence of numbers with respect to a random vector con-
strained to lie in a ‘slice’. Moreover, since vectors which are close to the standard basis vectors ei or
to ei ± ej clearly play a special role in the problem under consideration, it is natural to separately
handle ‘elementary’ and ‘non-elementary’ structured vectors.

Our treatment of structured vectors, culminating in Theorem 1.5, requires significant innovations
compared to previous works on the sharp invertibility of sparse random Bernoulli matrices [1,4,13]
– in the sparse Bernoulli case, the corresponding class of elementary vectors only needs to consist
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of those vectors which are close to some ei, and the largest atom of the the random variable Ber(p)
is conveniently at 0. We refer the reader to [7] for the much simpler argument in this case.

In the present work, in order to handle non-elementary vectors, we need to develop novel sharp
anticoncentration estimates Propositions 5.2 and 5.3 (in contrast, the essentially standard estimate
[7, Lemma 2.6] was sufficient for the corresponding step in [7]). Even more involved is the analysis of
elementary vectors, for which we develop a new technique. Let us begin by discussing this technique
for ξ = Ber(p) for fixed p ∈ (0, 1/2), in which case, the elementary vectors are those which are close
to some standard basis vector. For concreteness, consider vectors which are sufficiently close to e1.
We show that, if any such vector has exponentially small image, then either the first column of the
matrix is the zero vector, or it must belong to a universal subset of nonzero vectors of {0, 1}n of
measure at most (1−p+ǫ)n. The first case corresponds to the term P[Ee1 ] in Conjecture 1.1; for the
second case, we leverage the seminal work of Rudelson and Vershynin to show that, on our event,
the probability that any vector in this universal subset appears as the first column of the matrix is
at most exp(−4ǫn), at which point we can conclude using the union bound.

Of course, for general discrete random variables ξ, one must enlarge the class of elementary vectors
to include unit vectors which are close to (ei± ej)/

√
2 and unit vectors which are close to ei. In the

first case (Propositions 5.5 and 5.7), we use a rotation trick to reduce to a situation where we can
use an analysis similar to (but more complicated than) the one outlined in the previous paragraph.
The second case requires a very careful treatment since we are aiming for a leading term of the form
(P[ξ = 0])n (as opposed to (supr∈R P[ξ = r])n), and moreover, the desired error is (P[ξ = ξ′] − η)n

which may be very small. To accomplish this, we first prove a version of Theorem 1.4 with an
estimate on the singularity probability of the form (supr∈R P[ξ = r] + on(1))

n (Proposition 4.4
and Theorem 4.5), and then leverage these preliminary estimates to obtain the desired bound.

We emphasize that our treatment of structured vectors, as captured by Theorem 1.5, is not
sensitive to the non-uniformity of the distribution ξ. In particular, given Theorems 1.2 and 1.5,
the only missing case in the complete resolution of Conjecture 1.1 (in fact, in a stronger form) is a
sharp analysis of unstructured vectors in the case when ξ is uniform on its support.

Unstructured vectors: The unstructured vectors are the complement of the structured vectors
i.e. those which do not have a (1− δ)-fraction of their coordinates within ρ/

√
n of each other. Our

treatment of these vectors relies on the non-uniformity of ξ by exploiting the gap between P[ξ = ξ′]
and the entropy of ξ; the idea to exploit such a gap to prove sharp invertibility results (in the case
of Bernoulli random variables) is due to Litvak and Tikhomirov [13].

The main ingredient in our work for handling such vectors is Theorem 2.1, which is an extension of
[23, Theorem B] to a (real) multislice, i.e., the set of vectors in {a1, . . . , ak}n which have a prescribed
number of coordinates taking on each of the values a1, . . . , ak. Such a result was previously not
known even for the Boolean slice; indeed, the work [13] uses a rather involved notion of arithmetic
structure to study anti-concentration on Boolean slices, which is not powerful enough to handle slices
that are not very far from the central slice. We remark that in general, even establishing much less
precise versions of [23, Theorem B] on the Boolean slice has been very challenging, despite much
work due to the natural connection to certain combinatorial models of random matrices (cf. [8] and
the references therein).

Compared to [23, Theorem B], we need to overcome two challenges. The first, as mentioned
above, is the lack of independence between the coordinates of a vector uniformly distributed on the
multi-slice. The second challenge is that a1, . . . , ak are now arbitrary real numbers (corresponding
to the support of ξ), and hence, certain arguments tailored for integers no longer apply. Overcoming
these challenges requires additional ideas, which we discuss in Section 2. The reader is also referred
to [7, Theorem 3.1] where we record the proof for the Boolean slice, a setting which encounters the
first challenge but not the second.
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1.4. Notation. For a positive integer N , SN−1 denotes the set of unit vectors in R
N , and if x ∈ R

N

and r ≥ 0 then B
N
2 (x, r) denotes the radius r Euclidean ball in R

N centered at x. ‖·‖2 denotes the
standard Euclidean norm of a vector, and for a matrix A = (aij), ‖A‖ is its spectral norm (i.e.,
ℓ2 → ℓ2 operator norm).

We will let [N ] denote the interval {1, . . . , N}. For nonnegative integers m ≤ n, we let {0, 1}nm
be the set of vectors in {0, 1}n with sum m.

Since it is essential throughout the paper, we formally record the definition of a discrete random
variable and the corresponding random matrix.

Definition 1.7. We say that a random variable ξ is a discrete random variable (equivalently, has a
discrete distribution) if it is real-valued, its support is finite, and the support contains at least two
distinct points. Mn(ξ) denotes the n× n random matrix, with independent entries that are copies
of ξ.

For ξ a discrete random variable with k = | supp(ξ)| (so that k ≥ 2), we will denote its support
by ~a = (a1, . . . , ak), and the (nonzero) probabilities of attaining a1, . . . , ak by ~p = (p1, . . . , pk). Note
that ‖~p‖1 = 1, and ‖~p‖22 ≤ ‖~p‖∞ with equality if and only if ξ is uniform on its support. We will

use H(ξ) to denote the natural-logarithmic entropy of ξ, i.e., H(ξ) = H(~p) =
∑k

i=1 −pi log(pi). We
will (somewhat abusively) use p0 to denote P[ξ = 0].

For a random variable ξ and a real number r ≥ 0, we let L(ξ, r) := supz∈R P[|ξ− z| ≤ r]. We will
use ℓ1(Z) to denote the set of functions f : Z → R for which

∑
z∈Z |f(z)| < ∞.

We will also make use of asymptotic notation. For functions f, g, f = Oα(g) (or f .α g)
means that f ≤ Cαg, where Cα is some constant depending on α; f = Ωα(g) (or f &α g) means
that f ≥ cαg, where cα > 0 is some constant depending on α, and f = Θα(g) means that both
f = Oα(g) and f = Ωα(g) hold. For parameters ǫ, δ, we write ǫ ≪ δ to mean that ǫ ≤ c(δ) for a
sufficient function c.

Finally, we will omit floors and ceilings where they make no essential difference.

1.5. Organization. The remainder of this paper is organized as follows. In Section 2, we prove
our key inversion of randomness estimate for conditional thresholds on the multislice, Theorem 2.1.
In Section 3, we use this to prove the invertibility estimate for unstructured vectors (Theorem 3.8).
In the short Section 4, we prove a weaker version of Theorem 1.4; this is used in our treatment of
structured vectors (i.e., the proof of Theorem 1.5), which is the content of Section 5. In Section 6,
we quickly combine Theorems 1.5 and 3.8 to prove Theorems 1.2 and 1.4.

1.6. Acknowledgements. We thank Mark Rudelson, Konstantin Tikhomirov, and Yufei Zhao for
comments on the manuscript. A.S. and M.S. were supported by the National Science Foundation
Graduate Research Fellowship under Grant No. 1745302. This work was done when V.J. was
participating in a program at the Simons Institute for the Theory of Computing.

2. Inversion of randomness on the multislice

In this section, we prove our key inversion of randomness result, Theorem 2.1. We will focus on
the non-independent “multislice” version as its deduction is strictly harder than the independent
version, Theorem 2.14 (which we will only use to establish the preliminary estimate Theorem 4.5).

The proof of Theorem 2.1 follows a direction introduced by Tikhomirov [23]. In this approach, the
relevant Lévy concentration function of a random vector is replaced with certain random averages
of functions. One then shows that the random vectors with large values of the Lévy concentration
function are super-exponentially rare, by first demonstrating a weaker notion of anticoncentration
after revealing (1− ǫ)n coordinates of the random vector, and then iterating a smoothing procedure
on linear-sized pieces of the vector which allows one to bootstrap the strength of anticoncentration
considered.
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Our major challenges lie in (i) the non-independence of the coordinates of a vector on the multi-
slice, as the arguments in [23] rely strongly on the independence structure of the considered model,
and (ii) the freedom to allow the support of ξ to consist of arbitrary real numbers, as certain
arguments in [23] rely on the integrality of the support.

The reader may benefit from first perusing a simpler version of this argument, for slices of the
Boolean hypercube, which is presented in the companion note [7, Section 3]. We will often note the
corresponding statements in [7] for the reader’s convenience.

2.1. Statement and preliminaries. Let N,n ≥ 1 be integers and let 0 < δ < 1/4, K3 > K2 >
K1 > 1 be real parameters. We say that A ⊆ Z

n is (N,n,K1,K2,K3, δ)-admissible if

• A = A1 × · · · ×An, where each Ai is a subset of Z,
• |A1| · · · |An| ≤ (K3N)n,
• maximax{|a| : a ∈ Ai} ≤ nN ,
• Ai is an integer interval of size at least 2N + 1 for i > 2δn, and either (P1) and (P2) hold,

or (Q1) and (Q2) hold:

(P1) A2i is an integer interval of size at least 2N + 1 contained in [−K1N,K1N ] for i ≤ δn,
(P2) A2i−1 is symmetric about 0, is a union of two integer intervals of total size at least 2N , and

satisfies A2i−1 ∩ [−K2N,K2N ] = ∅ for i ≤ δn.

(Q1) A2i is an integer interval of size at least 2N + 1 contained in [K1N,K2N ] for i ≤ δn,
(Q2) A2i−1 is an integer interval of size at least 2N + 1 contained in [−K2N,−K1N ] for i ≤ δn.

Recall at this point that ξ, which has (nonzero) probabilities ~p = (p1, . . . , pk) on atoms ~a =
(a1, . . . , ak), is fixed. Let A = A1 × · · · × An be an (N,n,K1,K2,K3, δ)-admissible set, and let
(X1, . . . ,Xn) be the random vector uniformly distributed on A. For any f : R → R, any 0 ≤ ℓ ≤ n,
and any ~s ∈ Z

k
≥0 with ‖~s‖1 = ℓ, define the random function (depending on the randomness of

X1, . . . ,Xn):

fA,~s,ℓ(t) := Eb

[
f

(
t+

ℓ∑

i=1

biXi

)∣∣∣∣#{bi = aj} = sj∀j ∈ [k]

]
,

where Eb denotes the expectation over a random vector b = (b1, . . . , bℓ) ∈ R
ℓ with coordinates

independently distributed as ξ. The conditioning encodes that for all j ∈ [k], there are exactly sj
coordinates (out of ℓ) where b hits the atom aj .

Theorem 2.1. Fix a discrete distribution ξ. For 0 < δ < 1/4, K3 > K2 > K1 > 1, ǫ ≪
min(~p), and a given parameter M ≥ 1, there are L2.1 = L2.1(ξ, ǫ, δ,K1,K2,K3) > 0, and γ2.1 =
γ2.1(ξ, ǫ, δ,K1,K2,K3) ∈ (0, ǫ) independent of M and n2.1 = n2.1(ξ, ǫ, δ,K1,K2,K3,M) ≥ 1 and
η2.1 = η2.1(ξ, ǫ, δ,K1,K2,K3,M) such that the following holds.

Let n ≥ n2.1, 1 ≤ N ≤ exp((H(~p) − ǫ)n), f ∈ L1(R) be a nonnegative function such that
‖f‖1 = 1 and log2 f is η2.1-Lipschitz, and A be (N,n,K1,K2,K3, δ)-admissible. Suppose also that

‖~γ‖∞ ≤ γ2.1. Then, for any ~m ∈ Z
k
≥0 such that ‖~m‖1 = n and ‖~m− ~pn‖∞ ≤ γ2.1n,

P[‖fA, ~m,n‖∞ ≥ L(N
√
n)−1] ≤ exp(−Mn).

Given this we can deduce the following corollary which is crucial in our application.

Definition 2.2. Fix a discrete distribution ξ. Let ~γ be a nonnegative vector with ‖~γ‖∞ ∈
(0,min(~p)) and let r ≥ 0. For a vector (x1, . . . , xn) ∈ R

n, we define

Lξ,~γ

( n∑

i=1

bixi, r

)
:= sup

z∈R
P

[∣∣∣∣
n∑

i=1

bixi − z

∣∣∣∣ ≤ r

∣∣∣∣#{bi = aj} ∈ [pjn− γjn, pjn+ γjn]∀j ∈ [k]

]
,
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where b1, . . . , bn are independent ξ random variables. We also define

Lξ

( n∑

i=1

bixi, r

)
= sup

z∈R
P

[∣∣∣∣
n∑

i=1

bixi − z

∣∣∣∣ ≤ r

]
.

Corollary 2.3. Fix a discrete distribution ξ. For 0 < δ < 1/4, K3 > K2 > K1 > 1, ǫ ≪
min(~p), and a given parameter M ≥ 1, there are L2.3 = L2.3(ξ, ǫ, δ,K1,K2,K3) > 0 and γ2.3 =
γ2.3(ξ, ǫ, δ,K1,K2,K3) ∈ (0, ǫ) independent of M and n2.3 = n2.3(ξ, ǫ, δ,K1,K2,K3,M) ≥ 1 such
that the following holds.

Let n ≥ n2.3, 1 ≤ N ≤ exp((H(~p)− ǫ)n) and A be (N,n,K1,K2,K3, δ)-admissible. Suppose also
that ‖~γ‖∞ ≤ γ2.3. Then

∣∣∣∣
{
x ∈ A : Lξ,~γ

( n∑

i=1

bixi,
√
n

)
≥ L2.3N

−1

}∣∣∣∣ ≤ e−Mn|A|.

Proof sketch. This is essentially the same as the deduction in [23, Corollary 4.3]. We apply Theorem 2.1

to f(t) := 2−|t|/√n/ι, where t ∈ R and ι is an appropriate normalization, separately for all ~m ∈ Z
k
≥0

such that ‖~m− ~pn‖∞ ≤ γ2.1n, and then conclude using a union bound. �

The proof of Theorem 2.1 makes use of an anticoncentration estimate on the multislice, which
we record below (Lemmas 2.5 and 2.6), and is ultimately a consequence of the following standard
anticoncentration inequality due to Kolmogorov-Lévy-Rogozin.

Lemma 2.4 ([17]). Let ξ1, . . . , ξn be independent random variables. Then, for any real numbers
r1, . . . , rn > 0 and any real r ≥ maxi∈[n] ri, we have

L
( n∑

i=1

ξi, r

)
≤ C2.4r√∑n

i=1(1− L(ξi, ri))r2i
,

where C2.4 > 0 is an absolute constant.

Lemma 2.5. Fix (a1, . . . , ak) ∈ R
k with distinct coordinates. Let σ, λ ∈ (0, 1/3) and r > 0. Let

Z = {z1, . . . , zn} be a set of real numbers for which there exist disjoint subsets Z1, Z2 ⊆ Z such
that |Z1|, |Z2| ≥ σn and such that |zi − zj | ≥ r for all zi ∈ Z1, zj ∈ Z2. Then, there exists

C2.5 = C2.5(λ, σ, k) such that for any ~s ∈ Z
k
≥0 with ‖~s‖1 = n and with sℓ ∈ [λn, (1− λ)n] for some

ℓ ∈ [k], we have

L
( n∑

i=1

zibi, r ·min
i<j

|ai − aj|
)

≤ C2.5√
n

,

where (b1, . . . , bn) is a random vector uniformly chosen from among those with sj coordinates equal
to aj for all j ∈ [k].

Proof. By reindexing the coordinates of Z, we may assume that for i ∈ [σn], z2i−1 ∈ Z1 and z2i ∈ Z2.
In particular, for i ∈ [σn], we have |z2i−z2i−1| ≥ r. Furthermore, by the pigeonhole principle, there
exists some ℓ′ 6= ℓ such that sℓ′ ≥ λn/k. We will now use the randomness within the atoms aℓ and
aℓ′ in order to derive the anticoncentration result. Note that

∑n
i=1 bizi has the same distribution as

∑

i>2σn

zibi +
∑

j≤σn

(
z2j−1b2j−1 + z2jb2j + b′j(b2j − b2j−1)(z2j−1 − z2j)

)
,

where b′1, . . . , b
′
σn are i.i.d. Ber(1/2) random variables. Next, note that by a standard large deviation

estimate, we have

P[|{j ∈ [σn] : {b2j−1, b2j} = {aℓ, aℓ′}| ≤ c(σ, λ, k)n] ≤ exp(−c(σ, λ, k)n), (2.1)
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where c(σ, λ, k) > 0 is a constant depending only on σ, λ, and k. On the other hand, on the com-
plement of this event, we may conclude by applying Lemma 2.4 to (2.1), using only the randomness
in b′1, . . . , b

′
σn. �

Lemma 2.6. Fix a discrete distribution ξ, λ ∈ (0, 1/3), δ0 ∈ (0, 1/4). Let A be (N,n,K1,K2,K3, δ)-
admissible for some integer parameters N,n and real parameters δ ∈ [δ0, 1/4), K3 > K2 > K1 > 1.
Suppose that n > n2.6(λ, δ0,K1,K2,K3), ℓ ≥ δ0n, and ~s ∈ Z

k
≥0 with ‖s‖1 = ℓ and sj0 ∈ [λℓ, (1−λ)ℓ]

for some j0 ∈ [k]. Then, for any interval J ,
∫

t∈J
fA,~s,ℓ(t)dt ≤

C2.6(λ, ξ, δ0,K1,K2)max(|J |, N)

N
√
n

.

Proof. The proof is nearly identical to that in [23, Lemma 4.4] though we provide details as we are
in the slightly different setting of L1(R). Fix X1, . . . ,Xℓ. Then

∫

t∈J
fA,~s,ℓ(t)dt =

∫

t∈J
Eb

[
f

(
t+

ℓ∑

i=1

biXi

)∣∣∣∣#{bi = aj} = sj∀j ∈ [k]

]
dt

= Eb

[ ∫

t∈J
f

(
t+

ℓ∑

i=1

biXi

)
dt

∣∣∣∣#{bi = aj} = sj∀j ∈ [k]

]

= Eb

[ ∫

t∈R
f(t)1J+

∑ℓ
i=1

biXi
(t)dt

∣∣∣∣#{bi = aj} = sj∀j ∈ [k]

]

=

∫

t∈R
f(t)Eb

[
1J+

∑ℓ
i=1

biXi
(t)

∣∣∣∣#{bi = aj} = sj∀j ∈ [k]

]
dt

=

∫

t∈R
f(t)Pb

[ ℓ∑

i=1

biXi ∈ J − t

∣∣∣∣#{bi = aj} = sj∀j ∈ [k]

]
dt

≤ L
( ℓ∑

i=1

biXi, |J |
)∫

t∈R
|f(t)|dt ≤ L

( ℓ∑

i=1

biXi, |J |
)
,

where (b1, . . . , bℓ) is uniformly chosen from vectors which have sj coordinates equal to aj for all
j ∈ [k], and we have used that ‖f‖1 = 1. The required estimate now follows immediately from
Lemma 2.5 applied with r = (K2 −K1)N , which is possible due to the admissibility of A. �

2.2. Preprocessing on real-valued multislices. As in [23], we first prove a version of Theorem 2.1
in which L is allowed to depend on M .

Proposition 2.7. Fix a discrete distribution ξ. For 0 < δ < 1/4, K3 > K2 > K1 > 1, ǫ ≪ min(~p),
and a given parameter M ≥ 1, there is γ2.7 = γ2.7(ξ, ǫ, δ,K1,K2,K3) ∈ (0, ǫ) independent of M
and there are L2.7 = L2.7(ξ, ǫ, δ,K1,K2,K3,M) > 0 and n2.7 = n2.7(ξ, ǫ, δ,K1,K2,K3,M) ≥ 1
such that the following holds.

Let n ≥ n2.7, 1 ≤ N ≤ exp((H(~p) − ǫ)n), and A be (N,n,K1,K2,K3, δ)-admissible. Let f
be a nonnegative function in L1(R) with ‖f‖1 = 1 such that log2 f is 1-Lipschitz. Then, for all
ℓ ∈ [(1− γ2.7)n, n] and ~s ∈ Z

k
≥0 with ‖~s‖1 = ℓ and ‖~s− ~pℓ‖∞ ≤ γ2.7ℓ, we have

P

[
‖fA,~s,ℓ‖∞ ≥ L2.7(N

√
n)−1

]
≤ exp(−Mn).

For a simpler version of this argument, we refer the reader to the proof of [7, Proposition 3.6].
Proposition 2.7 should be seen as an analogue of [23, Lemma 4.6] for the multislice. As mentioned
earlier, compared to [23], our situation is much more delicate since we are working with a vector
with non-independent coordinates and need to extract a term corresponding to the entropy of
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the multislice. Such complications are already encountered when working with a Boolean slice,
as in [7, Proposition 3.6]. Working on real multislices presents additional difficulties (along with
significant notational complications), owing to the fact that we are working on L1(R); this extension
is handled by using the log-Lipschitz condition on f . We note that the corresponding statements
in [7, 23] do not need to use any log-Lipschitz assumption at this stage of the argument since they
are proved for ℓ1(Z). We also note that, while the constant 1 in 1-log-Lipschitz is arbitrary, some
condition of this nature is necessary to rule out f being very close to a Dirac mass ([23]).

We first note the trivial recursive relation

fA,~s,ℓ(t) =
k∑

i=1

si
ℓ
fA,~s−ei,ℓ−1(t+ aiXℓ)

for all 1 ≤ ℓ ≤ n and ~s ∈ Z
k
≥0 with ‖~s‖1 = ℓ. If any coordinate of ~s is zero, note the corresponding

term (which would be undefined) has a coefficient of 0, and drops out. Note also that, by definition,
fA,~0,0 = f .

Definition 2.8 (Step record and averaging sequence). Fix f,A, ~s, ℓ, a point t ∈ R, and a choice
of X = (X1, . . . ,Xn). For such a choice, we define the averaging sequence (ti)

ℓ
i=0 and step record

(wi)
ℓ
i=1 as follows:

• tℓ := t,
• Since

hℓ := fA,~s,ℓ(tℓ) =
k∑

j=1

sj
ℓ
fA,~s−ej ,ℓ−1(tℓ + ajXℓ),

at least one of the k terms fA,~s−ej ,ℓ−1(tℓ+ajXℓ) has a positive coefficient and is at least hℓ.
If it is index j, set wℓ = j.

• Set tℓ−1 := tℓ + awℓ
Xℓ, hℓ−1 := fA,~s−ewℓ

,ℓ−1(tℓ−1), and repeat with tℓ−1, ~s− ewℓ
, ℓ− 1.

It will be convenient to write

• Wi(j) := #{u ∈ [i] : wu = j} and W i(j) := Wi(j)/i for all i ∈ [ℓ] and j ∈ [k]. We will view
Wi = (Wi(1), . . . ,Wi(k)) as a vector in Z

k.

We note some straightforward consequences of these definitions.

• Wℓ = ~s.
• Wi−1 = Wi − ewi for 1 ≤ i ≤ ℓ, where we assume W0 = ~0.
• ‖Wi‖1 = i.
• ti−1 = ti + awiXi for all i ∈ [ℓ].

• fA,Wi,i(ti) =
∑k

j=1Wi(j)fA,Wi−ej ,i−1(ti + ajXi).

• hi = fA,Wi,i(ti).
• f(t0) = h0 ≥ h1 ≥ · · · ≥ hℓ = fA,~s,ℓ(t).

Definition 2.9 (Drops and robust steps). With notation as above, given i ∈ [ℓ]:

• For λ ∈ (0, 1), we say that step i is λ-robust if

W i(wi) ∈ (λ, 1− λ)

• For R > 0, we say that there is an R-drop at step i if

fA,Wi−ej ,i−1(ti−1 + zXi) ≤
R

N
√
n

for all j ∈ [k] such that Wi(j) > 0 and for all z ∈ supp(ξ − ξ′) \ {0}.
Next we show that if ‖fA,~s,ℓ‖∞ is large in an appropriate sense, then there is a step record and

averaging sequence with linearly many robust steps which do not participate in an R-drop.
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Lemma 2.10. Let ξ,A, f,N, ǫ be as in Proposition 2.7, and let L ≥ 1. Then, there exist λ2.10 =
λ2.10(ξ, ǫ) ∈ (0, 1/3), γ2.10 = γ2.10(ξ, ǫ) ∈ (0, 1), and n2.10 = n2.10(ξ, ǫ) for which the following
holds.

Let n ≥ n2.10, R = γ2.10L, let ℓ ∈ [(1−γ2.10)n, n] and ~s ∈ Z
k
≥0 satisfy ‖~s‖1 = ℓ and ‖~s−~pℓ‖∞ ≤

γ2.10ℓ. Then, for (X1, . . . ,Xn) ∈ A,

‖fA,~s,ℓ‖∞ ≥ L(N
√
n)−1

implies that there exists some t ∈ R with fA,~s,ℓ(t) ≥ L(N
√
n)−1 so that its averaging sequence (ti)

ℓ
i=0

and step record (wi)
ℓ
i=1 satisfy

#{i ∈ [ℓ] : step i is λ2.10-robust and is not an R-drop} ≥ γ2.10n.

Proof. Consider (X1, . . . ,Xn) ∈ A satisfying ‖fA,~s,ℓ‖∞ ≥ L(N
√
n)−1. Then, there is some t ∈ R

such that fA,s,ℓ(t) ≥ L(N
√
n)−1. We will show that the conclusion of the lemma is satisfied for this

t, for suitable choice of γ2.10, λ2.10. Below, we will make extensive use of the notation and relations

in Definitions 2.8 and 2.9. Let (ti)
ℓ
i=0 and (wi)

ℓ
i=1 denote, respectively, the averaging sequence and

step record of t. Note that

L(N
√
n)−1 ≤ fA,~s,ℓ(t) = h0

ℓ∏

i=1

hi
hi−1

≤ hℓ−1 ≤ · · · ≤ h0.

We begin by controlling the ratios hi/hi−1 at steps i which are R-drops. Hence, suppose that
step i is an R-drop. If wi = u, then Wi = Wi−1 + eu and ti = ti−1 − auXi. Hence

hi
hi−1

=

k∑

j=1

W i(j)
fA,Wi−ej ,i−1(ti + ajXi)

fA,Wi−1,i−1(ti−1)

= W i(u) +
∑

j 6=u

W i(j)
fA,Wi−ej ,i−1(ti−1 + (aj − au)Xi)

hi−1

≤ W i(u) +
∑

j 6=u

W i(j)
R(N

√
n)−1

L(N
√
n)−1

= W i(u) + (1−W i(u))γ2.10.

The inequality uses is the definition of R-drops (this is applicable since aj −au ∈ supp(ξ− ξ′)\{0})
along with hi ≥ L(N

√
n)−1. Note that the condition Wi(j) > 0 in the definition of R-drops is not

satisfied, then the jth term already drops out in the first line. Thus, we see that if step i is an
R-drop, then

hi
hi−1

≤ W i(wi) + (1−W i(wi))γ2.10. (2.2)

Note that if step i is λ2.10-robust, the right-hand side is at least λ2.10. Therefore, for any step
i which is λ2.10-robust, we have

λ2.10 ≤ W i(wi) + (1−W i(wi))γ2.10 ≤ W i(wi)

(
1 +

γ2.10
λ2.10

)
, (2.3)

where the final inequality uses (1−W i(wi))/W i(wi) ≤ 1/λ2.10 at any λ2.10-robust step i.
Now, let I ⊆ [ℓ] denote the steps i which are λ2.10-robust, and let J ⊆ I denote the steps i which

are not R-drops (so that I \ J is the set of λ2.10-robust R-drops). Our goal is to provide a lower
bound on |J |.
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Since h0 ≤ ‖f‖∞ ≤ ‖f‖1 = 1 (this uses the 1-Lipschitz condition on log2 f), we have

L(N
√
n)−1 ≤

∏

i∈I\J

hi
hi−1

≤
∏

i∈I\J
(W i(wi) + (1−W i(wi))γ2.10)

=

∏
i∈I(W i(wi) + (1−W i(wi))γ2.10)∏
i∈J(W i(wi) + (1−W i(wi))γ2.10)

≤ (1 + γ2.10/λ2.10)
|I|∏

i∈I W i(wi)

λ
|J |
2.10

= (1 + γ2.10/λ2.10)
|I|λ−|J |

2.10

∏

i∈[ℓ]
W i(wi)

∏

i∈[ℓ]\I
W i(wi)

−1

= (1 + γ2.10/λ2.10)
|I| · λ−|J |

2.10 ·
(
ℓ

~s

)−1

·
∏

i∈[ℓ]\I
W i(wi)

−1; (2.4)

here, the first line uses hi/hi−1 ≤ 1 and (2.2), the third line uses (2.3), and the last line uses the
identity

∏

i∈[ℓ]
W i(wi) =

(
ℓ

~s

)−1

:=

(
ℓ

s1, . . . , sk

)−1

.

This follows since both sides are equal to the probability that a uniformly random sample from [k]ℓ,
conditioned on having sj copies of j for each j ∈ [k], returns (w1, . . . , wℓ).

Note that the first and the third terms in the final product in (2.4) are easy to suitably control
(by taking γ2.10 and λ2.10 to be sufficiently small). As we will see next, these parameters also
allow us to make the last term at most exp(cǫn) for any constant c > 0.

Let K ⊆ [ℓ] \ I denote those indices i such that W i(wi) ≥ 1− λ2.10. Then,

∏

i∈K
W i(wi)

−1 ≤ (1− λ2.10)
−|K|. (2.5)

It remains to bound ∏

i∈[ℓ]\(I∪K)

W i(wi)
−1.

Note that for every i ∈ [ℓ] \ (I ∪ K), we have W i(wi) ≤ λ2.10. Let Jj for j ∈ [k] be the set of
i ∈ [ℓ] \ (I ∪K) with wi = j.

The following is the key point: let i1, . . . , iuj ∈ Jj be all elements of Jj in order. Then, for all
y ∈ [uj ], we have

y ≤ Wiy(j) ≤ λ2.10ℓ.

Hence,

uj ≤ λ2.10ℓ and W iy(wiy)
−1 ≤ iy/y ≤ ℓ/y.

We derive

∏

i∈[ℓ]\(I∪K)

W i(wi)
−1 =

k∏

j=1

∏

i∈Jj
W i(wi)

−1 ≤
( ⌈λ2.10ℓ⌉∏

u=1

ℓ

u

)k

≤
(

e

λ2.10

)2kλ2.10ℓ
. (2.6)
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Substituting (2.5) and (2.6) in (2.4), we have

Ln−1/2 exp((ǫ−H(~p))n) ≤ λ
−|J |
2.10 ·

(
1 +

γ2.10
λ2.10

)ℓ

·
(
ℓ

~s

)−1

· (1− λ2.10)
−ℓ ·

(
e

λ2.10

)2kλ2.10ℓ
.

(2.7)

We will first choose λ2.10, and then choose some γ2.10 < λ2
2.10. Note that, enforcing the

constraint γ2.10 < λ2
2.10, we can choose λ2.10 sufficiently small depending on ǫ and ξ so that the

second term, the fourth term, and the fifth term in the product in (2.7) are each bounded above
by exp(ǫn/10) and so that (using Stirling’s approximation) the third term is bounded above by
exp(ǫn/10−H(~p)n). Hence, we can choose λ2.10 depending on ǫ and ξ such that

n−1/2 exp(ǫn/2) ≤ λ
−|J |
2.10.

Now, for all n sufficiently large depending on ǫ, we can find γ2.10 sufficiently small depending on
ǫ, λ2.10 such that |J | ≥ γ2.10n. This completes the proof. �

We are now ready to prove Proposition 2.7.

Proof of Proposition 2.7. We use Lemma 2.10 along with a union bound. For controlling individual
events in the union, we will use the following. Consider a step record (wi)

ℓ
i=1. We write Ai =

Ai,0 ∪ Ai,1, where each of these is an integer interval of size at least N (this is possible by the

admissibility of A). Now suppose step i is λ2.10-robust with respect to (wi)
ℓ
i=1. If i > δ0n, then

for any t ∈ R, j ∈ [k] and z ∈ supp(ξ − ξ′) \ {0}, by Lemma 2.6, we have

E[fA,Wi−ej ,i−1(t+ zXi)|X1, . . . ,Xi−1] =
1

|Ai|
∑

τ∈t+zAi

fA,Wi−ej ,i−1(τ)

≤ max
y∈{0,1}

1

|Ai,y|
∑

τ∈t+zAi,y

fA,Wi−ej ,i−1(τ)

≤ max
y∈{0,1}

2|z|

|Ai,y|

∣∣∣∣
∫ t+zmaxAi,y

t+zminAi,y

fA,Wi−ej ,i−1(τ)dτ

∣∣∣∣

≤ 2|z|+1C2.6(λ2.10/2, ξ, δ0,K1,K2)max(|z||Ai,y |, N)

|Ai,y|N
√
n

≤ 4|z|+1C2.6(λ2.10/2, ξ, δ0,K1,K2)

N
√
n

.

Here, we have used that i−1 ≥ δ0n, that Wi−ej has at least one coordinate in [λ2.10(i−1)/2, (1−
λ2.10/2)(i − 1)] (since Wi satisfies a similar property with coordinate wi), and that each Ai,y is
length at least N . We also used that log2 f is 1-Lipschitz in the second inequality (where the
absolute values are put just in case z < 0 and the limits of integration are in the wrong direction).

Now, consider t ∈ R with averaging sequence (ti)
ℓ
i=0 and step record (wi)

ℓ
i=1. Note that, given the

‘starting point’ t0 of the averaging sequence, the points t1, . . . , ti−1 are determined by X1, . . . ,Xi−1.
In particular, the event that step i is not an R-drop is determined by t0,X1, . . . ,Xi, w1, . . . , wi.
Therefore, by Markov’s inequality, we see that for any λ2.10-robust step i with i > δ0n, given the

step record (wi)
ℓ
i=1 and the starting point t0 of the averaging sequence (ti)

ℓ
i=0,

P[step i is not an R-drop|X1, . . . ,Xi−1] ≤
k342‖~a‖∞+1C2.6(λ2.10/2, ξ, δ0,K1,K2)

R
. (2.8)

This follows from a union bound over the at most k3 possible conditions for an R-drop and the fact
that all z ∈ supp(ξ − ξ′) \ {0} have magnitude at most 2‖~a‖∞.
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From here on, the proof closely follows the proofs of [23, Proposition 4.5]. Fix parameters as
given in the proposition statement. Let λ2.10 = λ2.10(ξ, ǫ). We choose γ2.7 = γ2.10(ξ, ǫ). Further,
we set R′ = γ2.10L/2, where L ≥ 1 will be chosen later.

Let EL denote the event that ‖fA,~s,ℓ‖∞ ≥ L(N
√
n)−1. For (X1, . . . ,Xn) ∈ EL, by Lemma 2.10,

there exists t ∈ R with fA,~s,ℓ(t) ≥ L(N
√
n)−1 with averaging sequence (ti)

ℓ
i=0 and step record

(wi)
ℓ
i=1 such that

#{i ∈ [ℓ] : step i is λ2.10-robust and is not a 2R′-drop in (ti)
ℓ
i=0} ≥ γ2.10n.

We then shift t0 to the nearest integer t̃0. We also shift (ti)
ℓ
i=1 by the same amount to obtain points

(t̃i)
ℓ
i=1 (note that these points are not necessarily integers). We call the sequence (t̃i)

ℓ
i=0, which

technically may no longer be an averaging sequence, a witnessing sequence. We see that every index
which is not a 2R′-drop in (ti)

ℓ
i=0 will not be an R′-drop in (t̃i)

ℓ
i=0 as log2 f is 1-Lipschitz.

Taking a union bound over the choice of the step record is not costly, and note that given
(X1, . . . ,Xn) and the step record, the witnessing sequence is completely determined by its starting
point t̃0. Furthermore, the definition of the witnessing sequence and the definition of fA,~s,ℓ easily
show that

t̃0 ∈ {τ ∈ Z : f(τ) > (2N
√
n)−1} =: D.

Note that D is a deterministic set depending only on f . Further, since ‖f‖1 = 1 and log2 f is
1-Lipschitz, we see that

|D| ≤ 4N
√
n.

To summarize, we have shown that if (X1, . . . ,Xn) ∈ EL, then there exists a witnessing sequence
(t̃i)

ℓ
i=0 with step record (wi)

ℓ
i=1 such that t̃0 ∈ D, and such that

#{i ∈ [ℓ] : step i is λ2.10-robust and is not an R′-drop in (t̃i)
ℓ
i=0} ≥ γ2.10n.

Therefore, by the union bound and since N ≤ kn (as H(~p) ≤ log k), it follows that

P[EL] ≤ (2k2)n sup
I⊆[ℓ],|I|=⌈γ2.10n⌉
t̃0∈D,(wi)ℓi=1

∈[k]ℓ

P[The witnessing sequence starts at t̃0, has step record (wi)
ℓ
i=1, and

every i ∈ I is λ2.10-robust and is not an R′-drop],

where the supremum is only over those (wi)
ℓ
i=1 which have sj coordinates equal to j for all j ∈ [k].

From (2.8), taking δ0 = γ2.10/2, it follows that the probability appearing on the right hand side
above is bounded by

(
2k342‖~a‖∞+1C2.6(λ2.10/2, ξ, γ2.10/2,K1,K2)

γ2.10L

)γ2.10n/2
,

since there are at least γ2.10n/2 values of i ∈ I with i > δ0n and since R′ = γ2.10L/2 by definition.
Therefore, taking L and n sufficiently large depending on M and the parameters appearing above
gives the desired conclusion. �

2.3. Refining the initial estimate. We now need to remove the dependence of L on M . This is
accomplished by the main result of this subsection, Proposition 2.11, which is a multislice and L1(R)
analogue of [23, Proposition 4.10]. Even though we are working in the much more complicated set-
ting of real multislices, remarkably, our proof of Proposition 2.11 is able to use [23, Proposition 4.10]
as a black box: roughly, we first use a re-randomization procedure to reduce smoothing on the mul-
tislice for L1(R) to smoothing on the hypercube, also for L1(R). At this juncture, the necessary
smoothing estimate on the hypercube for L1(R) can in fact be lifted from the smoothing estimate
for the hypercube for ℓ1(Z), proved in [23]. In particular, we reduce the smoothing estimate for
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general log-Lipschitz functions in L1(R) to that of a simpler class of “step” functions, which in turn
is equivalent to ℓ1(Z).

A simpler version of this argument, for Boolean slices, is presented in [7, Proposition 3.10].

Proposition 2.11. Fix a discrete distribution ξ. There exists h = h(ξ) ≥ 1 so that the following

holds. For any ǫ ∈ (0, 1), R̃ ≥ 1, L0 ≥ hR̃, and M ≥ 1, there is γ2.11 = γ2.11(ξ) and there

are n2.11 = n2.11(ξ, ǫ, L0, R̃,M) > 0 and η2.11 = η2.11(ξ, ǫ, L0, R̃,M) ∈ (0, 1) with the following

property. Let L0 ≥ L ≥ hR̃, let n ≥ n2.11, N ∈ N, and let g ∈ L1(R) be a nonnegative function
satisfying

(A) ‖g‖1 = 1,
(B) log2 g is η2.11-Lipschitz,

(C)
∫
t∈I g(t) ≤ R̃/

√
n for any interval I of size N , and

(D) ‖g‖∞ ≤ L/(N
√
n).

For each i ≤ 2⌊ǫn⌋, let Yi be a random variable uniform on some disjoint union of integer intervals
of cardinality at least N each, and assume that Y1, . . . , Y2⌊ǫn⌋ are mutually independent. Define a

random function g̃ ∈ L1(R) by

g̃(t) = Eb

[
g

(
t+

2⌊ǫn⌋∑

i=1

biYi

)∣∣∣∣#{bi = aj} = sj∀j ∈ [k]

]

where b = (b1, . . . , b2⌊ǫn⌋) is a vector of independent ξ components and ~s ∈ Z
k
≥0 satisfies ‖~s‖1 = 2⌊ǫn⌋

and ∥∥∥∥
~s

2⌊ǫn⌋ − ~p

∥∥∥∥
∞

≤ γ2.11.

Then

P

[
‖g̃‖∞ >

19L/20

N
√
n

]
≤ exp(−Mn).

We now state an analogue of Proposition 2.11 for independent scaled Bernoulli random variables,
which in fact is strong enough to imply Proposition 2.11.

Proposition 2.12. Fix h ≥ 1, and let z ∈ [h−1, h]. For any ǫ ∈ (0, 1), R̃ ≥ 1, L0 ≥ 64h2R̃,

and M ≥ 1, there are n2.12 = n2.12(h, ǫ, L0, R̃,M) > 0 and η2.12 = η2.12(h, ǫ, L0, R̃,M) ∈ (0, 1)

with the following property. Let L0 ≥ L ≥ 64h2R̃, let n ≥ n2.12, N ∈ N, and let g ∈ L1(R) be a
nonnegative function satisfying

(A) ‖g‖1 = 1,
(B) log2 g is η2.12-Lipschitz,

(C)
∫
t∈I g(t) ≤ R̃/

√
n for any interval I of size N , and

(D) ‖g‖∞ ≤ L/(N
√
n).

For each i ≤ ⌊ǫn⌋, let Yi be a random variable uniform on some disjoint union of integer intervals
of cardinality at least N each, and assume that Y1, . . . , Y⌊ǫn⌋ are mutually independent. Define a

random function g̃ ∈ L1(R) by

g̃(t) = Ebg

(
t+ z

⌊ǫn⌋∑

i=1

biYi

)

where b is a vector of independent Ber(1/2) components. Then

P

[
‖g̃‖∞ ≥ 9L/10

N
√
n

]
≤ exp(−Mn).
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This follows almost immediately from an ℓ∞(Z) decrement result established by Tikhomirov [23].

Proposition 2.13 ([23, Proposition 4.10]). For any p ∈ (0, 1/2], ǫ ∈ (0, 1), R̃ ≥ 1, L0 ≥ 16R̃, and

M ≥ 1 there are n2.13 = n2.13(p, ǫ, L0, R̃,M) > 0 and η2.13 = η2.13(p, ǫ, L0, R̃,M) ∈ (0, 1) with

the following property. Let L0 ≥ L ≥ 16R̃, let n ≥ n2.13, N ∈ N, and let g ∈ ℓ1(Z) be a nonnegative
function satisfying

(A) ‖g‖1 = 1,
(B) log2 g is η2.13-Lipschitz,

(C)
∑

t∈I g(t) ≤ R̃/
√
n for any integer interval I of size N , and

(D) ‖g‖∞ ≤ L/(N
√
n).

For each i ≤ ⌊ǫn⌋, let Yi be a random variable uniform on some disjoint union of integer intervals
of cardinality at least N each, and assume that Y1, . . . , Y⌊ǫn⌋ are mutually independent. Define a

random function g̃ ∈ ℓ1(Z) by

g̃(t) = Ebg

(
t+

⌊ǫn⌋∑

i=1

biYi

)

where b is a vector of independent Ber(p) components. Then

P

[
‖g̃‖∞ >

(1− p(1− 1/
√
2))L

N
√
n

]
≤ exp(−Mn).

Remark. In [23, Proposition 4.10], there is a condition N ≤ 2n which is not necessary (indeed,
it is not used anywhere in the proof) and so has been dropped. In fact, we will only need values
N ≤ kn, in which case one can actually replace n by kn and ǫ by ǫ/k (and adjust other parameters
appropriately) in order to deduce what we need directly from the statement as written in [23]. We
will only need this statement for p = 1/2.

Now we first prove Proposition 2.12.

Proof of Proposition 2.12. Consider the operator O : L1(R) → ℓ1(Z) given by

(Oω)(t) =

∫ z/2

−z/2
ω(zt+ u) du.

We note that ‖ω‖1 = ‖Oω‖1 and if ω is nonnegative and log2 ω is η-Lipschitz, then

z2−ηh/2‖ω‖∞ ≤ ‖Oω‖∞ ≤ z‖ω‖∞.

Given g ∈ L1(R) satisfying the given conditions, we consider g′ ∈ ℓ1(Z) defined via

g′ = Og.

We see that g′ satisfies properties (A), (B), (C), (D) of Proposition 2.13 with log-Lipschitz constant

slightly changed (depending on z, hence h), L changed to zL, and R̃ increased to 4hR̃. These last

changes are responsible for the condition L0 ≥ 64h2R̃.

Since zL ≥ h−1L ≥ 16(4hR̃), we may apply Proposition 2.13 to g′ to deduce that ‖g̃′‖∞ is small,

except with superexponentially small probability. Here g̃′ is averaged in the sense of Proposition 2.13
with respect to the same Y1, . . . , Y⌊ǫn⌋.

Now, by Fubini’s theorem, note that

g̃′ = Og̃,

where g̃ is averaged in the sense of Proposition 2.12. Therefore,

P

[
‖Og̃‖∞ >

(2 +
√
2)zL/4

N
√
n

]
≤ exp(−Mn),
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so that

P

[
‖g̃‖∞ >

(2 +
√
2)2

η2.12h/2L/4

N
√
n

]
≤ exp(−Mn).

Finally, if η2.12 is appropriately small, we deduce the desired as

2 +
√
2

4
<

9

10
. �

Finally, we are able to deduce Proposition 2.11.

Proof of Proposition 2.11. Similar to the proof of Lemma 2.5, we can use an equivalent method of
sampling from the ~s-multislice to rewrite g̃(t) as

g̃(t) = Eb

[
g

(
t+

⌊ǫn⌋∑

i=1

(b2i−1Y2i−1 + b2iY2i)

)∣∣∣∣#{bi = aj} = sj∀j ∈ [k]

]

= Eb,b′

[
g

(
t+

⌊ǫn⌋∑

i=1

b2i−1Y2i−1 + b2iY2i + b′i(b2i − b2i−1)(Y2i−1 − Y2i)

)∣∣∣∣#{bi = aj} = sj∀j ∈ [k]

]
,

where b′ is an ⌊ǫn⌋-dimensional vector with independent Ber(1/2) components. Below, we will fix b
and use only the randomness in b′. In order to do this, let

B0 :=

{
b1, . . . , b2⌊ǫn⌋ : #{i : b2i−1 = a1, b2i = a2} ≥ min(~p)2ǫn/8

}
.

Then, provided that γ2.11 is chosen sufficiently small depending on ξ, and n is sufficiently large
depending on ξ and ǫ, we have

Eb[1B0
|#{bi = aj} = sj∀j ∈ [k]] >

1

2
.

Let EL denote the event (depending on Y1, . . . , Y2⌊ǫn⌋) that ‖g̃‖∞ > 19L/(20N
√
n). Now, suppose

Y1, . . . , Y2⌊ǫn⌋ ∈ EL, and suppose further that ‖g̃‖∞ is attained at t ∈ R. Let

B1 :=

{
b1, . . . , b2⌊ǫn⌋ : Eb′

[
g

(
t+

⌊ǫn⌋∑

i=1

(b2i−1Y2i−1+b2iY2i+b′i(b2i−b2i−1)(Y2i−1−Y2i)

)∣∣∣∣b
]
≥ 9L/10

N
√
n

}
.

Since ‖g‖∞ ≤ L/(N
√
n), it follows from the reverse Markov inequality that

Eb[1B1
|#{bi = aj} = sj∀j ∈ [k]] >

1

2
.

Thus, we see that for every (Y1, . . . , Y2⌊ǫn⌋) ∈ EL, there exists some b ∈ B0 ∩ B1. Hence, taking a
union bound, we see that

P

[
‖g̃‖∞ >

19L/20

N
√
n

]
≤ P[∃b ∈ B0 : b ∈ B1]

≤ |B0| sup
b∈B0

P

[
∃t : Eb′

[
g

(
t+

⌊ǫn⌋∑

i=1

(b2i−1Y2i−1 + b2iY2i + b′i(b2i − b2i−1)(Y2i−1 − Y2i))

)]
≥ 9L/10

N
√
n

]

≤ |B0| sup
b∈B0

P

[
∃t : Eb′

[
g

(
t+

⌊ǫn⌋∑

i=1

b′i(b2i − b2i−1)(Y2i−1 − Y2i)

)]
≥ 9L/10

N
√
n

]
. (2.9)
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We now bound the probability appearing on the right hand side of the above equation uniformly
for b ∈ B0. We fix b ∈ B0, and note that, by definition, there is a set I = {i1, . . . , im} ⊆ ⌊ǫn⌋ such
that |I| = m ≥ min(~p)2ǫn/8 and such that for all j ∈ [m],

b′ij (b2ij − b2ij−1)(Y2ij−1 − Y2ij ) = b′ij(a2 − a1)(Y2ij−1 − Y2ij ).

For j ∈ [k], let Y b
j := Y2ij − Y2ij−1. Let Y−2·I denote all components of Y1, . . . , Y2⌊ǫn⌋, except those

corresponding to indices in 2 · I, and let Y2·I denote the remaining components. Then, for b ∈ B0

and a choice of Y−2·I , we define the random function (depending on Y2·I),

g̃b,Y−2·I (t) := Eb′g

(
t+ (a1 − a2)

⌊min(~p)2ǫn/8⌋∑

j=1

b′jY
b
j

)
.

Thus, we see that for any b ∈ B0 and Y−2·I , the probability appearing on the right hand side of
(2.9) is bounded by

P

[
‖g̃b,Y−2·I‖∞ ≥ 9L/10

N
√
n

]
,

where the probability is over the choice of Y2·I .
At this point, we can apply Proposition 2.12 to g̃b,Y−2·I . Let us quickly check that the hypotheses

of Proposition 2.12 are satisfied. The assumptions on g needed in Proposition 2.12 are satisfied
because the same properties are assumed in Proposition 2.11 (see below for the log-Lipschitz con-
dition). Moreover, b′1, . . . , b

′
⌊min(~p)2ǫn/8⌋ are independent Ber(1/2) random variables. Finally, notice

that, given Y−2·I , each Y b
j is a random variable uniform on some disjoint intervals of cardinality

at least N each (since Y b
j is a translation of Y2ij which is assumed to satisfy this property). Also,

a1 − a2 is bounded away from 0 (in terms of ξ).
Thus, Proposition 2.12 shows that the expression on the right hand side of (2.9) is bounded above

by

|B0| sup
b∈B0,Y−2·I

P

[
‖g̃b,Y−2·I‖∞ >

9L/10

N
√
n

]
≤ kn exp(−M min(~p)2n/8),

provided that we choose η2.11 sufficiently small compared to η2.12(d,min(~p)2ǫ/8, L0, R̃,M), where
d = max(|a2 − a1|, |a2 − a1|−1). The desired result now follows after rescaling M by a constant
factor (depending on ξ). �

2.4. Deriving the final result. Theorem 2.1 is almost immediate given the previous propositions.

Proof of Theorem 2.1. The proof of Theorem 2.1 given Propositions 2.7 and 2.11 is similar to the
derivation in [23, Theorem 4.2]; we refer the reader to the companion note [7, Theorem 3.1] for
a leisurely account of the complete details. In words, we use Proposition 2.7 to show that any
revelation of the first (1 − γ)n random variables (for suitably chosen γ) will give an L∞ bound at
roughly the right scale L′(N

√
n)−1, where L′ depends on M . Then, we divide the remaining random

variables into a constant number of pieces (this number depends on L′ and C2.5 with appropriate
parameters), and use Proposition 2.11 iteratively on these pieces. As in Steps 2 and 3 in the proof
of [7, Theorem 3.1], we may restrict our attention to the case when each of the remaining pieces
is a well-conditioned multislice (this automatically implies that the first (1 − γ)n coordinates are
also a well-conditioned multislice), noting that the complement of this event occurs with very low
probability, and the product of this probability with L′(N

√
n)−1 is much smaller than the bound

on the essential sup-norm that we are aiming for. �
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2.5. Independent model. We conclude this section with an analogue of Corollary 2.3 in the in-
dependent case.

Theorem 2.14. Fix a discrete distribution ξ. For 0 < δ < 1/4, K3 > K2 > K1 > 1, ǫ ≪ ‖~p‖∞,
and a given parameter M ≥ 1, there is L2.14 = L2.14(ξ, ǫ, δ,K1,K2,K3) > 0 independent of M
and n2.14 = n2.14(ξ, ǫ, δ,K1,K2,K3,M) ≥ 1 such that the following holds.

Let n ≥ n2.14, 1 ≤ N ≤ ‖~p‖−n
∞ exp(−ǫn) and A be (N,n,K1,K2,K3, δ)-admissible. Then

∣∣∣∣
{
x ∈ A : Lξ

( n∑

i=1

bixi,
√
n

)
≥ L2.14N

−1

}∣∣∣∣ ≤ e−Mn|A|.

The proof of Theorem 2.14 is analogous to that of Theorem 2.1 followed by Corollary 2.3, except
that the random variables bi are now independent copies of ξ. This independence simplifies matters
dramatically, as one can derive an analogue of Proposition 2.7 by simply considering drops (as in
[23, Proposition 4.5]) instead of “well-conditioned” drops, and then using subsampling arguments
similar to those appearing above to prove analogues of Proposition 2.11 and Theorem 2.1. We leave
the details to the interested reader.

3. Non-almost-constant vectors

3.1. Preliminaries. We recall the following basic definition of almost-constant vectors.

Definition 3.1. We define Cons(δ, ρ) to be the set of x ∈ S
n−1 such that there is λ ∈ R so that

|xi − λ| ≤ ρ/
√
n for at least (1− δ)n values i ∈ [n]. We let Noncons(δ, ρ) = S

n−1 \ Cons(δ, ρ).
The following is a standard fact regarding non-almost-constant vectors. For the reader’s conve-

nience, we provide complete details of the proof in [7].

Lemma 3.2 ([7, Lemma 2.3]). For δ, ρ ∈ (0, 1/4), there exist ν, ν ′ > 0 depending only on δ, ρ, and a
finite set K of positive real numbers, also depending only only on δ, ρ, such that the following holds.

If x ∈ Noncons(δ, ρ), then at least one of the following two conclusions is satisfied.

(1) There exist κ, κ′ ∈ K such that

|xi| ≤
κ√
n

for at least νn indices i ∈ [n], and

κ+ ν ′√
n

< |xi| ≤
κ′√
n

for at least νn indices i ∈ [n].

(2) There exist κ, κ′ ∈ K such that

κ√
n
< xi <

κ′√
n

for at least νn indices i ∈ [n], and

− κ′√
n
< xi < − κ√

n
for at least νn indices i ∈ [n].

We record two useful tensorization statements.

Lemma 3.3 ([23, Lemma 3.2]). Let χ1, . . . , χm be independent random variables.

• Assume that for all ǫ ≥ ǫ0,

P[|χi| ≤ ǫ] ≤ Kǫ.

Then for ǫ ≥ ǫ0
P[‖(χ1, . . . , χm)‖2 ≤ ǫ

√
m] ≤ (CKǫ)m,

where C is an absolute constant.
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• Assume that for some η, τ > 0,

P[|χi| ≤ η] ≤ τ.

Then for ǫ ∈ (0, 1],

P[‖(χ1, . . . , χm)‖2 ≤ η
√
ǫm] ≤ (e/ǫ)ǫmτm−ǫm.

We will need a standard concentration estimate for the operator norm of a random matrix with
independent centered sub-Gaussian entries.

Lemma 3.4 ([25, Lemma 4.4.5]). There exists an absolute constant C > 0 such that the following
holds. Let A be an m× n i.i.d. matrix with mean 0, sub-Gaussian entries with sub-Gaussian norm
at most K. Then for any t ≥ 0 we have

P[‖A‖ ≤ C(
√
m+

√
n+ t)] ≤ 2 exp(−t2/K2).

Finally, we will need the following lemma, proved using randomized rounding (cf. [14]), which is
a straightforward generalization of [23, Lemma 5.3]. We omit details since the proof is identical.

Lemma 3.5. Let y = (y1, . . . , yn) ∈ R
n be a vector, and let µ > 0, λ ∈ R be fixed. Let ∆

denote a probability distribution which is supported in [−s, s]n. There exist constants c3.5 and C3.5,
depending only on s, for which the following holds. Suppose that for all t ≥ √

n,

P

[∣∣∣∣
n∑

i=1

biyi − λ

∣∣∣∣ ≤ t

]
≤ µt,

where (b1, . . . , bn) is distributed according to ∆. Then, there exists a vector y′ = (y′1, . . . , y
′
n) ∈ Z

n

satisfying

(R1) ‖y − y′‖∞ ≤ 1,
(R2) P[|∑n

i=1 biy
′
i − λ| ≤ t] ≤ C3.5µt for all t ≥ √

n,
(R3) L(∑n

i=1 biy
′
i,
√
n) ≥ c3.5L(

∑n
i=1 biyi,

√
n),

(R4) |∑n
i=1 yi −

∑n
i=1 y

′
i| ≤ C3.5

√
n.

3.2. The structure theorem. Let ξ be a discrete distribution, and let A = A(ξ) denote an
(n − 1) × n random matrix, each of whose entries is an independent copy of a ξ random variable.
We fix a function v(A) which takes as input an (n − 1) × n matrix and outputs a unit vector in
its right kernel. A key ingredient in the proof of the main result of this section, Theorem 3.8, is a
structure theorem for kernel vectors of A, which encodes the fact that (with very high probability)
non-almost-constant kernel vectors of A must be maximally unstructured in the relevant sense.

Definition 3.6. Fix a discrete distribution ξ. Let ~γ ∈ R
k
≥0 with ‖~γ‖∞ < min(~p), and let L ≥ 1.

Then, for any integer n ≥ 1 and x ∈ S
n−1, we define

Tξ,~γ(x,L) := sup

{
t ∈ (0, 1) : Lξ,~γ

( n∑

i=1

bixi, t

)
> Lt

}
.

We also define

Tξ(x,L) := sup

{
t ∈ (0, 1) : Lξ

( n∑

i=1

bixi, t

)
> Lt

}
.

Proposition 3.7. Let δ, ρ, ǫ ∈ (0, 1). There exist L3.7 = L3.7(δ, ρ, ξ, ǫ), γ3.7 = γ3.7(δ, ρ, ξ, ǫ) and
n3.7 = n3.7(δ, ρ, ξ, ǫ) such that for all n ≥ n3.7, with probability at least 1 − k−2n, exactly one of
the following holds.

• v(A) ∈ Cons(δ, ρ), or
• Tξ,γ3.71k(v(A), L3.7) ≤ exp((ǫ−H(~p))n).
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The proof of Proposition 3.7 follows from Corollary 2.3 and Lemma 3.5. At a high level, we
consider dyadic intervals for the threshold function of v(A), round v(A) to an appropriate integer
lattice (using Lemma 3.5), and then use Corollary 2.3. In order to be in a setting where we can
apply Corollary 2.3, we use an idea of Litvak and Tikhomirov [13] – using the Chernoff bound, we
restrict ourselves to the event that all but Oξ,γ2.3

(1) rows belong to a well-conditioned multislice

corresponding to ξ. We refer the reader to [7, Proposition 4.2] for further details.

3.3. Invertibility on the bulk. We are now ready to state and prove the key result of this section.

Theorem 3.8. Fix a discrete distribution ξ. For any δ, ρ, ǫ > 0, there exists C3.8 = C3.8(ξ, δ, ρ, ǫ) >
0 and n3.8(ξ, δ, ρ, ǫ) ≥ 1 such that for all n ≥ n3.8 and t ≥ 0,

P

[
inf

x∈Noncons(δ,ρ)
‖Mn(ξ)x‖2 ≤ t/

√
n ∧ inf

y∈Cons(δ,ρ)
‖yMn(ξ)‖2 > C3.8t

]
≤ C3.8t+ exp((ǫ−H(~p))n).

Proof. Let M := Mn(ξ) for simplicity, and let δ, ρ, ǫ > 0 be as in the statement of the theorem. We
will denote the columns of M by M (1), . . . ,M (n). Also, for each i ∈ [n], M (−i) denotes the subspace

spanned by all columns of M except for M (i).
Step 1: Let γ = γ3.7(δ, ρ, ξ, ǫ). Let Wγ ⊆ supp(ξ)n denote the set of vectors x ∈ supp(ξ)n such

that #{xi = aj} ∈ [pjn− γn, pjn+ γn] for all j ∈ [k]. Let Q ≥ 1 be a constant such that the event

WQ := {|{i ∈ [n] : M (i) /∈ Wγ | ≤ Q}

holds with probability at least 1− k−1729n. Then, it suffices to bound

P

[
inf

x∈Noncons(δ,ρ)
‖Mx‖2 ≤ t/

√
n ∧ inf

y∈Cons(δ,ρ)
‖yM‖2 > Ct ∧WQ

]
. (3.1)

Let us denote the first of the three events in the equation above by ER, and the second event by EL.
Let x = x(M) denote a vector in Noncons(δ, ρ) certifying the event ER, so that

‖x1M (1) + · · ·+ xnM
(n)‖2 ≤ t/

√
n.

Using Lemma 3.2, there is a set I ⊆ [n] such that |I| ≥ νn and such that for all i ∈ I, |xi| ≥ κ/
√
n,

for some κ := κ(δ, ρ) > 0. In particular, since for any i ∈ [n], ‖x1M (1) + · · · + xnM
(n)‖2 ≥

|xi|dist(M (i),M (−i)), it follows that

dist(M (i),M (−i)) ≤ t

κ
for all i ∈ I.

Also, on the event WQ, there are at least νn/2 indices i ∈ I such that M (i) ∈ Wγ . Thus, we see
that

(3.1) = P[ER ∧ EL ∧WQ] ≤
2

νn

n∑

i=1

P[dist(M (i),M (−i)) ≤ t/κ ∧ EL ∧M (i) ∈ Wγ ].

Step 2: By symmetry, it suffices to bound P[M1], where

M1 := dist(M (1),M (−1)) ≤ t/κ ∧ EL ∧M (1) ∈ Wγ .

Let v(M (−1)) be a unit vector normal to M (−1). Then, by Proposition 3.7, except with probability

k−2n (over the randomness of M (−1)), exactly one of the following holds.

• v(M (−1)) ∈ Cons(δ, ρ), or
• Tξ,γ1k(v(M (−1)), L) ≤ exp((ǫ−H(~p))n),
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where L := L3.7(δ, ρ, ξ, ǫ). If the first possibility occurs, then M1 cannot hold as v(M (−1)) ∈
Cons(δ, ρ) satisfies

‖v(M (−1))M‖2 = |〈M (1), v(M (−1))〉| ≤ dist(M (1),M (−1)) ≤ t/κ ≤ Ct,

(choosing C appropriately), which contradicts EL. Hence, the second possibility must hold. But
then, using dist(M (1),M (−1)) ≥ |〈M (1), v(M (−1))〉|, we have that (over the randomness of M (1)),

P[dist(M (1),M (−1)) ≤ t/κ ∧M (1) ∈ Wγ ] ≤ P[|〈M (1), v(M (−1))〉| ≤ t/κ | M (1) ∈ Wγ ]

≤ Lt

κ
+ exp((ǫ−H(~p))n)). �

4. Preliminary invertibility estimates

In this short section, we will prove a version of Theorem 1.4 with the weaker singularity estimate
(‖~p‖∞ + on(1))

n. This estimate, which generalizes [23, Theorem A], will be used crucially in our
refined treatment of invertibility for almost-constant vectors in the next section. The techniques in
this section also serve as a gentle warm-up to the next section, where much more involved versions
of the arguments are presented.

We begin with the following elementary fact regarding sums of ξ random variables.

Lemma 4.1. Fix a discrete distribution ξ. There is θ = θ(ξ) > 0 such that for all x ∈ S
n−1,

Lξ(b1x1 + · · ·+ bnxn, θ) ≤ ‖~p‖∞.

Proof. This is essentially identical to the proof given in [23, Lemma 3.5]. Briefly, if ‖x‖∞ ≥ δ,
then we can choose θ small enough (depending on δ and ξ) so the claim is immediate. Otherwise
‖x‖∞ < δ and ‖x‖2 = 1, in which case the claim follows from Lemma 2.4 as long as δ is sufficiently
small depending on ξ. �

Combining the above estimate with the second part of Lemma 3.3, we have the following.

Corollary 4.2. Fix a discrete distribution ξ. For every ǫ > 0, there exists c > 0 depending on ǫ
and ξ such that for any x ∈ S

n−1 and y ∈ R
n, we have

P[‖Mn(ξ)x− y‖2 ≤ c
√
n] ≤ (‖p‖∞ + ǫ)n.

Moreover, combining this corollary with the low metric entropy of Cons(δ, ρ) and Lemma 3.4, we
obtain the following (weak) estimate for invertibility on almost-constant vectors.

Corollary 4.3. Fix a discrete distribution ξ. For every ǫ > 0, there exist δ, ρ, c > 0 depending on
ǫ and ξ such that for any y ∈ R

n,

P

[
inf

x∈Cons(δ,ρ)
‖Mn(ξ)x− y‖2 ≤ c

√
n

]
≤ (‖p‖∞ + ǫ)n.

Next, we show that with very high probability, the inverse of any fixed vector is unstructured.

Proposition 4.4. Fix a discrete distribution ξ. For every ǫ, η > 0, there exist δ, ρ, L > 0 depending
on ǫ, η, ξ such that for any y ∈ R

n,

P

[
∃x ∈ S

n−1 : Mn(ξ)x ‖ y ∧ (x ∈ Cons(δ, ρ) ∨ Tξ(x,L) ≥ (‖~p‖∞ + η)n
]
≤ (‖~p‖∞ + ǫ)n.

Proof. This follows essentially from combining Corollary 4.3 with a cruder analogue of Proposition 3.7,
the only difference being that we are considering Mn(ξ)x ‖ y for arbitrary y ∈ R

n as opposed to
only y = 0.

To handle this last point, we begin by choosing (using Lemma 3.4) a sufficiently large constant K
so that EK = {‖Mn(ξ)−E[ξ]Jn×n‖ ≤ K

√
n} satisfies P[Ec

K ] ≤ ‖~p‖2n∞ . Then, it suffices to restrict to
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EK . Moreover, by the triangle inequality, we see that on the event EK , ‖Mn(ξ)‖ ≤ K
√
n+E[ξ]n, so

that in particular, on the event in the proposition (intersected with EK), we have that Mn(ξ)x = ty0
with y0 ∈ S

n−1 fixed and for some t ∈ R with |t| ≤ K
√
n+ E[ξ]n.

Now, for the treatment of vectors in Cons(δ, ρ), we can divide the range of t into n3 uniformly
spaced intervals, apply Corollary 4.3 with y equal to the mid-point of an interval times y0, and use
the union bound. For the treatment of vectors in Noncons(δ, ρ)∧ T (x,L) ≤ (‖~p‖∞ + ǫ)n, we divide
the range of t into ‖~p‖−2n

∞ equally spaced intervals, use a slight generalization of the argument in
the proof [7, Proposition 4.2] with M sufficiently large (depending on ξ) also for y equal to the
mid-point of an interval times y0, and finally use the union bound. We leave the details to the
interested reader. �

Using Corollary 4.3 and Proposition 4.4, we can prove the following weaker version of Theorem 1.4.

Theorem 4.5. Let ξ be a discrete random variable. For any ǫ > 0, there exist C,n0 > 0 depending
on ξ, ǫ such that for all n ≥ n0 and t ≥ 0,

P[sn(Mn) ≤ t/
√
n] ≤ Ct+ (‖~p‖∞ + ǫ)n.

Proof. The deduction of this theorem follows from the argument in [23, Section 5] with the appli-
cation of Corollary 4.3 and Proposition 4.4 at the appropriate steps. A more complicated version
of this deduction also appears in Section 6, so we omit details. �

5. Almost-constant vectors

The goal of this section is to prove Theorem 1.5. The proof is presented at the end of the section
and needs a few intermediate steps.

For the proof, we will need to isolate the following natural class of almost-elementary vectors.

Definition 5.1. (Almost-elementary vectors) For δ > 0 and i, j ∈ [n], i 6= j, let

Elemi(δ) := {x ∈ S
n−1 : ‖x− ei‖2 ≤ δ},

Elemi,j(δ) := {x ∈ S
n−1 : ‖x− (ei − ej)/

√
2‖2 ≤ δ},

Elem′
i,j(δ) := {x ∈ S

n−1 : ‖x− (ei + ej)/
√
2‖2 ≤ δ}.

Also, let

Elem(δ) :=
⋃

i∈[n]
Elemi(δ) ∪

⋃

i,j∈[n],i 6=j

Elemi,j(δ),

Elem′(δ) := Elem(δ) ∪
⋃

i,j∈[n],i 6=j

Elem′
i,j(δ).

For excluding almost-constant vectors which are not almost-elementary, we will need to develop
sharp results regarding the Lévy concentration function of discrete random variables.

Proposition 5.2. Fix a discrete distribution ξ and δ ∈ (0, 1/2). There exists θ = θ(δ, ξ) > 0 such
that for all x ∈ S

n−1 \ Elem′(δ),

Lξ(b1x1 + · · · + bnxn, θ) ≤ ‖~p‖22 − θ.

Proof. Since Elem′(δ) is increasing with δ, it suffices to prove the statement for sufficiently small δ
(depending on ξ), which will be chosen during the course of the proof. Moreover, we may assume
that |x1| ≥ |x2| ≥ · · · ≥ |xn|.

Since x /∈ Elem1(δ), we must have ‖(x2, . . . , xn)‖2 ≥ δ/2. In case |x2| ≤ δ4, then we are done
using Lemma 2.4 (cf. [7, Lemma 2.6]) for all sufficiently small δ. Similarly, if ‖(x3, . . . , xn)‖2 ≥ δ/4
and |x3| ≤ δ4, we are done. We now analyze the remaining situations via case analysis.
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Case I: δ4 ≤ |x2| < (1 − δ5)|x1|. Since Lξ(b1x1 + · · · + bnxn, θ) ≤ Lξ(b1x1 + b2x2, θ), it suffices
to bound the latter. Let ξ′ be an independent copy of ξ. For any s ∈ R, we have

P[x1ξ + x2ξ
′ ∈ [s− c, s + c]]2 =

(∑

a

P[ξ′ = a]P[|ξ − x−1
1 (s− x2a)| ≤ c|x1|−1]

)2

≤
(∑

a

P[ξ′ = a]2
)(∑

a

P[|ξ − x−1
1 (s− x2a)| ≤ c|x1|−1]2

)
≤ ‖~p‖42,

where the sum is over a ∈ supp(ξ). Here, the equality is by definition, the first inequality is Cauchy-
Schwarz, and the last inequality holds as long as c > 0 is chosen small enough in terms of δ, ξ. Let
us elaborate on this final point. We choose c > 0 small enough so that c|x1|−1 ≤ cδ−4 is smaller
than |x2/x1| times half the minimum gap in supp(ξ), which is possible since |x2/x1| ≥ δ4. Now,
such a choice of c clearly implies that each summand in

∑
a P[|ξ − x−1

1 (s− x2a)| ≤ c|x1|−1]2 covers
at most a single atom in supp(ξ), and that different choices of a, a′ ∈ supp(ξ) cover distinct atoms
in supp(ξ).

Moreover, for such a choice of c, equality in the final inequality holds if and only if there is a
permutation σ on supp(ξ) such that for all a ∈ supp(ξ),

P[ξ′ = σ(a)] = P[|ξ − x−1
1 (s − x2a)| ≤ c|x1|−1].

Summing over all the atoms in supp(ξ), we see that if equality holds in the final inequality, then

supp(ξ) ⊆
k⋃

j=1

[x−1
1 (s− x2a)− c|x1|−1, x−1

1 (s− x2a) + c|x1|−1],

so that in particular, supp(ξ) is contained in an interval of length at most |x2/x1|mξ + 2c|x1|−1,
where mξ = max supp(ξ) − min supp(ξ). But since |x2/x1| ≤ 1 − δ5 and c|x1|−1 ≤ cδ−4, we see
(by taking c > 0 sufficiently small) that supp(ξ) is contained in an interval of length at most
(1 − δ5/2)mξ , which contradicts the definition of mξ. Hence, we see that equality cannot hold in
the final inequality.

Since equality does not hold, it follows from the above discussion that (for c > 0 sufficiently
small), we have the stronger inequality

P[x1ξ + x2ξ
′ ∈ [s− c, s + c]]2 ≤ ‖~p‖22(‖~p‖22 − (min ~p)2),

which completes the analysis in this case, noting that the choice of c depends only on ξ, δ.
Case II: |x2| ≥ (1−δ5)|x1|, ‖(x3, . . . , xn)‖2 ≤ δ/4. This implies that x ∈ Elem′

1,2(δ)∪Elem1,2(δ),
thereby violating our assumption.

Case III: δ4 ≤ |x3| ≤ (1− δ5)|x1|. This can be treated in exactly the same way as Case I.
Case IV: (1 − δ5)|x1| ≤ |x3| ≤ |x2| and |x2| ≥ δ4. It suffices to bound Lξ(b1x1 + b2x2 + b3x3).

Let ui ∈ {±1} be defined via ui = sgn(xi) = xi/|xi|. Let m′
ξ > 0 be the smallest positive real such

that supp(ξ) ⊆ [−m′
ξ,m

′
ξ].

We begin by noting that for any s ∈ R,

P[x1ξ1 + x2ξ2 + x3ξ3 ∈ [s− c, s + c]]

= P[|x1|(u1ξ1 + |x1|−1|x2|u2ξ2 + |x1|−1|x3|u3ξ3) ∈ [s− c, s + c]]

≤ P[|x1|(u1ξ1 + u2ξ2 + u3ξ3) ∈ [s− c− 3δ5m′
ξ, s+ c+ 3δ5m′

ξ]],

where the inequality uses (1− δ5) ≤ |x1|−1|x3| ≤ |x1|−1|x2| ≤ 1, |x1| ≤ 1, and the definition of m′
ξ.

Since |x1| ≥ |x2| ≥ δ4, this localizes the value of u1ξ1 + u2ξ2 + u3ξ3 to an interval of length at
most 2(cδ−4 + 3δm′

ξ). As discussed at the beginning, we can assume that δ is sufficiently small
based on ξ. By first choosing δ > 0 sufficiently small depending on ξ, and then choosing c > 0
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sufficiently small depending on δ and ξ, we may assume that 2(cδ−4 + 3δm′
ξ) is smaller than the

minimum distance between two distinct atoms in both supp(ξ+ξ′+ξ′′) and supp(ξ+ξ′−ξ′′), where
ξ, ξ′, ξ′′ are independent copies of ξ. Note that, after possibly multiplying by an overall negative
sign, u1ξ1 + u2ξ2 + u3ξ3 is distributed as either ξ + ξ′ + ξ′′ or ξ + ξ′ − ξ′′.

Therefore, by our choice of δ and c, we see that it suffices to show that for all s ∈ R,

P[ξ1 + ξ2 + ξ3 = s] ≤ ‖~p‖22 − cξ, P[ξ1 + ξ2 − ξ3 = s] ≤ ‖~p‖22 − cξ,

for some cξ > 0 depending only on ξ. Now for u3 ∈ {±1}, we have

P[ξ1 + ξ2 + u3ξ3 = s]2 =

(∑

a

P[ξ3 = a]P[ξ1 + ξ2 = s− u3a]

)2

≤
(∑

a

P[ξ3 = a]2
)(∑

a

P[ξ1 + ξ2 = s− u3a]
2

)

≤
(∑

a

P[ξ3 = a]2
)( ∑

a′∈supp(ξ1+ξ2)

P[ξ1 + ξ2 = a′]2
)

≤ ‖~p‖42,
where the first line is by definition, the second line is Cauchy-Schwarz, and the last line follows by
Young’s convolution inequality. To obtain the inequality with a positive constant cξ > 0, we note
that equality cannot hold in the third line since supp(ξ1+ ξ2) has strictly more positive atoms than
supp(ξ) (since ξ is supported on at least 2 points), and this leads to the desired improvement since
ξ has finite support. �

When ξ is not a translate of an origin-symmetric distribution, the above result can be strength-
ened.

Proposition 5.3. Fix a discrete distribution ξ and δ ∈ (0, 1/2). Suppose that ξ is not a translate
of any origin-symmetric distribution. Then, there exists θ = θ(δ, ξ) > 0 such that for all x ∈
S
n−1 \ Elem(δ),

Lξ(b1x1 + · · · + bnxn, θ) ≤ ‖~p‖22 − θ.

Proof. As before, since Elem(δ) is increasing with δ, it suffices to prove the statement for sufficiently
small δ depending on ξ. By Proposition 5.2, we can choose θ = θ(δ, ξ) > 0 such that for all
x ∈ S

n−1 \ Elem(δ),

Lξ(b1x1 + · · · + bnxn, θ) ≤ ‖~p‖22 − θ.

Hence, it remains to prove the result for x ∈ Elem′(δ)\Elem(δ). By symmetry, it suffices to consider
x ∈ Elem′

1,2(δ). We will bound Lξ(b1x1 + b2x2, θ).
We use an argument similar to Case IV of the proof of Proposition 5.2. Let m′

ξ > 0 be the

smallest positive real for which supp(ξ) ⊆ [−m′
ξ,m

′
ξ]. We have

P[x1ξ1 + x2ξ2 ∈ [s− c, s+ c]] ≤ P

[
1√
2
(ξ1 + ξ2) ∈ [s− c− 2m′

ξδ, s + c+ 2m′
ξδ]

]
.

Once again, by choosing δ and c sufficiently small (depending on ξ), we may assume that 2(c+2m′
ξδ)

is smaller than the minimum distance between two distinct atoms in supp(ξ + ξ′), where ξ, ξ′ are
independent copies of ξ. With this choice of δ and c, the problem reduces to showing that there
exists some cξ > 0 depending only on ξ such that for all s ∈ R,

P[ξ1 + ξ2 = s] ≤ ‖~p‖22 − cξ.
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We have

P[ξ1 + ξ2 = s] =
∑

a

P[ξ1 = a]P[ξ2 = s− a] ≤
(∑

a

P[ξ1 = a]2
)1/2(∑

a

P[ξ2 = s− a]2
)1/2

≤ ‖~p‖22,

where the first inequality is Cauchy-Schwarz. To obtain the improved inequality with cξ > 0, we
note that equality can hold in both inequalities if and only if P[ξ1 = a] = P[ξ2 = s − a], which
implies that ξ is a shift (by s/2) of an origin-symmetric random variable. Since we have assumed
that ξ is not a shift of an origin-symmetric random variable, we see that equality cannot hold, and
using that the support of ξ is finite, we can conclude. �

Using the preceding lemmas, and exploiting the low metric entropy of Cons(δ, ρ) along with
Lemma 3.4, we obtain the following corollary. Note that since ξ may not have mean 0, one must
perform the standard trick of densifying the net of these vectors along the direction 1n (see [23,
Proposition 3.6]). We refer the reader to [7, Proposition 2.7] for the (standard) details.

Corollary 5.4. Fix a discrete distribution ξ. For all δ′ > 0, there exist δ, ρ, ǫ′, n0 > 0, depending
on ξ and δ′, such that for all n ≥ n0,

P[∃x ∈ Cons(δ, ρ) \ Elem′(δ′) : ‖Mn(ξ)x‖2 ≤ ǫ′
√
n] ≤ (‖~p‖22 − ǫ′)n.

Further, if ξ is not a shift of any origin-symmetric random variable, then the same conclusion holds
with Elem(δ′) instead of Elem′(δ′).

Given the previous corollary, it remains to analyze vectors in Elem′(δ′) (or only in Elem(δ′) if ξ
is not a shift of any origin-symmetric random variable), which is the content of the remainder of
this section.

5.1. Two columns. We first handle vectors in Elemi,j(δ
′). By the invariance of the distribution

of Mn(ξ) under permuting columns, it suffices to analyze vectors in Elem1,2(δ
′). We show the

following.

Proposition 5.5. Fix a discrete distribution ξ. There exist δ′, η, n0 > 0 depending on ξ such that
for all n ≥ n0 and t ≤ 1,

P[∃x ∈ Elem1,2(δ
′) : ‖Mn(ξ)x‖2 ≤ t] ≤ ‖~p‖2n2 + (‖~p‖22 − η)n + t exp(−ηn).

We will need the following preliminary lemma, which essentially follows from the seminal work
of Rudelson and Vershynin [19]. Since we were not able to locate the statement we need in the
literature, we provide details below and in [7, Lemma 2.9].

Lemma 5.6. Fix S, s > 0. There exist C ′, c′, n0 > 0 depending on s, S such that the following
holds. For all n ≥ n0, any v ∈ R

n with ‖v‖2 ≥ 1, any κ ∈ (0, 1), and all t ≤ 1, we have

P[∃x ∈ R
n−1 : ‖Ax− v‖2 ≤ t] ≤ C ′n3

√
t exp(κn) + exp(−c′n) exp(κn),

where A is an n× (n− 1) random matrix, each of whose entries is an independent random variable
with sub-Gaussian norm at most S, and such that all but a collection of κn specified entries have
variance at least s.

Proof. By the law of total probability, it suffices to assume that the κn specified entries are de-
terministic, and take the values a1, . . . , aκn. Consider the n × (n − 1) random matrix A′, which
has the same distribution as A, except for the κn specified entries, which are now replaced by
a1 + b1, . . . , aκn + bκn, where b1, . . . , bκn are independent Ber(1/2) random variables.

From a slight generalization of [7, Lemma 2.9] (specifically, one should replace the application of
[19] with an inhomogeneous version due to [15] and replace 2−cn by t, see the proof of Lemma 5.9),
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we get that there exist C ′, c′, n0 depending on s, S such that for all n ≥ n0, for any v ∈ R
n with

‖v‖2 ≥ 1, and for all t ≥ 1, we have

P[∃x ∈ R
n−1 : ‖A′x− v‖2 ≤ t] ≤ C ′n3

√
t+ exp(−c′n).

The conclusion now follows since, with probability 2−κn, b1 = · · · = bκn = 0. �

We now prove Proposition 5.5.

Proof of Proposition 5.5. By Lemma 3.4, we can choose K > 0 depending on ξ such that P[EK ] ≤
‖~p‖3n2 , where

EK := {‖Mn(ξ)− E[ξ]Jn×n‖ ≤ K
√
n}.

For δ′ ∈ (0, 1/4), which will be chosen later in terms of ξ, let

E := {∃x ∈ B
n
2 (e1, δ

′) ∩ S
n−1 : ‖Mn(ξ)Qx‖2 ≤ t},

where Q is the rotation matrix whose bottom-right (n − 2)× (n− 2) minor is the identity matrix,
and the top-left 2× 2 minor is the rotation matrix given by

[
1√
2

1√
2

− 1√
2

1√
2

]
.

Up to scaling δ′ by a constant factor, this is clearly equivalent to the event that we wish to bound.
Note that on the event E , there exists some vector y = e1 + u ∈ R

n with u1 = 0 and ‖u‖2 ≤ 4δ′

such that

‖Mn(ξ)Qy‖2 ≤ 2t.

Let u′ = (u2, . . . , un) ∈ R
n−1, let M̃ (1) be the first column of Mn(ξ)Q, and let M̃ (−1) denote the

n× (n− 1) matrix obtained by removing this column. Then, on the event E ∧ EK , we have

‖M̃ (1) − E[ξ]Jn×n−1u
′‖2 ≤ ‖M̃ (1) + M̃ (−1)u′‖2 + ‖(M̃ (−1) − E[ξ]Jn×n−1)u

′‖2
≤ 2t+K

√
n · 4δ′

≤ 8Kδ′
√
n

for all sufficiently large n, since t ≤ 1.
The key point is the following. Let Ξ := supp(ξ − ξ′)/

√
2 ⊆ R. Let

C := {a ∈ Ξn : ∃λ ∈ R with ‖a− λ1n‖2 ≤ 8Kδ′
√
n},

and for κ = κ(δ′, ξ) > 0, to be chosen later depending on δ′, ξ, and for z ∈ Ξ, let

Cz := C ∩ {a ∈ R
n : | supp(a− z1n)| ≤ κn}.

It is easy to see that

C ⊆
⋃

z∈Ξ
Cz

for an appropriate choice of κ which goes to 0 as δ′ goes to 0. Furthermore,

P[M̃ (1) ∈ Cz] ≤ P[(ξ − ξ′)/
√
2 = z]n exp(cκ,δ′,ξn),

where cκ,δ′,ξ > 0 goes to 0 as κ, δ′ go to 0. Therefore, we have

P[M̃ (1) ∈ C] ≤ ‖~p‖2n2 exp(2cκ,δ′,ξn), and

P[M̃ (1) ∈ C \ C0] ≤ (‖~p‖22 − cξ)
n

for some cξ > 0 depending only on ξ, provided that δ′ (hence κ) is chosen sufficiently small. Here,
for the second inequality, we have used that by Cauchy-Schwarz (as in the proof of Proposition 5.2),
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the unique most probable atom of (ξ − ξ′)/
√
2 is at 0, and is ‖~p‖22, so that any other atom in Ξ has

probability at most ‖~p‖22 − 2cξ for some cξ > 0.
So far, we have shown that for all κ and δ′ sufficiently small (depending on ξ), we have

P[E ] ≤ ‖~p‖3n2 +
∑

a∈C
P[M̃ (1) = a]P[∃u′ ∈ R

n−1 : ‖M̃ (−1)u′ + a‖2 ≤ 2t|M̃ (1)]

≤ ‖~p‖3n2 + (‖~p‖22 − cξ)
n +

∑

a∈C0
P[M̃ (1) = a]P[∃u′ ∈ R

n−1 : ‖M̃ (−1)u′ + a‖2 ≤ 2t|M̃ (1)].

We proceed to bound the third term in the above sum.

Case I: If a = 0, we have P[M̃ (1) = 0] = ‖p‖2n2 .
Case II: If a 6= 0, we have in particular that ‖a‖2 ≥ hξ > 0. The crucial observation is

the following. Given M̃ (1) = a, the entries of the first column of M̃ (−1) are independent random
variables, each of which is distributed as the sum of two i.i.d. copies of ξ/

√
2, conditioned on knowing

their difference. In particular, for the coordinates i ∈ [n] for which ai = 0, the corresponding

coordinate of the first column of M̃ (−1) is distributed as
√
2 · ξ∗, where ξ∗ has the same support

as ξ but takes on atom ai with probability proportional to p2i . Thus, we see that conditioned on

M̃ (1) = a ∈ C0, all entries of M̃ (−1) are independent with sub-Gaussian norm at most Sξ, and all
but at most κn entries have variance at least sξ > 0. Hence, by Lemma 5.6, and by using the lower
bound ‖a‖2 ≥ hξ, we find that there exist C ′, c′, n1 depending on ξ such that for all n ≥ n1,

P[∃u′ ∈ R
n−1 : ‖M̃ (−1)u′ + a‖2 ≤ 2t|M̃ (1)] ≤ C ′n3

√
t exp(κn) + exp(−c′n) exp(κn).

Thus, the contribution of this case is at most

‖~p‖2n2 exp(2cκ,δ′,ξn) exp(κn)

(
C ′n3

√
t+ 2exp(−c′n)

)
.

By the AM-GM inequality, we have ‖~p‖2n2
√
t ≤ t‖~p‖n2+‖~p‖3n2 . The desired conclusion now follows by

taking η > 0 sufficiently small so that ‖~p‖n2 ≤ exp(−2ηn), and then taking δ′ (hence κ) sufficiently
small so that 2cκ,δ′,ξ + κ < min(c′/2, η/2). �

The preceding proposition handles vectors in Elemi,j(δ). If the distribution ξ is a translate of an
origin-symmetric distribution, we also need to handle vectors in Elem′

i,j(δ). In case the distribution
ξ is itself an origin-symmetric distribution, the desired bound follows immediately from the previous
proposition, using that the distribution of any column of Mn(ξ) is invariant under negation in this
case. Therefore, it remains to handle vectors in Elem′

i,j(δ) when ξ is a nonzero translate of an
origin-symmetric distribution, which is done by the next proposition.

Proposition 5.7. Fix a discrete distribution ξ that is a nonzero translate of an origin-symmetric
distribution. There exist δ′, η, n0 > 0 depending on ξ such that for all n ≥ n0 and t ≤ 1,

P[∃x ∈ Elem′
1,2(δ

′) : ‖Mn(ξ)x‖2 ≤ t] ≤ (‖~p‖22 − η)n + t exp(−ηn).

Proof. The proof is essentially the same as that of Proposition 5.5. The lack of the “main term”
‖~p‖22 comes from the fact that e1+e2 is unlikely to be a kernel vector since ξ is not origin-symmetric.

We quickly discuss the main modifications to the proof of Proposition 5.5. Throughout, s 6= 0
denotes a real number such that ξ and s − ξ have the same distribution (such an s exists by our
assumption about ξ). First, the top-left 2× 2 minor of Q is now

[
1√
2

− 1√
2

1√
2

1√
2

]
.
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Next, we let Ξ = supp(ξ + ξ′)/
√
2 and as before, let

C := {a ∈ Ξn : ∃λ ∈ R with ‖a− λ1n‖2 ≤ 8Kδ′
√
n}

and for z ∈ Ξ,

Cz := C ∩ {a ∈ R
n : | supp(a− z1n)| ≤ κn},

where κ = κ(δ′, ξ) > 0 is chosen as in the previous argument. For such a choice of κ, we have

P[M̃ (1) ∈ C] ≤ ‖~p‖2n2 exp(2cκ,δ′,ξn), and

P[M̃ (1) ∈ C \ Cs/√2] ≤ (‖~p‖22 − cξ)
n.

This time the inequalities are derived as follows. We note that, by Cauchy-Schwarz, for any z ∈ Ξ,
P[ξ + ξ′ = z

√
2] ≤ ‖~p‖22, with equality holding if and only if P[ξ = a] = P[ξ′ = z

√
2 − a] for all

a ∈ supp(ξ), which happens if and only if z = s/
√
2.

Using this, we have as before that

P[E ] ≤ ‖~p‖3n2 + (‖~p‖22 − cξ)
n +

∑

a∈Cs/√2

P[M̃ (1) = a]P[∃u′ ∈ R
n−1 : ‖M̃ (−1)u′ + a‖2 ≤ 2t|M̃ (1)].

The most important detail is that for κ ≤ 1/2 (say), every a ∈ Cs/√2 is nonzero, since it has at

least (1−κ)n coordinates equal to s/
√
2. Since s is a nonzero constant depending only on ξ, we can

now use the analysis in Case II of the proof of Proposition 5.5. The final thing to note is that the
distribution of the random variable (ξ − ξ′)/

√
2, conditioned on (ξ + ξ′)/

√
2 = s/

√
2 coincides with

the distribution of (2ξ∗ − s)/
√
2, where ξ∗ has the same support as ξ, but takes on atom ai with

probability proportional to p2i . The remaining details of the proof are essentially the same. �

5.2. One column. We now handle vectors in Elemi(δ
′). Once again, by permutation invariance,

it suffices to handle Elem1(δ
′). We will prove the following.

Proposition 5.8. Fix a discrete distribution ξ. There exist C ′, δ′, η, n0 > 0 depending on ξ such
that for all n ≥ n0 and t ≤ 1,

P[∃x ∈ Elem1(δ
′) : ‖Mn(ξ)x‖2 ≤ t] ≤ pn0 + C ′t exp(−ηn) + (‖~p‖22 − η)n.

The analysis is more delicate than the two column case, since (i) we may have p0 < ‖~p‖∞, but
we still want to isolate p0 as the major contribution coming from these events, and (ii) we are
aiming for an error term of (‖~p‖22 − η)n, which may be smaller than (p0 − η)n. However, given the
preparation above, the rest of the proof is similar to the proof in the sparse Bernoulli case, isolated
in [7, Proposition 2.8], except that we need to replace the application of the results of Rudelson and
Vershynin [19] with the much sharper Proposition 4.4 and Theorem 4.5.

We begin with the following proposition. The analogue in the sparse Bernoulli case is [7,
Lemma 2.9].

Lemma 5.9. Fix a discrete distribution ξ. For any η ∈ (0, 1), there exist C,n0 > 0 depending on
ξ, η for which the following holds. For any v ∈ R

n with ‖v‖2 ≥ 1, we have

P[∃x ∈ R
n−1 : ‖Ax− v‖2 ≤ t] ≤ C · n3t1/2 + (‖~p‖∞ + η)n,

where A is a random n× (n − 1) matrix with independent ξ entries.

Proof. Fix η > 0, and let E be the event whose probability we are trying to control. After potentially
reindexing the coordinates, we may write

A =

[
R

An−1

]
, v =

[
v1
v′

]
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where An−1 is an (n − 1) × (n − 1) matrix and v′ ∈ R
n−1 satisfies ‖v′‖2 ≥ 1/2. Let ES =

{sn−1(An−1) ≤
√
t}. By Theorem 4.5, we have that for all sufficiently large n, there exists a

constant C ′ depending on ξ and η such that

P[ES ] ≤ C ′√nt+ (‖~p‖∞ + η/2)n.

It therefore suffices to bound the probability of E ∧ Ec
S . In such a situation, we see that y :=

(An−1)
−1v′ is unique. Let y0 := y/‖y‖2, and for δ, ρ, L to be chosen momentarily, let

EU = {y0 ∈ Cons(δ, ρ) ∨ Tξ(y0, L) ≥ (‖~p‖∞ + η/2)n}.
By Proposition 4.4, we can choose δ, ρ, L > 0 depending on ξ and η so that

P[EU ] ≤ (‖~p‖∞ + η/2)n.

Hence, it suffices to bound the probability of E ∧ Ec
S ∧ Ec

U . Let x ∈ R
n−1 be a vector certifying this

event. Then, we have for all sufficiently large n that

‖An−1x− v′‖2 ≤ t =⇒ ‖x− y‖2 ≤ t1/2, and

|Rx− v1| ≤ t =⇒ |Ry − v1| ≤ t+ nt1/2.

Furthermore, since ‖v‖2 ≥ 1, we have ‖y‖2 ≥ 1/C ′′n2, for some constant C ′′ depending on ξ.
We now fix a realization of An−1 satisfying Ec

S ∧ Ec
U . In particular, this fixes y, y0 satisfying the

conditions in Ec
U and with ‖y‖2 ≥ 1/C ′′n2. Now, we use the independence of R and An−1 and the

fact that E implies

|Ry − v1| ≤ t+ nt1/2 ≤ 2nt1/2.

Since

Tξ(y0, L) < (‖~p‖∞ + η/2)n

and ‖y‖2 ≥ 1/C ′′n2, we find that the desired probability is bounded by

2LC ′′n3t1/2 + L(‖~p‖∞ + η/2)n. �

Now we are ready to conclude Proposition 5.8.

Proof of Proposition 5.8. A completely identical argument to the proof of Proposition 5.5 shows
that for a sufficiently large constant K depending on ξ, and for Ξ := supp(ξ) ⊆ R,

P[E ] ≤ p3n0 +
∑

a∈C
P[M (1) = a]P[∃u′ ∈ R

n−1 : ‖M (−1)u′ + a‖2 ≤ 2t],

where M (1) denotes the first column of Mn, M (−1) denotes the n × (n − 1) matrix formed by
excluding this column, and

C = {a ∈ Ξn : ∃λ ∈ R with ‖a− λ1n‖2 ≤ 8Kδ′
√
n}.

We want to bound the contribution of the sum on the right hand side.
Case I: If a = 0, P[M (1) = a] = pn0 .
Case II: If a 6= 0, then ‖a‖2 ≥ hξ > 0. Hence, by Lemma 5.9, there is a constant C > 0

depending on ξ, η such that

P[∃u′ ∈ R
n−1 : ‖M (−1)u′ + a‖2 ≤ 2t] ≤ Cn3

√
t+ (‖~p‖∞ + η/2)n.

Moreover, a similar (but easier) argument as in the proof of Proposition 5.5 shows that

P[M (1) ∈ C] ≤ ‖~p‖n∞ exp(cξ,δ′n),

where cξ,δ′ goes to 0 as δ′ goes to 0.
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Hence, we see that the contribution to the sum from this case is bounded by

‖~p‖n∞ exp(cξ,δ′n) ·
(
Cn3

√
t+ (‖~p‖∞ + η/2)n

)
.

By choosing δ′ sufficiently small depending on ξ and η, and using ‖~p‖2∞ ≤ ‖~p‖22−cξ for some cξ > 0,
we see as before (using the AM-GM inequality) that the above quantity is at most

t exp(−η′n) + (‖~p‖22 − η′)n

for a sufficiently small η′ depending on ξ and η. This completes the proof. �

The proof of Theorem 1.5 is now immediate.

Proof of Theorem 1.5. First, assume that ξ is not a shift of an origin-symmetric random variable.
We choose δ′ small enough so that the conclusions of Propositions 5.5 and 5.8 are satisfied. By the
union bound, this shows that the contribution of Elem(δ′) to the probability is at most

nP[Ee1 ] +
(
n

2

)
P[Ee1−e2 ] + (t+ ‖~p‖2n2 )e−ηn,

for a sufficiently small η > 0 depending on ξ, and for all sufficiently large n depending on ξ. Now,
we can conclude using Corollary 5.4.

Next, if ξ is a nonzero shift of an origin-symmetric random variable, we do the same, except we
require Propositions 5.5, 5.7, and 5.8 and then conclude with Corollary 5.4.

Finally, we consider the case when ξ is an origin-symmetric random variable. As before, we begin
by using Propositions 5.5 and 5.8. The only thing to note is that, by the symmetry of ξ about the
origin, for all i 6= j, P[Eei−ej ] = P[Eei+ej ]. Hence, by the union bound, the contribution of Elem′(δ′)
to the probability is at most

nP[Ee1] +
(
n

2

)
(P[Ee1−e2 ] + P[Ee1+e2 ]) + (t+ ‖~p‖2n2 )e−ηn.

Now, we can conclude using Corollary 5.4. �

6. Deduction of Theorems 1.2 and 1.4

Given the results in Sections 3 and 5, the deduction of Theorems 1.2 and 1.4 is immediate.
Fix a discrete distribution ξ, and let δ, ρ, η, n0 > 0 be parameters depending on ξ coming from
Theorem 1.5. Then, for the proof of Theorem 1.4, let ǫ > 0 be as in the statement of the theorem
(it suffices to assume that ǫ < 1), and for the proof of Theorem 1.2, let ǫ > 0 be such that

exp(2ǫ−H(~p)) < ‖~p‖22,
which is possible since, by the weighted AM-GM inequality, we have

exp(−H(~p)) =
∏

i

ppii ≤
∑

i

p2i = ‖~p‖22,

and equality holds if and only if ξ is uniform on its support.
Let C = C3.8(ξ, δ, ρ, ǫ/2). By taking Cξ,ǫ in Theorem 1.4 and Cξ in Theorem 1.2 to be at least

C, we may restrict our attention to 0 ≤ t ≤ 1/C (since for t ≥ 1/C, the right-hand sides of
Theorems 1.2 and 1.4 are at least 1). By Theorem 1.5 and Theorem 3.8, for all 0 ≤ t ≤ 1/C, we
have

P[sn(Mn(ξ)) ≤ t/
√
n] ≤ P

[
inf

x∈Cons(δ,ρ)
‖Mn(ξ)x‖2 ≤ t/

√
n

]
+ P

[
inf

y∈Cons(δ,ρ)
‖yMn(ξ)‖2 ≤ Ct

]

+ P

[
inf

x∈Noncons(δ,ρ)
‖Mn(ξ)x‖2 ≤ t/

√
n ∧ inf

y∈Cons(δ,ρ)
‖yMn(ξ)‖2 > Ct

]
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≤ 2nP[Ee1 ] + (n2 − n)(P[Ee1−e2 ] + P[Ee1+e2 ]) + 2(Ct+ ‖~p‖2n2 )e−ηn

+ Ct+ exp((ǫ/2 −H(~p))n)

for all sufficiently large n. Here, we have used that Mn(ξ) and Mn(ξ)
⊺ have the same distribution.

For Theorem 1.2, we are done by our choice of ǫ.
For Theorem 1.4, we note that by Cauchy-Schwarz (as in Proposition 5.2), P[Ee1+e2 ] ≤ P[Ee1−e2 ]

and recall from above that exp(−H(~p)) ≤ ‖~p‖22. Using this, we can bound the right hand side of
the above computation by

2Ct+ 2nP[Ee1 ] + 2n2 exp(ǫn/2)P[Ee1−e2 ].

The desired conclusion follows since 2n2 exp(ǫn/2) ≤ (1 + ǫ)n for all ǫ < 1 and n sufficiently large.
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