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ON THE SMOOTHED ANALYSIS OF THE SMALLEST SINGULAR VALUE

WITH DISCRETE NOISE

VISHESH JAIN, ASHWIN SAH, AND MEHTAAB SAWHNEY

Abstract. Let A be an n × n real matrix, and let M be an n × n random matrix whose entries
are i.i.d sub-Gaussian random variables with mean 0 and variance 1. We make two contributions
to the study of sn(A+M), the smallest singular value of A+M .
(1) We show that for all ǫ ≥ 0,

P[sn(A+M) ≤ ǫ] = O(ǫ
√
n) + 2e−Ω(n)

,

provided only that A has Ω(n) singular values which are O(
√
n). This extends a well-known

result of Rudelson and Vershynin, which requires all singular values of A to be O(
√
n).

(2) We show that any bound of the form

sup
‖A‖≤nC1

P[sn(A+M) ≤ n
−C3 ] ≤ n

−C2

must have C3 = Ω(C1

√
C2). This complements a result of Tao and Vu, who proved such

a bound with C3 = O(C1C2 + C1 + 1), and counters their speculation of possibly taking
C3 = O(C1 + C2).

1. Introduction

Recall that for an n× n matrix A, its singular values s1(A) ≥ · · · ≥ sn(A) are defined to be the

eigenvalues of
√
ATA arranged in non-decreasing order. Recall also that the largest and smallest

singular values admit the following characterization:

s1(A) = sup
x∈Sn−1

‖Ax‖2 = ‖A‖;

sn(A) = inf
x∈Sn−1

‖Ax‖2 = ‖A−1‖−1,

where S
n−1 denotes the unit sphere in Euclidean space R

n, ‖·‖2 denotes the Euclidean norm in R
n,

and ‖·‖ denotes the spectral norm of the matrix.
The extreme singular values s1(A), sn(A), and the condition number

κ(A) := s1(A)/sn(A) = ‖A‖ · ‖A‖−1

are especially important in applications. In particular, consider the fundamental problem of solving
the linear system Ax = b, where A ∈ R

n×n and b ∈ R
n are given. Suppose that there is an error δb

in inputting b, which leads to an error δx in the output. Then,

‖δx‖2/‖x‖2
‖δb‖2/‖b‖2

=

(‖A−1(δb)‖2
‖δb‖2

)(‖Ax‖2
‖x‖2

)

≤ κ(A),

which motivates defining the loss of precision [16] as L(A) := log κ(A).

1.1. Smoothed analysis. In their celebrated work on smoothed analysis [17], Spielman and Teng
sought to understand why algorithms with poor worst-case performance are successful in practice.
In the context of solving the linear system Ax = b, their program amounts to the following: even
if the desired input matrix A is ill-conditioned (i.e, has a large condition number, and hence, large
loss of precision), it is likely that the computer will actually work with some small perturbation
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A + M , where M represents the effect of random noise. Therefore, if we can show that for any
fixed A ∈ R

n×n, the random matrix A +M is well-conditioned (i.e., has small condition number)
with high probability, this would help explain why the large condition number of A does not lead
to correspondingly bad performance in practice.

Since the operator norm of a random matrix M with independent entries (with sufficiently light
tails) can be controlled using standard concentration techniques (cf. [2,22]) (this immediately implies
control on the operator norm of A + M using the triangle inequality), it follows that they key
challenge in controlling the condition number of A + M is in understanding the behavior of the
smallest singular value of A+M . In this direction, Sankar, Spielman, and Teng [15] considered the
case when the entries of M are i.i.d Gaussian random variables with mean 0 and variance 1, and
showed that for any A ∈ R

n×n and for any ǫ ≥ 0,

P[sn(A+M) ≤ ǫ] ≤ Cǫ
√
n, (1.1)

for C ∼ 2.35 (recently, the constant C was improved by Banks et al. to the optimal value of 1 in [3]).
This result is almost best possible, in the sense that when A = 0, it was shown by Edelman [5] that
for sufficiently small ǫ ≥ 0,

P[sn(M) ≤ ǫ] ≥ cǫ
√
n,

where c > 0 is an absolute constant (in fact, c can be taken arbitrarily close to 1 by further restricting
the range of ǫ).

1.2. Smallest singular value of random matrices. The proof of Sankar, Spielman, and Teng
heavily exploited the orthogonal invariance of the Gaussian distribution, and extending their result
to other distributions, especially discrete distributions, is very challenging, and has attracted much
attention in the past fifteen years. Notably, in a seminal work, Rudelson and Vershynin [12] showed
that for a random matrix M whose entries are i.i.d copies of a sub-Gaussian random variable with
variance 1 and mean 0 (recall that a random variable X is said to be sub-Gaussian if its sub-Gaussian
norm, defined by ‖X‖ψ2 := inf{s > 0 : E[exp(X2/s2)] ≤ 2}, is finite),

P[sn(M) ≤ ǫ] ≤ Cǫ
√
n+ 2exp(−cn), (1.2)

where C, c > 0 depend only on the sub-Gaussian norm of the distribution. We note that this result
is almost best-possible; the first summand has the optimal dependence on ǫ and n as explained
before, whereas the second summand is necessary to account for the probability that the random
matrix is singular (for instance, if each entry of M is independently ±1 with probability 1/2 each,
then any two given rows are equal with probability 2−n).

Since the appearance of [12], considerable work has been devoted to relaxing the assumptions
in the work of Rudelson and Vershynin, and establishing a bound of the form (1.2) in greater
generality. For instance, it was very recently shown by Livshyts, Tikhomirov, and Vershynin [8] (see
also the references there for previous work) that (1.2) holds under only the assumption that the
entries of M are independent, have mean 0, have uniformly bounded variance, and are uniformly
anti-concentrated (in fact, their result is a bit more general, as we will discuss later). In the setting
of smoothed analysis, Tikhomirov [20] showed that for any A ∈ R

n×n and for all ǫ > 0,

P[sn(A+M) ≤ ǫ] ≤ Cǫ
√
n,

if the rows of M are independent continuous random vectors satisfying certain technical assumptions
(in particular, his result allows the rows of M to be independent centered log-concave isotropic
random vectors). We mention that when the entries of M are independent continuous random
variables with uniformly bounded densities, a bound of the form (1.1), with the optimal

√
n replaced

by the sub-optimal n, is rather easy to prove (cf. [20]); for symmetric matrices M whose distributions
on and above the diagonal are independent continuous random variables with uniformly bounded
densities and symmetric matrices A, a bound of the form (1.1) was obtained by Farrell and Vershynin
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[6], except that
√
n is replaced by the sub-optimal n2 (in the special case when M is drawn from the

appropriately normalised Gaussian Orthogonal Ensemble, the optimal
√
n dependence was obtained

by Bourgain [4]).

1.3. Smoothed analysis with discrete noise. Since the noise/randomness encountered in prac-
tice (e.g., in digital devices) is typically discrete, it is natural to try to understand analogues of (1.1)
when the distribution of the entries of M is allowed to have atoms. This was first considered by Tao
and Vu [18], who showed that if the entries of M are i.i.d copies of a (possibly complex) random
variable with mean 0 and variance 1, then for any constants C1, C2 > 0, there exists a C3 > 0 such
that

sup
‖A‖≤nC1

P[sn(A+M) ≤ n−C3 ] ≤ n−C2 . (1.3)

Recently, it was shown by Jain [7] that a bound of this nature continues to hold under the more

general condition ‖A‖ ≤ exp(nc), and for all target probabilities larger than exp(−nc
′
), where

c, c′ > 0 are small absolute constants. The best-known dependence of C3 on C1, C2 was obtained in
another work by Tao and Vu [19], who showed that

sup
‖A‖≤nC1

P[sn(A+M) ≤ n−2(C2+2)C1+1/2] ≤ O(n−C2+o(1) + P[‖M‖ ≥ nC1 ]). (1.4)

Perhaps surprisingly, it turns out that the dependence of the smallest singular value on C1 is not
an artifact of the proof, and is necessary in general, as the following unpublished example due to
Rudelson shows (a similar example appears in independent work of Tao and Vu [19]).

Example 1.1. Let k ∈ [n], and let A = diag(L,L, . . . , L, 0, 0, . . . , 0), where the first n − k entries
are L, and the last k entries are 0. Let the entries of M be independent lazy Rademacher random
variables (i.e., each entry independently takes on the value 0 with probability 1/2, −1 with proba-
bility 1/4, and 1 with probability 1/4). Let (v1, . . . , vn) ∈ S

n−1 be orthogonal to the first n−1 rows

of A+M . It is easily seen that
√

v21 + · · · + v2n−k = O(
√
n/L). Then, since the last k coordinates

of the last row are 0 with probability 2−k, it follows that with probability at least 2−k, the smallest
singular value of A+M is at most O(

√
n/L).

1.4. Our results. Note that Example 1.1 rules out the possibility of a bound of the form (1.2)
for general A + M , even when the entries of M are i.i.d sub-Gaussian random variables. On the
other hand, such a bound is known to hold (restricting ourselves to the case when M has i.i.d
sub-Gaussian entries with mean 0 and variance 1) if ‖A‖ = O(

√
n) [12], and more generally, if

∑n
i=1 si(A)

2 = O(n2) [8].
Our first main result shows that when the entries of M are i.i.d sub-Gaussian random variables

with mean 0 and variance 1, (1.2) continues to hold for a much wider class of A +M . In order to
state the result, we need the following definition.

Definition 1.2. Let m ≤ n ∈ N and K ≥ 0. An m× n matrix A has K-rank r if it has exactly r
singular values of size at least K

√
n.

Theorem 1.3. Let K > 0 and η ∈ (0, 1). Let ξ be a sub-Gaussian random variable with mean 0
and variance 1, and let M be an n×n random matrix, each of whose entries is an independent copy
of ξ. Then, for any A ∈ R

n×n with K-rank at most (1− η)n, we have

P[sn(A+M) ≤ ǫ] ≤ Cǫ
√
n+ 2e−cn, (1.5)

where C, c > 0 depend only on K, η, and the sub-Gaussian norm of ξ.
Remark.
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(1) In the setting where M has i.i.d sub-Gaussian entries with mean 0 and variance 1, the condi-
tion that the K-rank of A is at most (1−η)n is a relaxation of the condition

∑n
i=1 si(A)

2 =
O(n2) appearing in [8] (although, note that the noise M in [8] may be inhomogeneous, and
is allowed to have much heavier tails). Notably, it encompasses and generalizes the class of
low-rank matrices, which are especially important in applications (see, e.g., [1, 10]).

(2) The dependence of c on η is necessary in general. Indeed, Example 1.1 provides an example
of A and M such that A has 0-rank n− k, and such that on an event of probability at least
2−k, sn(A+M) depends on ‖A‖.

(3) The only place where sub-Gaussianity of ξ is used in our proof is to guarantee that ‖M‖ =
O(

√
n) except with exponentially small probability. It is well-known [2] that ‖M‖ = O(

√
n)

with high probability, as long as the entries of M have uniformly bounded fourth moment.
Consequently, Theorem 1.3 continues to hold under the more general assumption that ξ is
a random variable with mean 0, variance 1, and finite fourth moment, provided we add the
term (1− P[‖M‖ = O(

√
n)]) to the right-hand side of (1.5).

(4) In [21], it was shown by Tikhomirov that if M ′ is an N × n matrix (N ≥ (1 + δ)n) with
i.i.d uniformly anti-concentrated entries, then for any N × n matrix A′, P[sn(A′ + M ′) ≤
u
√
N ] ≤ 2 exp(−vN), where u, v depend only on δ > 0 and the uniform bound on the

anti-concentration. Compared to [21], the main innovation in our work (Lemma 2.14) is the
consideration of the arithmetric structure of normal vectors to random hyperplanes without
any a priori control on the operator norm (this is unnecessary in the rectangular case).

Next, we study the influence of A on the lower tail of sn(A +M). As noted above, in the case
when ‖A‖ ≤ nC1 and the target probability is n−C2 , the best-known lower bound on the smallest
singular value due to Tao and Vu (1.4) is of the form n−O(C1C2+C1+1). It is natural to ask whether
this dependence may be improved, in particular, if the term C1C2 may be replaced by C1 + C2

(this seems to have been speculated by Tao and Vu in [19]). Our second main result shows that
a dependence of the form O(C1 + C2) is not possible, and in fact, that the term C1C2 cannot be
replaced by anything asymptotically smaller than C1

√
C2.

Theorem 1.4. Let Rn be an n×n random matrix, each of whose entries is an independent copy of
a lazy Rademacher random variable (i.e., 0 with probability 1/2, and ±1 with probability 1/4 each).
There exist positive constants K,C > 0 for which the following holds. Let L ≥ 2K

√
n, and let

A = diag(L, . . . , L, 0). Then, for each positive integer t and for all n sufficiently large (depending
only on t), we have

P

[

sn(A+Rn) ≤ C

(

K
√
n

L

)t]

≥ (4C)−tK− (t−1)(t−2)
2 (log 2t)1−tn− t(t−1)

4 .

Remark. The dependence of the probability on n should be sharp. However, establishing this would
essentially require a joint local central limit theorem involving certain low-degree polynomials. More-
over, such a result would likely allow extension to the case when the entries of Rn are Rademacher
random variables (as we will see, our proof is considerably simplified by using the 2-divisibility of
lazy Rademacher random variables).

1.5. Acknowledgements. We thank Yang P. Liu for discussions related to the relevant convex
geometry and Mark Rudelson for valuable comments on the manuscript.

2. Proof of Theorem 1.3

The proof of Theorem 1.3 follows the (by now) standard geometric framework pioneered by
Rudelson and Vershynin [12]. The key deviation in our argument is in showing that a unit normal
vector to the random hyperplane spanned by the (say) first n−1 rows of the matrix is arithmetically
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very unstructured (in the sense of having exponentially large Least Common Denominator (LCD)).
The union bound argument in [12] or its refinement in [8] is inadequate here since the matrix A
may be arbitrarily large. Our innovation (Lemma 2.14) is to execute a union bound argument by
covering level sets of the LCD by certain oblique convex sets adapted to the geometry of A, which
exploits the fact that it suffices to cover only those vectors v which are “approximately orthogonal”
to the large singular vectors of A.

Throughout this section, we will fix K and η as in the statement of Theorem 1.3, and let B
and N denote the (n − 1) × n matrices consisting of the first n − 1 rows of A and M respectively.
Note that the B has at least ηn/2 singular values smaller than K

√
n, as is readily seen by applying

the Cauchy interlacing theorem to the matrix AAT and its minor BBT . Throughout, we will let
V ⊆ R

n−1 denote the span of the bottom ηn/2 left-singular vectors of B (note that the singular
values corresponding to these singular vectors are all at most K

√
n). Moreover, PV will denote the

orthogonal projection operator from R
n−1 onto V .

We will use the decomposition of the unit sphere into compressible and incompressible vectors,
formalized by Rudelson and Vershynin [12].

Definition 2.1 (Compressible and Incompressible vectors, [12, Definition 3.2]). Fix δ, ρ ∈ (0, 1).
A vector x ∈ R

N is said to be sparse if | supp(x)| ≤ δn. A vector x ∈ S
N−1 compressible if it is

within Euclidean distance ρ of a sparse vector, and incompressible otherwise. We denote the set of
compressible and incompressible vectors by CompN (δ, ρ) and IncompN (δ, ρ) respectively, dropping
the subscript N when the underlying dimension is clear from context.

We will also need the notion of the Lévy concentration function.

Definition 2.2 (Lévy concentration function). For a random variable X and a real number r ≥ 0,
we define the Lévy concentration function of X at radius r by

L(X, r) = sup
y∈R

P[|X − y| ≤ r].

First, we show that any fixed vector v ∈ S
n−1 has exponentially small probability of being in

the kernel of the first n − 1 rows of (A +M). In fact, we will show something stronger: for every
fixed vector v ∈ S

n−1, its image under PV (B+N) has norm Ω(
√
n) except with exponentially small

probability; this strengthening will be crucial for the union bound argument in Lemma 2.4.
The next lemma follows immediately from [21, Corollary 6], which is a direct consequence of the

main result in [14]. For sub-Gaussian random variables, it follows easily from the Hanson-Wright
inequality (straightforwardly modifying the proofs of [13, Corollary 2.4] and [13, Corollary 3.1]); we
include the deduction for the reader’s convenience.

Lemma 2.3 (Invertibility on a single vector). There exists c2.3 > 0 depending only on η and the
sub-Gaussian norm of ξ such that for any v ∈ S

n−1,

P[‖PV (B +N)v‖2 ≤ c2.3
√
n] ≤ 2e

−c2.3n.

Proof. Let N and N ′ be independent copies of N . Then

P[‖PV (B +N)v‖2 ≤ √
ηn/4]2 = P[‖PV (B +N)v‖2 ≤

√
ηn/4 ∩ ‖PV (B +N ′)v‖2 ≤ √

ηn/4]

≤ P[‖PV (N −N ′)v‖2 ≤ √
ηn/2].

Note that the coordinates of (N −N ′) are i.i.d sub-Gaussian random variables with variance 2, and
sub-Gaussian norm depending only on that of ξ. In particular,

E[‖PV (N −N ′)v‖22] = 2Tr(P T
V PV ) ≥ ηn.
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The result now follows from the Hanson-Wright inequality applied to the matrix PV and vector
(N −N ′)v (see [13, Theorem 2.1]), which shows that

P[|‖PV (N −N ′)v‖2 − 2Tr(P T
V PV )| > t] ≤ 2 exp(cξt

2),

where cξ depends only on the sub-Gaussian norm of ξ. �

Given this, we can quickly derive invertibility on compressible vectors.

Lemma 2.4 (Invertibility on compressible vectors). There exist δ2.4, ρ2.4, c2.4 > 0 depending only
on η, K, and the sub-Gaussian norm of ξ for which

P[∃v ∈ Compδ2.4,ρ2.4
: ‖(B +N)v‖2 ≤ c2.4

√
n] ≤ 2e

−c2.4n.

Proof. The key point is that, by definition of V , ‖PV B‖ ≤ K
√
n. Since ξ has bounded sub-

Gaussian norm, it follows (cf. [12, Lemma 2.4]) that there exists K ′, depending only on K and the
sub-Gaussian norm of ξ, for which the event EK ′ = {‖PV (B+N)‖ ≤ K ′√n} occurs with probability
at most 2e−cn, for some c > 0 depending only on the sub-Gaussian norm of ξ.

Let δ, ρ, c′ > 0, and consider an ǫ-net N of Compδ,ρ. Then, we have

P[∃v ∈ Compδ,ρ : ‖(B +N)v‖2 ≤ c′
√
n]

≤ P[EK ′] + P[∃v ∈ Compδ,ρ : ‖PV (B +N)v‖2 ≤ c′
√
n ∧ EcK ′ ]

≤ 2e−cn + P[∃v ∈ N : ‖PV (B +N)v‖2 ≤ (c′ +K ′ǫ)
√
n].

Therefore, by using Lemma 2.3, we can conclude, provided we first choose c′, ǫ small enough so that
c′ +K ′ǫ < c2.3 (this is clearly possible), and then choose δ, ρ small enough so that there is an ǫ-net
N of Compδ,ρ of size at most exp(c2.3n/2) (this is possible by a standard volumetric bound on the
size of ǫ-nets of Compδ,ρ, cf. [11, Lemma 4.3]). We omit the standard details. �

For invertibility on incompressible vectors, we will use the following reduction due to Rudelson
and Vershynin.

Lemma 2.5 (Invertibility via distance, [12, Lemma 3.5]). Let A be a random n×n matrix. Let Xi

denote the column vectors of A, and let Hk = span(X−k) denote the span of all columns except for
the kth column. Then for every δ, ρ ∈ (0, 1) and ǫ ≥ 0 we have that

P

[

inf
x∈Incomp(δ,ρ)

‖Ax‖2 ≤ ǫρn−1/2

]

≤ 1

δn

n
∑

k=1

P[dist(Xk,Hk) ≤ ǫ].

Given this, our goal is to find a uniform (in k ∈ [n]) upper bound on P[dist(Xk,Hk) ≤ ǫ].
We will need the crucial notion of the Least Common Denominator due to Rudelson and Ver-

shynin.

Definition 2.6 (Least common denominator, cf. [11]). For a vector v ∈ R
N , γ ∈ (0, 1), and α > 0,

we define

LCDα,γ(v) = inf{θ > 0 : dist(θv,ZN ) < min(γ‖θv‖, α)}.

We collect some useful properties of the LCD.

Lemma 2.7 (Lower bound on LCD, cf. [11, Lemma 6.1]). Fix δ, ρ > 0. There exist γ, λ > 0
(depending only on δ, ρ) such that for any v ∈ IncompN (δ, ρ) and for all α > 0, we have LCDα,γ(v) ≥
λ
√
n.
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Lemma 2.8 (Anti-concentration via LCD). For any γ ∈ (0, 1), there exist c2.8(γ), C2.8(γ) > 0

depending only on γ and the sub-Gaussian norm of ξ for which the following holds. Let v ∈ S
N−1.

Then, for every α > 0 and ǫ ≥ 0,

L
(

n
∑

i=1

viξi, ǫ

)

≤ C2.8(γ)ǫ+
C2.8(γ)

LCDα,γ(v)
+ C2.8(γ)e

−c2.8(γ)α
2

,

where ξ1, . . . , ξn denote i.i.d copies of ξ.

Given Lemma 2.8, a good upper bound on P[dist(Xk,Hk) ≤ ǫ] may be obtained by showing
that it is exponentially unlikely that any unit normal to Hk has subexponential LCD. The proof
of Rudelson and Vershynin in the centered sub-Gaussian case accomplishes this by decomposing
the set of incompressible vectors into level sets of the LCD (Definition 2.9), and then finding, for
each level set, a net (at appropriate scale) of small enough size to survive a union bound argument.
We note that this step requires considerable care, and there is not much room available in the
entropy-energy trade-off.

Definition 2.9 (Level sets of LCD). Let D, γ, µ > 0. We define

SD = {x ∈ S
n−1 : D ≤ LCDµ

√
n,γ(x) ≤ 2D}.

In our setting, such a net argument for SD has no hope of working, since the operator norm
of A + M can be arbitrarily large. The key idea to overcome this is to exploit the fact that for
a sufficiently large constant K ′, the following holds except with exponentially small probability:
‖Bv‖2 > 2K ′√n implies that ‖(B +N)v‖2 > K ′√n. This motivates the following definition.

Definition 2.10 (Restricted level sets of the LCD). For K ′ > 0, let

GK ′ = {‖x‖2 ≤ 1 ∩ ‖Bx‖2 ≤ 2K ′√n},
and let

S′
D(K

′) = SD ∩GK ′ .

In order to find an efficient net for S′
D(K

′), we will use the following two easy geometric obser-
vations repeatedly. Note that the remainder of the proofs, parallelepipeds will always be “right-
parallelepipeds” or more colloquially “boxes”.

Lemma 2.11. There exists an absolute constant C2.11 ≥ 1 such that any ellipsoid with semiaxes ℓi
can be covered by at most Cn

2.11 parallelepipeds with widths ℓi/
√
n in the direction of the semiaxes.

Proof. This follows from a standard volumetric argument. �

Lemma 2.12. The sets S1 = {‖x‖2 ≤ 1 ∩ ‖Jx‖2 ≤ 1} and S2 = {‖x‖22 + ‖Jx‖22 ≤ 1} satisfy

S2 ⊆ S1 ⊆
√
2S2.

Proof. This is immediate. �

We will also need the following elementary lattice counting fact.

Lemma 2.13. The number of integer lattice points in a right-parallelepiped with dimensions ℓi ≥ 1
is at most Cn

2.13
∏n
i=1 ℓi, where C2.13 ≥ 1 is an absolute constant.

Remark. Note the parallelepiped does not need to be axis-aligned or centered.

Proof. By expanding the dimensions to ⌈ℓi⌉ ≤ 2ℓi, and by decomposing the region into unit cubes
whose axes are aligned with those of the parallelepiped, it suffices to show that there is an absolute
constant C ≥ 1 such that any rotated unit cube has at most Cn integer lattice points in it. Since any
rotated unit cube is contained in a ball of radius

√
n, it suffices to show that any ball (not necessarily

centered) of radius
√
n contains at most Cn integer lattice points, for an absolute constant C ≥ 1,

which follows from a standard well-known volumetric argument. �
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We are now ready to state and prove our key new ingredient.

Lemma 2.14 (Nets of level sets of LCD). Fix λ,K ′ > 0. There is C2.14 = C2.14(λ,K,K ′) for
which the following holds. For all sufficiently small µ > 0 (depending on λ) and for all D ≥ λ

√
n,

there exists a net N of cardinality at most µ−(1−η/2)nD2(C2.14D/
√
n)n with the following property:

on the event ‖N‖ ≤ K ′√n, for any v ∈ S′
D(K

′), there is w ∈ N satisfying

‖(B +N)(v − w)‖2 ≤ µn

D
.

Proof. For lightness of notation, we will denote S′
D(K

′) by S′
D. We denote the singular values

of B, in decreasing order, by σ1(B), . . . , σn(B), and the corresponding unit right-singular vectors
by b1, . . . , bn. In particular, b1, . . . , bn form an orthonormal basis of Rn. Note that since B is an
(n− 1)× n matrix, we must have σn(B) = 0, and so bn is in the kernel of B. The proof will make
use of a few different geometric objects; we collect their definitions here for ease of reference:

• C denotes the n-dimensional cube of width µ/D centered at 0, whose axes are aligned with
b1, . . . , bn.

• G denotes the region given by {x ∈ B
n
2 : ‖Bx‖2 ≤ 2K ′√n}.

• Q denotes the ellipsoid given by {4K ′2n‖x‖22 + ‖Bx‖22 ≤ 8K ′2n}.
• C′ denotes the right-parallelepiped centered at 0 whose axes are aligned with b1, . . . , bn, and

whose width along bi is
√

8K ′2

σi(B)2 + 4K ′2n
;

note that C′ ⊆ Q.
• C′′ denotes the right-parallelepiped centered at 0 whose axes are aligned with b1, . . . , bn, and

whose width along bi is
√

8K ′2

σi(B)2 + 4K ′2n
+

1

D
;

note that C′ + µ−1C ⊆ C′′.
• C′′′ denotes the right-parallelepiped centered at 0 whose axes are aligned with b1, . . . , bn,

and whose width along bi is

1

min(D,max(σi(B),
√
n))

Step 1: From the definition of LCD, it follows that SD admits a (2µ
√
n/D)-net in Euclidean

norm, formed by the points

P =

{

p

‖p‖2
: p ∈ (Zn \ {0}) ∩ B

n
2 (0, 3D)

}

=

{

p

‖p‖2
: p ∈ (Zn \ {0}) ∩ (Bn2 (0, 3D) \ Bn2 (0, 3D/2))

}

.

For a concrete reference for the first equality, see [11, Lemma 7.2]. For the second equality, simply
note that for any p ∈ (Zn \ {0}) ∩ B

n
2 (0, 3D/2), there exists some ℓp ∈ Z \ {0} such that ℓp · p ∈

(Zn \ {0}) ∩ (Bn2 (0, 3D) \Bn2 (0, 3D/2)). Since ℓp · p/‖ℓp · p‖2 = p/‖p‖2, both p and ℓp · p map to the
same point in P, so that we may ignore the contribution of p without any loss.

Hence, we see that SD ⊆ P + B
n
2 (0, 2µ

√
n/D), so that

S′
D ⊆ (P + B

n
2 (0, 2µ

√
n/D)) ∩ G.

In the remainder of the proof, we will cover the region on the right hand side by at most

µ−(1−η/2)nD2(CD/
√
n)n

8



translates of
µ
√
n

4K ′D
Q;

this clearly suffices since on the event ‖N‖ ≤ K ′√n, for any v,w ∈ µ
√
nQ/4K ′D, we have ‖(B +

N)(v − w)‖2 ≤ µn/D.
Step 2: Since for any p ∈ (Zn \ {0}) ∩ B

n
2 (0, 3D), ‖p‖22 ∈ Z ∩ [1, 9D2], it follows that by paying

an overall multiplicative factor of 9D2 in the size of the final net, it suffices to fix T ∈ [3D/2, 3D]
and bound (uniformly in T ) the number of translates of µ

√
nQ/4K ′D needed to cover the region

(PT + B
n
2 (0, 2µ

√
n/D)) ∩ G,

where

PT =

(

1

T
Z
n

)

∩ B
n
2 .

Moreover, since B
n
2 (0, 2µ

√
n/D) can be covered by (2C2.11)

n translates of C (Lemma 2.11), it
suffices after paying a multiplicative factor of (2C2.11)

n to bound (uniformly in T and y ∈ R
n) the

number of translates of µ
√
nQ/4K ′D needed to cover the region

(y + PT + C) ∩ G.
Moreover, by Lemma 2.12, it suffices instead to consider the larger region

(y + PT + C) ∩ Q.

Note that covering Q by translates of µ
√
nQ/4K ′D requires µ−n(CD/

√
n)n translates, which is

bigger by a factor of µηn/2 compared to our desired conclusion; therefore, we must carefully exploit
the first term in the intersection.

Step 3: By noting that the matrix (4K ′2nI+BTB)/(8K ′2n) has unit right-eigenvectors b1, . . . , bn
with corresponding eigenvalues (4K ′2n + σi(B)2)/8K ′2n, it follows from Lemma 2.11 that Q can
be covered by Cn

2.11 translates of C′. Therefore, up to an overall multiplicative factor of Cn
2.11,

it suffices to bound (uniformly in T , and y1, y2 ∈ R
n) the number of translates of µ

√
nQ/4K ′D

needed to cover the region

(y1 + PT + C) ∩ (y2 + C′).

Moreover, since C′ ⊆ Q, it suffices to cover by translates of µ
√
nC′/4K ′D. Below, we will need the

following observation. Let

k∗ = max{i ∈ [n] : σi(B) ≥ KD/λ}.
Then, since D ≥ λ

√
n by assumption, and recalling the observation that B has K-rank at most

(1− η/2)n, it follows that k∗ ≤ (1− η/2)n.
Step 4: We begin by bounding (from above) the number of points w ∈ y1 + PT for which

(w + C) ∩ (y2 + C′) 6= ∅.
Note that any such w is of the form y1 + (z/T ), where z ∈ Z

n, and for the intersection above to be
nonempty, we must have

(z/T ) ∈ (y2 − y1) + C′ − C ⊆ (y2 − y1) + C′′.

We claim that C′′ ⊆ C · C′′′, where C is a constant depending only on K,K ′, λ. Indeed, using
the definition of C′′, k∗, and the assumption D ≥ λ

√
n, we see that the width of C′′ in the direc-

tions bi for i ≤ k∗ is at most C ′′/D, whereas its width in the directions bi for i > k∗ is at most
C ′′/max(σi(B),

√
n), where C ′′ is a constant depending on K,K ′, λ.
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Hence, it suffices to bound the number of z ∈ Z
n such that z ∈ T · (y2 − y1) + T · C · C′′′.

Moreover, since T ≤ 3D, it suffices to bound (uniformly in y ∈ R
n) the number of z ∈ Z

n such that
z ∈ y + 3CD · C′′′. Since for all sufficiently large C (depending only on K,K ′, λ),

3CD

min(D,max(
√
n, σi(B)))

≥ 1,

it follows from Lemma 2.13 that the number of such z ∈ Z
n is at most

N1 :=
(CD)n

∏n
i=1(min(D,max(

√
n, σi(B))))

,

where C is a constant depending only on K,K ′, λ.
Step 5: Let us now fix w0 ∈ y1 + PT and bound (uniformly in y1, y2 ∈ R

n) the number of
translates of µ

√
nC′/4K ′D needed to cover the region

(w0 + C) ∩ (y2 + C′).

For this, note that for any y2 ∈ R
n, (w0+C)∩(y2+C′) is the intersection of two right-parallelepipeds

along the same axes b1, . . . , bn. In particular, in each direction bi, the width of (w0 + C) ∩ (y2 + C′)
is bounded above by the minimum of the widths of C and C′ along bi. We will use the bound for
the width coming from C′ for the directions bi, i ≤ k∗, and the bound for the width coming from C
for the remaining directions.

Thus, the width of µ
√
nC′/4K ′D is smaller than the width of (w0 + C) ∩ (y2 + C′) by a fac-

tor of at most µ
√
n/4K ′D in the directions bi for i ≤ k∗. Moreover, for i > k∗, the width of

(w0 + C) ∩ (y2 + C′) in direction bi is at most µ/D, whereas the width of µ
√
nC′/4K ′D is at least

µ
√
n/C ′Dmax(σi(B),

√
n), where C ′ is a constant depending only on K,K ′, λ; hence, in these

directions, the width of µ
√
nC′/4K ′D is smaller by a factor of at most

√
n/C ′ max(σi(B),

√
n).

Therefore, we see that the number of translates of µ
√
nC′/4K ′D needed to cover (w0+C)∩(y2+C′)

is at most

N2 := Cn
k∗
∏

i=1

(

D

µ
√
n

) n
∏

i=k∗+1

(

max(σi(B),
√
n)√

n

)

,

where C is a constant depending only on K,K ′, λ.
Step 6: Noting that

n
∏

i=1

min(D,max(
√
n, σi(B))) ≥ (C ′)−nDk∗

n
∏

k∗+1

max(σi(B),
√
n),

where C ′ is a constant depending only on K,K ′, λ, we see that

N1 ·N2 ≤ µ−k∗
(

CD√
n

)n

≤ µ−(1−η/2)n
(

CD√
n

)n

.

Finally, recalling that N1 ·N2 is less than the size of actual number of translates by at most CnD2,
where C depends on K,K ′, λ, gives the desired conclusion. �

We are now ready to prove Theorem 1.3; the proof is essentially identical to the proof in [12]
except for one twist.

Proof of Theorem 1.3. By Lemma 2.4 applied to A+M and (A+M)T , it follows that there exist
δc2.4

, ρc2.4
, c2.4 > 0 depending only on η, K, and the sub-Gaussian norm of ξ such that except with

probability 4e
−c2.4n, any left or right compressible vector has image with norm at least c2.4

√
n.

Then, by Lemma 2.5, it suffices to provide a uniform (in k ∈ [n]) bound on P(dist(Xk,Hk) ≤ ǫ),
where Xk denotes the kth row of A+M , and Hk denotes the span of all the other rows of A+M .
Henceforth, we will take k = n, noting that the argument for other values of k is exactly the same.
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Let v(·) be a function mapping (n−1)×n matrices to an arbitrary unit vector in their right kernel.
As before, let B denote the (n− 1)×n matrix formed by the top n− 1 rows of A, and let N denote
the (n − 1) × n matrix formed by the top n− 1 rows of M . By Lemma 2.4, it follows that, except

with probability at most 2e
−c2.4n, v(B+N) must lie in Incompδ2.4,ρ2.4

. Therefore, by Lemma 2.7,

there exist some γ, λ > 0 (depending only on δ2.4, ρ2.4) such that LCDα,γ(v(B + N)) ≥ λ
√
n for

any α > 0. We write α = µ
√
n, where µ > 0 will be chosen later; it is important to note that none

of the previously chosen parameters depend on µ.
Let Xn denote the last row of A+M . Since dist(Xn,Hn) ≥ |〈v(B+N),Xn〉|, it suffices to bound

P[|〈v(B +N),Xn〉| ≤ ǫ].

First, we consider, for dyadically chosen D ∈ [λ
√
n, 2χn] (where χ > 0 will be chosen at the end),

the probability

P[|〈v(B +N),Xn〉| ≤ ǫ ∧ v(B +N) ∈ SD].

The key observation here is that this probability is at most

P[|〈v(B +N),Xn〉| ≤ ǫ ∧ v(B +N) ∈ S′
D(K

′)] + P[‖N‖ ≥ K ′√n],

since for any x ∈ S′
D(K

′)\SD, on the event ‖N‖ ≤ K ′√n, we have ‖(B+N)x‖ ≥ 2K ′√n−K ′√n 6=
0. Note that there exists K ′ > 0 depending only on the sub-Gaussian norm of ξ for which the second
term is exponentially small (cf. [12, Lemma 2.4]). We fix such a K ′.

Now, we bound the first term as follows. Let N denote the net for S′
D(K

′) coming from
Lemma 2.14. Then,

P[|〈v(B +N),Xn〉| ≤ ǫ ∧ v(B +N) ∈ S′
D(K

′)]

≤ P[v(B +N) ∈ S′
D(K

′)]

≤
∑

w∈N
P[|(B +N)w| ≤ µn/D]

≤ µ−(1−η/2)nD2

(

C2.14(λ,K,K ′)D√
n

)n

×
(

C · C2.8(γ)µ
√
n

D

)n−1

,

which is exponentially small (here, C is an absolute constant), as long as µ > 0 is chosen to be
sufficiently small, and then χ is chosen to be sufficiently small. In the last line, we have used
Lemma 2.14, Lemma 2.8 and a standard tensorization argument (cf. [12, Lemma 2.2]).

Finally, we note that by Lemma 2.5, we have

P[〈v(B +N), An +Mn〉 ≤ ǫ ∧ LCDµ
√
n,γ(v(B +N)) ≥ 2χn] ≤ C2.8(γ)(ǫ+ 2−χn + 2−cµ

2n),

which completes the proof. �

3. Proof of Theorem 1.4

Let A,Rn be defined as in the statement of Theorem 1.4. For convenience, we will study the least
singular value of A − Rn, which has the same distribution as A + Rn. Let K ≥ 1 be sufficiently
large so that the event EK = {‖Rn‖ ≤ K

√
n} satisfies

P[EK ] ≥ 1− 2−n.

Finally, let L ≥ 2K
√
n.

We first reduce the study of the smallest singular value to the study of anti-concentration of a
very structured vector.
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Lemma 3.1. Let u,w ∈ R
n−1 have i.i.d coordinates distributed as lazy Rademacher random vari-

ables. Then, we have

1

2
P

[
∣

∣

∣

∣

∑

i≥0

wT (Rn−1/L)
iu

∣

∣

∣

∣

≤ Lǫ ∩ ‖Rn−1‖ ≤ K
√
n

]

≤ P[sn(A−Rn) ≤ ǫ] + P[EcK ].

Proof. Since we have the term P[EcK ] on the right hand side, we may henceforth restrict ourselves to
the event ‖Rn−1‖ ≤ ‖Rn‖ ≤ K

√
n. On this event, note that for any L ≥ 2K

√
n, the (n−1)×(n−1)

random matrix LIn−1−Rn−1 is invertible, and in fact, its inverse is expressible as a Neumann series,
i.e.

(LIn−1 −Rn−1)
−1 =

∑

i≥0

Ri
n−1/L

i+1.

The key is to decompose Rn as

Rn =

(

Rn−1 u
wT rnn

)

;

note that the four block matrices appearing in the decomposition are independent of each other.
Therefore, for

v =

(

(LIn−1 −Rn−1)
−1u

1

)

,

we have trivially (from the last coordinate) that ‖v‖2 ≥ 1, and hence,

sn(A−Rn) ≤ ‖(A−Rn)v‖
≤ |wT (L−Rn−1)

−1u+ rnn|
= |wT (L−Rn−1)

−1u|,
where the final equality holds on the event rnn = 0.

Finally, writing (L−Rn−1)
−1u = L−1

∑

i≥0(Rn−1/L)
iu, we have

1

2
P

[
∣

∣

∣

∣

∑

i≥0

wT (Rn−1/L)
iu

∣

∣

∣

∣

≤ Lǫ ∩ {‖Rn−1‖ ≤ K
√
n}
]

= P

[
∣

∣

∣

∣

∑

i≥0

wT (Rn−1/L)
iu

∣

∣

∣

∣

≤ Lǫ ∩ {‖Rn−1‖ ≤ K
√
n} ∩ {rnn = 0}

]

≤ P

[
∣

∣

∣

∣

∑

i≥0

wT (Rn−1/L)
iu

∣

∣

∣

∣

≤ Lǫ ∩ EK ∩ {rnn = 0}
]

+ P[EcK ]

≤ P[sn(A−Rn) ≤ ǫ] + P[EcK ]. �

We are now in position to prove Theorem 1.4.

Proof of Theorem 1.4. Fix an integer t ≥ 1, and let C > 0 be an absolute constant to be chosen
later. Let

GK = {Q ∈ R
(n−1)×(n−1) : ‖Q‖ ≤ K

√
n}.

Step 1: For independent Rn−1, u, w, consider the event

E =

t−2
⋂

i=0

{wTRi
n−1u = 0} ∩







∣

∣

∣

∣

wT
(

∑

i≥t−1

(Rn−1/L)
i

)

u

∣

∣

∣

∣

≤ CKtnt/2

Lt−1







.
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Then, by Lemma 3.1 and the bound on P[EK ], we have

P

[

sn(A−Rn) ≤ C

(

K
√
n

L

)t]

≥ 1

2
P

[
∣

∣

∣

∣

∑

i≥0

wT (Rn−1/L)
iu

∣

∣

∣

∣

≤ CKt−1nt/2

Lt−1
∩ {‖Rn−1‖ ≤ K

√
n}
]

− 2−n

≥ 1

2
P[E ∩ {Rn−1 ∈ GK}]− 2−n.

Step 2: We write u = u1 − u2, where u1, u2 ∈ R
n are independent random vectors with i.i.d

coordinates distributed as Ber(1/2) − 1/2. For j ∈ {1, 2}, let Ej be the event

Ej =
t−2
⋂

i=0

{|wTRi
n−1uj| ≤ CKi(log 2t)n(i+1)/2} ∩







∣

∣

∣

∣

wT
(

∑

i≥t−1

(Rn−1/L)
i

)

uj

∣

∣

∣

∣

≤ CKt−1nt/2

2Lt−1







.

On the event {Rn−1 ∈ GK}, we have ‖Ri
n−1‖ ≤ (K

√
n)i, so that ‖Ri

n−1‖HS ≤ Kin(i+1)/2. Therefore,
on this event, for any L ≥ 2K

√
n, we have
∥

∥

∥

∥

∥

∥

∑

i≥t−1

(Rn−1/L)
i

∥

∥

∥

∥

∥

∥

HS

≤ 2Kt−1nt/2

Lt−1
.

Step 3: For independent random vectors u,w as above, and a fixed (n − 1) × (n − 1) matrix
Q, consider the random quadratic polynomial wTQu. It follows from standard hypercontractive
estimates (cf. [9, Theorem 10.24]), that there exists an absolute constant c > 0 such that for all
x ≥ 0,

P[|wTQu| ≥ x‖Q‖HS] ≤ c−1 exp(−cx).

From this, the Hilbert-Schmidt norm bounds in the previous step, and the union bound, it follows
that for j ∈ {1, 2}, and for any Rn−1 ∈ GK , we have

Puj ,w[Ej(uj , w,Rn−1)] ≥
1

2
,

provided that C > 0 is chosen sufficiently large.
Fix Rn−1 ∈ GK . For j ∈ {1, 2}, let Wj(Rn−1) be the set of those vectors w ∈ {−1, 0, 1}n−1 for

which

Puj [Ej(uj , w,Rn−1)] ≥
1

4
.

Note that since u1 and u2 are identically distributed, W1(Rn−1) = W2(Rn−1) =: W (Rn−1). Then,
by combining the conclusion of the previous step with averaging (reverse Markov’s inequality), it
follows that

P[w ∈ W (Rn−1)] ≥
1

4
.

Step 4: Fix Rn−1 ∈ GK and w ∈ W (Rn−1). Then, we have

Pu[E(u,w,Rn−1)] ≥ Pu1,u2 [E(u1 − u2, w,Rn−1) ∩ E1(u1, w,Rn−1) ∩ E2(u2, w,Rn−1)]

= Pu1,u2 [E(u1 − u2, w,Rn−1) | E1(u1, w,Rn−1) ∩ E2(u2, w,Rn−1)]×
× Pu1 [E1(u1, w,Rn−1)]Pu2 [E(u2, w,Rn−1)]

≥ 1

16
Pu1,u2 [E(u1 − u2, w,Rn−1) | E1(u1, w,Rn−1) ∩ E2(u2, w,Rn−1)],

where the final inequality uses that w ∈ W (Rn−1).
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Let us now bound from below the very last term. Conditioned on the event E1(u1, w,Rn−1) ∩
E2(u2, w,Rn−1), we know that for j ∈ {1, 2},

∣

∣

∣

∣

wT
(

∑

i≥t−1

(Rn−1/L)
i

)

uj

∣

∣

∣

∣

≤ CKt−1nt/2

2Lt−1
,

so that by the triangle inequality,
∣

∣

∣

∣

wT
(

∑

i≥t−1

(Rn−1/L)
i

)

u

∣

∣

∣

∣

≤ CKt−1nt/2

2Lt−1
.

Moreover, conditioned on the event E1(u1, w,Rn−1) ∩ E2(u2, w,Rn−1), we know that the (t − 1)-
dimensional vectors

(wTRn−1
i uj)0≤i≤t−2

are i.i.d for j ∈ {1, 2}, have each coordinate equal to a half-integer, and lie in a (t− 1)-dimensional
region with total number of points in (Z/2)(t−1) at most

4t−1Ct−1K
(t−1)(t−2)

2 (log 2t)t−1n
t(t−1)

4 .

In particular, by Cauchy-Schwarz, we see that these two (t− 1)-dimensional vectors coincide (con-
ditioned on E1(u1, w,Rn−1) ∩ E2(u2, w,Rn−1) is at least

(4t−1Ct−1K
(t−1)(t−2)

2 (log 2t)t−1n
t(t−1)

4 )−1.

But whenever this happens, we must also have

t−2
⋂

i=0

{wTRi
n−1u = 0}.

To summarize, we have shown that for any Rn−1 ∈ GK and for any w ∈ W (Rn−1),

Pu[E(u,w,Rn−1)] ≥ 4−t−3C1−tK− (t−1)(t−2)
2 (log 2t)1−tn− t(t−1)

4 .

Step 5: The desired lower bound now follows easily. We have

Pu,w,Rn−1[E ∩ {Rn−1 ∈ GK}] ≥ Pu,w[E(u,w,Rn−1)|Rn−1 ∈ GK ](1− 2−n)

≥ Pu,w[E(u,w,Rn−1) ∩ {w ∈ W (Rn−1)}|Rn−1 ∈ GK ](1− 2−n)

≥ Pu[E(u,w,Rn−1)|{w ∈ W (Rn−1)} ∩ {Rn−1 ∈ GK}]×
× Pw[w ∈ W (Rn−1)|Rn−1 ∈ GK ](1− 2−n)

≥ (1− 2−n)
4

Pu[E(u,w,Rn−1)|{w ∈ W (Rn−1)} ∩ {Rn−1 ∈ GK}]

≥ (1− 2−n)
4

4−t−3C1−tK− (t−1)(t−2)
2 (log 2t)1−tn− t(t−1)

4 ,

where the final inequality follows from the end of Step 4. Combining this with Step 1 completes
the proof. �
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