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THE SMALLEST SINGULAR VALUE OF DENSE RANDOM REGULAR

DIGRAPHS

VISHESH JAIN, ASHWIN SAH, AND MEHTAAB SAWHNEY

Abstract. Let A be the adjacency matrix of a uniformly random d-regular digraph on n vertices,
and suppose that min(d, n− d) ≥ λn. We show that for any κ ≥ 0,

P[sn(A) ≤ κ] ≤ Cλκ
√
n+ 2e−cλn.

Up to the constants Cλ, cλ > 0, our bound matches optimal bounds for n×n random matrices, each
of whose entries is an i.i.d Ber(d/n) random variable. The special case κ = 0 of our result confirms
a conjecture of Cook regarding the probability of singularity of dense random regular digraphs.

1. Introduction

For positive integers d ≤ n, let Mn,d denote the set of all n × n matrices with entries in {0, 1}
for which each row and each column sums to d. One may interpret an element A ∈ Mn,d either as
the adjacency matrix of a d-regular digraph (directed graph) on n labelled vertices (where self loops
are allowed, but multiple edges are not allowed) or as the adjacency matrix of a d-regular bipartite
graph on n+ n labelled vertices.

Recall that the smallest singular value of a real n× n matrix A is defined to be

sn(A) = inf
x∈Sn−1

‖Ax‖2,

where S
n−1 denotes the unit sphere in R

n and ‖·‖2 denotes the standard Euclidean norm on R
n. In

particular, A is singular (non-invertible) if and only if sn(A) = 0.
This paper is concerned with the non-asymptotic study of the smallest singular value of a ran-

domly chosen element of Mn,d, in the regime where d is comparable to n (i.e., in the graph theoretic
interpretation above, our focus is on dense digraphs). Our main result is the following.

Theorem 1.1. Let λ ∈ (0, 1). There exist constants Cλ, cλ > 0, depending only on λ, for which the
following holds. Let d ≤ n be positive integers with min(d, n − d) ≥ λn. Then, for any κ ≥ 0,

PA∼Mn,d
[sn(A) ≤ κ] ≤ Cλκ

√
n+ 2e−cλn,

where A ∼ Mn,d denotes a uniformly chosen element of Mn,d.

Remark. The case κ = 0 of the above theorem shows that P[A is non-invertible] ≤ 2e−cλn. This
confirms a conjecture of Cook [5, Conjecture 1.7], and is optimal up to the constants 2 and cλ (as
can be seen by considering the probability that two rows of A are identical). Moreover, up to the
constants Cλ, cλ, and 2, Theorem 1.1 matches known and optimal results for random matrices, each
of whose entries is an independent copy of a Ber(d/n) random variable (i.e., a random variable
which is 1 with probability d/n and 0 with probability 1− (d/n)) (cf. [21, 30]).

In the next subsection, we provide context for our work, as well as an overview of previous results.

1.1. Background. The non-asymptotic study of the smallest singular value of random matrices
goes back at least to the work on numerical analysis by von Neumann and his collaborators. The
starting point of our work is the seminal result of Rudelson and Vershynin [25], showing that for an
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n× n random matrix A, each of whose entries is an independent and identically distributed (i.i.d)
subgaussian random variable with mean 0 and variance 1, and for any κ ≥ 0,

P[sn(A) ≤ κ] ≤ Cκ
√
n+ C exp(−cn), (1.1)

where the constants C, c > 0 depend only on the distribution of the entries. This result is optimal
up to the constants C, c and (again, up to constants) unified and substantially extended many
previous results, such as works of Edelman [7] and Szarek [27] on the smallest singular value of
i.i.d centered Gaussian matrices, work of Kahn, Komlós, and Szemerédi [14] on the probability of
singularity of i.i.d Rademacher (i.e., ±1 with probability 1/2 each) matrices, and work of Tao and
Vu [29] on the smallest singular value of i.i.d Rademacher matrices. In recent years, much work has
gone into relaxing the distributional assumptions in the above result of Rudelson and Vershynin;
the current best result is due to Livshyts, Tikhomirov, and Vershynin [21], who establish the bound
(1.1) assuming only that the entries of A are independent, uniformly anti-concentrated, and that
the expected squared Hilbert-Schmidt norm of A, E‖A‖2HS, is O(n2).

Progress in the non-asymptotic study of the smallest singular value of random matrices with
dependent entries has been comparatively much slower. For instance, the fact that uniformly random
n × n symmetric {±1}-valued matrices are invertible with probability tending to 1 as n → ∞ was
only established in 2006 by Costello, Tao, and Vu [6], even though the corresponding non-symmetric
result was already known nearly 40 years before due to Komlós [15]. Similarly, for (centered)
subgaussian symmetric matrices (i.e., the entries on and above the diagonal are i.i.d copies of a
centered subgaussian random variable), even though it is believed that (1.1) should hold, the best-

known analog of (1.1) due to Vershynin [32] has κ in the first term replaced by the suboptimal κ1/9,
and exp(−cn) in the second term replaced by the suboptimal exp(−nc) for some small constant
c > 0. Despite recent efforts to optimize this constant in the case of Rademacher random variables,
[8, 2], the best known bound for singularity of symmetric Bernoulli matrices is exp(−cn1/2) [2],
which remains far from the conjectured exponential behavior, even though in the i.i.d Rademacher
case, the near-optimal bound (1/2+o(1))n on the singularity probability has recently been obtained
in breakthrough work of Tikhomirov [30]).

Another popular model of random matrices with dependent entries, which has attracted consid-
erable attention in recent years and is the subject of the present work, is the adjacency matrix of a
random d-regular digraphs. Note that this model has the interesting feature that no two entries are
independent of each other (in contrast with random symmetric matrices, where the dependencies are
localized). Works of Cook [5], Litvak et al. [17], and Huang [12] (covering complementary regimes)
show that for all 3 ≤ d ≤ n− 3, the probability that a uniformly random element of Mn,d is invert-
ible tends to 1 as n → ∞. While it was conjectured by Cook in [5] that for min(d, n − d) = Ω(n),
the singularity probability should be exponentially small (this is a special case of our Theorem 1.1),
we note that none of these works show that the singularity probability (in any regime) is smaller
than even 1/

√
n.

The smallest singular value of uniformly random elements of Mn,d has been considered in the

works [4, 19]. With notation as in Theorem 1.1, Cook [4] showed that P[sn(A) ≤ n−O(logn/ log d)] ≤
O(logO(1) n/

√
d), while Litvak et al. [19] showed that for C ≤ d ≤ n/ log2 n, P[sn(A) ≤ n−6] ≤

O(log2 d/
√
d). Note that the result of Litvak et al. operates in a complementary regime of d

compared to Theorem 1.1, whereas the result of Cook, restricted to the regime of Theorem 1.1
gives the much weaker bound P[sn(A) ≤ n−Cλ ] ≤ O(logO(1) /

√
n). We note that the results of

[4, 19] are actually valid for more general random matrices A− z Id, where z ∈ C is a fixed complex

number with |z| ≤
√
d; this is crucial for the application of proving a weak circular law for Mn,d, for

which the bounds in [4, 19] are sufficient. However, for many other applications, such as the study
of gaps between eigenvalues [11], delocalization of eigenvectors [26], and strong circular laws [28],
stronger bounds such as our Theorem 1.1 are needed. So as to not overburden the presentation, we
have not pursued the direction of obtaining such bounds for A−z Id, but anticipate that this should



THE SMALLEST SINGULAR VALUE OF DENSE RANDOM REGULAR DIGRAPHS 3

be possible by adding to the proof in this paper the additional notion of real-imaginary correlations
[26].

Finally, we mention that a couple of models of random matrices have been studied to serve as a
‘warm-up’ for investigating uniformly random elements of Mn,d. Of these, the most fruitful has been
the model of {0, 1}-valued matrices B with independent rows, such that each row is drawn uniformly
from {0, 1}n subject to the sum of the row being exactly d, although note that the independence of
the rows makes the study of this model quite a bit simpler (see the discussion in the next subsection).
In the same regime of d as in Theorem 1.1, Nguyen [23] showed that the probability of singularity
of such a matrix is at most OC(n

−C) for any C > 0, which was improved by Ferber et al. [9] to
O(exp(−nc)) for some small constant c > 0. For the smallest singular value, Nguyen and Vu [24]
showed that for any C > 0, there exists D > 0 such that P[sn(B) ≤ n−D] = O(n−C). This was
improved by Jain [13] to P[sn(B) ≤ κ] = O(κn2+exp(−nc)), for some small constant c > 0 and for
all κ ≥ 0. Very recently, Tran [31] obtained an optimal estimate of the form Theorem 1.1 for this
model; the notion of Combinatorial Least Common Denominator (CLCD) introduced in his work
will be useful for us.

1.2. Overview of the proof. To better illustrate our ideas, we begin by briefly recalling the
geometric framework of Rudelson and Vershynin [25] for controlling the smallest singular value
of an n × n matrix M with i.i.d sub-Gaussian entries. The unit sphere S

n−1 is decomposed into
compressible vectors (i.e., those which are close to sparse vectors), and incompressible vectors. It
is not hard to show that for any unit vector x, ‖Mx‖2 = Ω(

√
n) (except with exponentially small

probability); the estimate for compressible vectors then follows from the low metric entropy of the
set of compressible vectors, as well as the fact that the operator norm of M is O(

√
n) (except

with exponentially small probability). For incompressible vectors, an efficient averaging procedure
reduces to studying the distance of the last (say) row of the matrix to the span of the first n − 1
rows. This amounts to studying the inner product of the last row of the matrix with a unit vector
orthogonal to the span of the first n−1 rows. The remainder of the proof is then devoted to showing
that any unit vector orthogonal to the first n − 1 rows of the matrix is (except with exponentially
small probability) arithmetically very unstructured, in the sense of having exponentially large Least
Common Denominator (LCD). This is accomplished via a union bound – we decompose the relevant
range of the LCD dyadically, and note that for each dyadic interval [D, 2D), the metric entropy at
the relevant scale is swamped by the probability of the image of the vector under M having small
norm. In slightly more detail (and omitting absolute constants), for α = µ

√
n, where µ > 0 is a small

constant which can be freely chosen at the end of the argument, it is seen that for x ∈ S
n−1 with

LCD in the dyadic interval [D, 2D), the probability that ‖Mx‖2 ≤ α
√
n/D is at most (α/D)n−1.

On the other hand, there is an (α/2D)-net of such vectors of size at most (D/
√
n)n. For the relevant

range of D, this leads to the exponential gain of µn.
Our proof of Theorem 1.1, while broadly based on the geometric framework, encounters challenges

at every step due to the lack of dependence between the entries.
Working on S

n−1
0 : In contrast to the i.i.d case, there is no uniform anti-concentration estimate

available for general x ∈ S
n−1 in our setting – for instance, the inner product of any row with the

vector (1/
√
n, . . . , 1/

√
n) is always d/

√
n. To avoid this issue, we always restrict to the part of the

unit sphere orthogonal to the all ones vector (denoted by S
n−1
0 ), noting that the smallest singular

vector must always be a part of this set. Moreover, it is seen (Corollary 2.3) that incompressible
vectors in S

n−1
0 have linearly many positive and negative coordinates of size Θ(1/

√
n) – this enables

us to avoid explicit use of other classes of vectors, such as non almost-constant vectors in [5].
Refined switching: One of the main challenges in adapting the geometric framework to our
model is the lack of independence between rows. Notably, any collection of n − 1 rows completely
determines the remaining row, which precludes the use of the distance-from-hyperplane reduction in
the i.i.d case. To overcome this challenge, previous works on this model (starting with the pioneering
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work of Cook [5]) have used a ‘switching’ operation based on the following observation. Even after
conditioning on the sum of two distinct rows (say Rk and Rℓ), there is additional randomness
remaining on the set of coordinates where the sum Rk+Rℓ is exactly 1, in the following sense: for two
distinct coordinates i, j in this set, it is equally likely that Rk(i) = 1, Rℓ(i) = 0, Rk(j) = 0, Rℓ(j) = 1
or Rk(i) = 0, Rℓ(i) = 1, Rk(j) = 1, Rℓ(j) = 0. For our purpose, such a switching operation based
on pairing entire rows is too inefficient (since it effectively increases the key probability estimate
of (α/D)n−1 in the i.i.d case to approximately (α/D)n/2). Hence, we introduce a refined switching
operation, which takes a ‘splitting set’ S of size n/2 and a permutation σ, and then (roughly)
switches Rσ(2i−1)|S with Rσ(2i)|S and Rσ(2i)|Sc with Rσ(2i+1)|Sc – this ensures that we have access
to n− O(1) independent anti-concentration events (see, e.g., (4.5)). The set S and permutation σ
are chosen from a collection – crucially of constant size (Lemma 2.6) – satisfying certain properties
(see also the discussion after Definition 3.2).
Quantile CLCD (QCLCD): Our substitute for the notion of LCD is the QCLCD (Definition 3.3),
which is based on the CLCD recently introduced by Tran [31] with the following crucial twist: we
consider the ℓth smallest (for ℓ = O(1)) CLCD of a carefully chosen collection of restrictions of
the vector. Definition 3.3 has some similarities to the notion of ‘(t, ℓ)-bad vectors’ in [9, Defini-
tion 4.3], in that both definitions remove the ‘very worst’ restrictions of a vector. However, in our
application, we will be able to remove only the O(1) worst restrictions, as opposed to [9], where
the nǫ worst restrictions need to be removed. This will be crucial in proving Cook’s conjecture,
for which removing ω(1) restrictions is already insufficient. The main idea behind the definition of
the QCLCD is the following: suppose the QCLCD of a vector (such that the restriction sets form
a well-spread family (Definition 3.4)) is D. Then, we know that all but ℓ = O(1) restrictions of
the vector have CLCD at least D, so that we will still have access to n − O(1) independent anti-

concentration events (heuristically, compared to the i.i.d case, we now have a term of (α/D)n−O(1)).
On the other hand, the definition of a well-spread family will ensure that at least one of the (linear-
sized) restrictions falls within a level set of the CLCD (Definition 2.13); this information will allow
us to obtain much more efficient nets for level sets of the QCLCD (Lemma 3.7) (heuristically, of
size (D/

√
n)cλn × (D/α)n−cλn) which will enable the union bound argument in Section 4.3 to go

through, since we have a gain of µcλn (compared to µn in the i.i.d case, but this is certainly enough).
We note here that since the operator norm of A is d (which is order n as opposed to order

√
n), the

standard nets used in the i.i.d sub-Gaussian case will be insufficient, and we will instead make use
of the more refined randomized-rounding based net construction due to Livshyts [20].
New quasi-randomness properties: To execute the strategy in the previous paragraph, in
particular to ensure that the set of restrictions form a well-spread family, we will need several quasi-
randomness properties of random d-regular digraphs. Some of these are similar to those appearing
in previous works [5, 18], whereas some of them are stronger. We provide a concise proof (exploiting
the asymptotic enumeration of digraphs with a prescribed degree sequence due to Canfield et al.
[3]) that a random regular digraph has these properties except with exponentially small probability
(Theorem 2.17). We note that these quasi-randomness properties are also important in our proof
that for any x ∈ S

n−1
0 , ‖Ax‖2 = Ω(

√
n) except with exponentially small probability (Lemma 2.18),

which is used to handle the compressible case.
Partitioning the set of regular digraphs: There is one final issue, which is that we cannot
condition on the first n−1 rows as in the i.i.d case (since then, the last row is completely determined).
Overcoming this is based on the general strategy of Litvak et al. [19], except that we also need to
incorporate arithmetic structure. Roughly, the argument proceeds as follows: given the target κ for
the smallest singular value in Theorem 1.1, we first rule out vectors with QCLCD at most µn/κ
(where µ is a small constant) using a union bound argument as outlined above (compare this to the
i.i.d case, where the union bound argument rules out all vectors with subexponential LCD). The
remaining vectors are then assigned to constantly many partitions, based on the choice of a ‘splitting
set’ S and permutation σ as above. For the rest of this discussion, fix such a part. We are then able
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to use a modification of an argument of Litvak et al. [19] to reduce to the event that row Aσ(1) (say)
has small inner product with a vector v determined only by rows Aσ(1) + Aσ(2), Aσ(2), . . . , Aσ(n).
Since we have already ruled out vectors with QCLCD at most µn/κ, the vector v will be seen to
have large CLCD (with respect to the randomness available by switching the relevant restrictions
of Aσ(1), Aσ(2)), at which point we are able to conclude.

1.3. Extensions. While we have not pursued the direction of analysing the smallest singular value
of complex shifts of A, we believe that given our general framework for handling arithmetic structure
for random regular digraphs, this should be possible by adding the ingredient of real-imaginary
correlations [26]. With appropriate modifications, our methods should also extend to more general
dense contingency tables. Finally, we believe that our notion of quantile-based LCDs should be
generally useful in studying the smallest singular value of random matrices with dependent entries.

1.4. Notation. For A ∈ Mn,d, we will denote rows by Ai and columns by A(i). For an integer N ,

S
N−1 denotes the set of unit vectors in R

N , and S
N−1
0 denotes the set of points x = (x1, . . . , xN ) ∈

S
N−1 such that

∑N
i=1 xi = 0. Also, BN

2 denotes the unit ball in R
N (i.e., the set of vectors of

Euclidean norm at most 1). For a matrix A = (aij) ∈ R
N×N , ‖A‖ is its spectral norm (i.e., ℓ2 → ℓ2

operator norm), and ‖A‖HS is its Hilbert-Schmidt norm, defined by ‖A‖2HS =
∑

i,j a
2
ij .

We will let [N ] denote the interval {1, . . . , N}, S[N ] denote the set of permutations of [N ], and([N ]
k

)
denote the set of subsets of [N ] of size exactly k. We will denote multisets by {{}}, so that

{{a1, . . . , an}}, with the ai’s possibly repeated, is a multi-set of size n. For a vector v ∈ R
N and

T ⊆ [N ], v|T denotes the |T |-dimensional vector obtained by only retaining the coordinates of v in
T .

We will also make extensive use of asymptotic notation. For functions f, g, f = Oα(g) (or f .α g
means that f ≤ Cαg, where Cα is some constant depending on α; f = Ωα(g) (or f &α g) means
that f ≥ cαg, where cα > 0 is some constant depending on α, and f = Θα(g) means that both
f = Oα(g) and f = Ωα(g) hold. For parameters ε, δ, the relation ε ≪α δ means that ε is smaller
than cα(δ) for a sufficiently decaying function cα depending on α. In practice, the function cα will
always be polynomial with coefficients depending on α.

All logarithms are natural, unless indicated otherwise, and floors and ceilings are omitted when
they make no essential difference.

1.5. Organization. The remainder of this paper is organized as follows. In Section 2, we collect
some preliminaries; the main new results are Lemma 2.6, Theorem 2.17, and Lemma 2.18. In
Section 3, we introduce our refined switching technique, as well as the notion of the QCLCD, and
discuss several key properties. Finally, Section 4 proves Theorem 1.1.

2. Preliminaries

For the remainder of this paper, we will assume that λ ∈ (0, 1/2]. This can be done without loss
of generality due to the following reason: for any A ∈ Mn,d, the vector, each of whose coordinates
is 1/

√
n, is deterministically a unit vector achieving the largest singular value; hence, any vector

attaining the smallest singular value of A must belong to S
n−1
0 . Moreover, for any x ∈ S

n−1
0 and

A ∈ Mn,d, we have ‖Ax‖2 = ‖(J − A)x‖2, where J is the n × n all ones matrix. Finally, noting
that A 7→ J −A is a bijection from Mn,d to Mn,n−d justifies the claim.

2.1. Compressibility, Almost-Constancy, and Robust Combinatorial Structures. We will
make use of the decomposition of the unit sphere, formalized by Rudelson and Vershynin [25], into
compressible and incompressible vectors.
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Definition 2.1. Given δ, ρ ∈ (0, 1), we define Compδ,ρ to be the subset of SN−1 which is within Eu-

clidean distance ρ of a δN -sparse vector (i.e. a vector in R
N with at most δN non-zero coordinates).

Let Incompδ,ρ be the remaining vectors in S
N−1.

Further, let Incomp0δ,ρ be the set of vectors v ∈ Incompδ,ρ satisfying 1 · v = 0, and similarly for

Comp0δ,ρ.

We also define Consδ,ρ to be the set of vectors v ∈ R
N for which there exists some λ ∈ R such

that |vi − λ| < ρ‖v‖2/
√
N for at least (1− δ)N coordinates i ∈ [N ].

We will repeatedly use these notions for restrictions of vectors, in which case the implicit dimen-
sion is modified and understood accordingly.

We record some useful consequences of these definitions.

Lemma 2.2 (Incompressible vectors are spread, [25, Lemma 3.4]). Fix δ, ρ ∈ (0, 1). There exist
νi = νi(δ, ρ) > 0 for i ∈ [3] such that any v ∈ Incompδ,ρ has at least ν1N coordinates i ∈ [N ] with

|vi
√
N | ∈ [ν2, ν3].

The following corollary shows that any vector in Incomp0δ,ρ has many positive and negative

coordinates of size 1/
√
N .

Corollary 2.3 (Incompressible sum-zero vectors are bi-spread). Fix δ, ρ ∈ (0, 1). There exist
νi = νi(δ, ρ) > 0 for i ∈ [3] such that any v ∈ Incomp0δ,ρ has at least ν1N coordinates i ∈ [N ] with

vi
√
N ∈ [ν2, ν3], and at least ν1N coordinates j ∈ [N ] with vj

√
N ∈ [−ν3,−ν2].

Remark. In particular, this shows that Incomp0δ,ρ ∩Consδ′,ρ′ = ∅ for δ′, ρ′ ≪ δ, ρ.

Proof. By Lemma 2.2, there exist µ1, µ2, µ3 > 0 such that any v ∈ Incomp0δ,ρ has at least µ1N indices

i ∈ [N ] with |vi
√
N | ∈ [µ2, µ3]. For a given v ∈ Incomp0δ,ρ, assume without loss of generality that

at least µ1N/2 of these are positive coordinates. In particular, the sum of the positive coordinates

of v is at least µ1N/2 · µ2/
√
N = (µ1µ2/2)

√
N .

Since
∑

i vi = 0 by definition, it follows that the sum of the negative coordinates of v is also

at least (µ1µ2/2)
√
N in magnitude. Moreover, since ‖v‖2 = 1, it follows that there are at most

(µ2
1µ

2
2/16)N coordinates with value at most −4/(µ1µ2

√
N); by Cauchy-Schwarz, the sum of the

magnitudes of these coordinates is at most (µ1µ2/4)
√
N . Hence, the sum of the magnitudes of the

coordinates which are contained in the interval [−4/(µ1µ2

√
N), 0] is at least (µ1µ2/4)

√
N . Finally,

the sum of coordinates in [−µ1µ2/(8
√
N), 0] is at most (µ1µ2/8)

√
N in magnitude, so that the

sum of the coordinates in [−4/(µ1µ2

√
N),−µ1µ2/(8

√
N)] is at least (µ1µ2/8)

√
N in magnitude. In

particular, there are at least (µ2
1µ

2
2/32)N such coordinates.

Finally, taking ν1 = min{µ1/2, µ
2
1µ

2
2/32}, ν2 = min{(µ1µ2)/8, µ2} and ν3 = max{µ3, 4/(µ1µ2)}

gives the desired conclusion. �

We will also use the existence of ‘robust splittings and matchings’ of the set of coordinates
[N ]. In particular, given δ, ρ ∈ (0, 1), we find a fixed (universal) system of Oδ,ρ(1) different pairs

(σ, S) ∈ S[N ]×
( [N ]
N/2

)
with the property that any v ∈ Incomp0δ,ρ has many of its ‘typical size’ positive

and negative elements in both S and [n] \ S, and moreover, has many coordinates in consecutive

positions σ(i), σ(i + 1) differing by order at least 1/
√
N . In fact, as we will see, a suitably chosen

random family of pairs works well, and the justification of this fact uses no facts about sum-zero
incompressible vectors except for Corollary 2.3.

We first define the necessary events.

Definition 2.4. Given w ∈ S
N−1, σ ∈ S[N ], and a 3-tuple ν = (ν1, ν2, ν3) ∈ R

3 with ν1, ν2, ν3 > 0,
we say that the event Iν(w, σ) holds if there are at least ν1N indices i ∈ [N − 1] with |wσ(i) −
wσ(i+1)|

√
N ≥ ν2.
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Definition 2.5. Given v ∈ S
N−1, S ⊆ [N ], and a 3-tuple ν = (ν1, ν2, ν3) ∈ R

3 with ν1, ν2, ν3 > 0,
we say that the event Jν(v, S) holds if

1. there are at least ν1N indices i ∈ S and at least ν1N indices j ∈ Sc with vi
√
N, vj

√
N ∈

[ν2, ν3], and

2. there are at least ν1N indices i ∈ S and at least ν1N indices j ∈ Sc with vi
√
N, vj

√
N ∈

[−ν3,−ν2].

Lemma 2.6 (A constant-sized universal family of robust combinatorial structures). Fix δ, ρ ∈ (0, 1).

There exist νi(δ, ρ) > 0 for i ∈ [3] and there is a family Rδ,ρ of size mδ,ρ of (σ, S) ∈ S[N ] ×
( [N ]
N/2

)

such that the following holds: for any w, v ∈ Incomp0δ,ρ there is (σ, S) ∈ Rδ,ρ such that Iν(w, σ) and

Jν(v, S) hold.

Proof. We will separately construct a family of S ∈
( [N ]
N/2

)
and a family of σ ∈ S[N ] with the desired

properties. Then, simply taking all pairs (σ, S) clearly satisfies the desired conclusion.
First, we find a family of sets S. Let ν ′1, ν

′
2, ν

′
3 > 0 be as in Corollary 2.3. Consider m1 sets

chosen uniformly and independently from among all subsets of [N ] of size N/2. Denote this random
collection of subsets by R1. Note that for any fixed pair of disjoint subsets T1, T2 ⊆ [N ] with

|T1| = |T2| = ν ′1N , a subset S chosen uniformly from
( [N ]
N/2

)
has each of S ∩ Ti and Sc ∩ Ti of

size at least ν ′1N/3 with probability 1 − exp(−Ων′1
(N)). Therefore, taking m1 sufficiently large (in

terms of ν ′1, which in turn depends on δ, ρ) and taking a union bound over pairs of disjoint subsets
T1, T2 ⊆ [N ] with |T1| = |T2| = ν ′1N , we find that there is a fixed family R1 of size m1 with the
following property: for any pair of disjoint subsets T1, T2 ⊆ [N ] with |T1| = |T2| = ν ′1N , there is
S ∈ R1 with each of S ∩ Ti and Sc ∩ Ti of size at least ν ′1N/3. Now, since any v ∈ Incomp0δ,ρ has at

least ν ′1N positive and negative elements of the correct size (by Corollary 2.3), we see that for any
v ∈ Incomp0δ,ρ, there exists S ∈ R1 such that Jν(v, S) holds (for ν = (ν ′1/3, ν

′
2, ν

′
3)).

Next, we find a family of permutations σ. It suffices to show that there is a fixed family of
permutations of [N ], R2, of size m2 = m2(δ, ρ) with the following property: for any pair of disjoint
subsets T1, T2 ⊆ [N ] with |T1| = |T2| = ν ′1N , there is σ ∈ R2 with σ(i) ∈ T1 and σ(i + 1) ∈ T2

for at least c(ν ′1)N indices i ∈ [N − 1] ∩ (2Z + 1). Then, since for any v ∈ Incomp0δ,ρ, any value

among the ν ′1N positive elements with magnitude at least ν ′2/
√
N differs from any value among the

ν ′1N negative elements of magnitude at least ν ′2/
√
N by at least 2ν ′2/

√
N , we will get the desired

conclusion (for ν = (c(ν ′1), ν
′
2, ν

′
3)). As before, it suffices to show that for a fixed pair of disjoint

subsets T1, T2 ⊆ [N ] with |T1| = |T2| = ν ′1N , the probability that a uniformly random permutation
σ satisfies σ(i) ∈ T1 and σ(i + 1) ∈ T2 for at least c(ν ′1)N indices i ∈ [N − 1] ∩ (2Z + 1) is at
least 1 − exp(−Ων′1

(N)). To see this, let f : S[N ] → R denote the number of such indices. Then,

it follows from the linearity of expectation that E[f ] ≥ (ν ′1)
2 · (N − 1)/2. Moreover, it is clear that

f is at most 2-Lipschitz with respect to the normalized Hamming distance on S[N ]. Therefore, by
the concentration of Lipschitz functions on the symmetric group (cf. [33, Theorem 5.2.6]), it follows
that P[f ≥ (ν ′1)

2 · (N − 1)/4] ≥ 1− exp(−Ων′1
(N)), as desired. �

2.2. Combinatorial LCD. For quantifying the arithmetic structure of vectors, it will be conve-
nient to use the notion of combinatorial least common denominator (CLCD), recently introduced
by Tran [31] in his work on the least singular value of random zero/one matrices, each of whose
rows sums to n/2.

Definition 2.7 (Combinatorial Least Common Denominator (CLCD), [31, Definition 1.4]). For a
vector v ∈ R

N , γ ∈ (0, 1), and α > 0, we define

CLCDα,γ(v) = LCDα,γ(D(v)) = inf{θ > 0 : dist(θD(v),Z(
N
2 )) < min(γ|θD(v)|, α)},

where D(v) is the vector in R
(N2 ) with coordinates vi − vj for i < j.
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Remark. We will take γ ∈ (0, 1) of constant order and α of order linear in N , in a similar manner

to Tran [31]. For ‘typical’ vectors, the CLCD will be at least
√
N in size as with the usual LCD; see

Lemma 2.11. Also, note that scaling a vector down by a multiplicative factor will scale the CLCD
up by the same factor.

In order to state the key property of CLCD, we first define the Lévy concentration function of a
random variable X.

Definition 2.8. For a random variable X and ǫ ≥ 0, the Lévy concentration of X of width ǫ is

L(X, ǫ) = sup
x∈R

P[|X − x| < ǫ].

The key properties of the CLCD (analogous to standard properties of the LCD from [25]) are the
following results from Tran [31].

Definition 2.9. Given a vector v ∈ R
N and t ∈ [N ], we define the random variable Wt,v as

Wt,v :=
∑N

i=1 bivi, where b = (b1, . . . , bN ) is a uniformly random vector on the {0, 1}-Boolean
hypercube summing to t.

Lemma 2.10 (Anti-concentration via CLCD). For any a > 0 and γ ∈ (0, 1), there exists C =

C(a, γ) depending only on a, γ for which the following holds. Let v ∈ R
N with ‖D(v)‖2 ≥ a

√
N/(t(1 − t)).

Then, for every α > 0 and ǫ ≥ 0,

L(WtN,v, ǫ) ≤ Cǫ+
C

CLCDα,γ(v)
+ Ce−8t(1−t)α2/N .

Proof. This follows from [31, Theorem 3.2] in the same way as [31, Theorem 1.5]. �

The next lemma provides a useful lower bound on the CLCD of vectors which are not almost-
constant.

Lemma 2.11 (Non almost-constant vectors have large CLCD, [31, Lemma 2.15]). Let δ, ρ ∈ (0, 1)
and let v ∈ R

N−1 \Consδ,ρ. Then for every α > 0 and every γ ∈ (0, δρ/12), we have

CLCDα,γ(v) ≥
1

7‖v‖2
√
δN.

Remark. The version in [31] is stated only for ‖v‖2 = 1, but the statement above is an easy
consequence.

Next, we need that the CLCD of a vector is ‘approximately stable’ under small Euclidean per-
turbations.

Lemma 2.12 (Stability of the CLCD, [31, Lemma 2.14]). Let v ∈ R
N , α > 0, and γ ∈ (0, 1).

Then, for any w ∈ R
N with ‖v − w‖2 < γ‖D(v)‖2/(5

√
N), we have

CLCDα/2,γ/2(w) ≥ min

(
CLCDα,γ(v),

α

4
√
N‖v − w‖2

)
.

Finally, we need a result on the metric entropy of level sets of the CLCD. This result is essentially
stated in Tran [31], except that we allow the length of the vectors to vary in an interval of constant
order (rather than be constrained to live on the unit sphere as in [31]). A trivial modification of the
argument in [31] produces the required result, so we do not provide a detailed justification here.

Definition 2.13 (Level sets of CLCD). Let H > 0 and χ, µ ∈ (0, 1). We define

LH,χ,µ = {x /∈ Consδ,ρ : ‖x‖2 ∈ [χ, 1],H ≤ CLCDµN,γ(x) ≤ 2H}.
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Lemma 2.14 (Nets of level sets of CLCD, From [31, Lemma 2.19]). Assume that 0 < δ, ρ ≪ 1 and

0 < µ ≪ ζ ≪δ,ρ γ ≪δ,ρ 1. Fix H ≥ ζ
√
n. Then, there exists a (9µ

√
N/H)-net N of LH,χ,µ of

cardinality at most µ−3H3(Cδ,ρ,γ,χ,ζH/
√
N)N .

Remark. The key point in the lemma is that the constant Cδ,ρ,γ,χ,ζ is independent of µ, so that
there is no µ dependence in the base of the exponent N . The extra µ−3H3 in net size comes from
a slight but unimportant technical error in the presentation of [31], as well as buffer for our version
which is applicable to vectors not necessarily on the unit sphere. Also, the condition on H here is
slightly weaker than in [31], but is proved in an identical fashion.

2.3. Quasirandomness Properties of d-Regular Digraphs. We will need various quasiran-
domness properties of d-regular digraphs, which are concisely captured in Theorem 2.17. In our
regime d = λn (for fixed λ ∈ (0, 1/2]), these are straightforward consequences of the asymptotic
enumeration of digraphs with specified degree sequences, due to Canfield, Greenhill, and McKay
[3] (building on seminal work of McKay and Wormald [22], which solved the analogous problem
for graphs). The techniques in [3, 22] represent the number of digraphs with prescribed degree
sequences as a contour integral, and then analyze the resulting expression using saddle points –
in our case, the utility of these asymptotic enumeration results is that allow us to easily ‘transfer’
various quasirandomness properties, which depend only on a small number of rows of the adjacency
matrix, from Erdős-Rényi digraphs to uniform d-regular digraphs.

Definition 2.15 (Switching set). For two vertices i, j ∈ [n], we define their switching set Si,j in
digraph A as the set of indices k with aik 6= ajk. Define the weight of the switching set on a subset
S ⊆ [n] to be

ωi,j(S) =
∑

k∈S
(aik − ajk) =

∑

k∈S∩Si,j

(aik − ajk).

Note that ωi,j([n]) = 0 for a d-regular digraph A.

We now define a few events for a d-regular digraph A.

Definition 2.16 (Quasirandomness properties). For A ∈ Mn,d, we define the following events.

(P1) Given h ∈ N, let Qh be the event that for any 2h distinct rows Ai1 , . . . , Aih and Aj1 , . . . , Ajh ,
we have ∣∣∣∣

h⋂

k=1

Sc
ik,jk

∣∣∣∣ ≤ 2(λ2 + (1− λ)2)hn.

(P2) For S ⊆ [n], let Q′
S be the event that for all sets of 4 distinct rows Ai1 , Ai2 , Aj1 , Aj2 ,

min(|Si1,j1 ∩ Si2,j2 ∩ S|, |Si1,j1 ∩ Si2,j2 ∩ Sc|) ≥ (2λ(1 − λ))2n/4.

(P3) For S ⊆ [n], let Q′′
S be the event that for every pair of distinct rows Ai, Aj , we have

|ωi,j(S)| ≤ min

( |S ∩ Si,j|
6

,
|Sc ∩ Si,j|

6

)
.

(P4) Finally, for a family R of subsets of [n] and h ∈ N, define

Qh,R = Qh ∩
⋂

S∈R
(Q′

S ∩ Q′′
S);

this final event encapsulates all the necessary quasirandomness conditions that we will need.

Theorem 2.17 (Random regular digraphs are quasirandom). Let h < n1/4 be a positive integer,

and R ⊆
( [n]
n/2

)
be a family of sets. Let A be chosen uniformly at random from Mn,d. Then

P[Qc
h,R] . |R| exp(−Ωλ(n)).
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Remark. In our application, h will be a sufficiently large constant depending on various parameters
(which in turn depend on λ); see (4.2).

Proof. A special case of [3, Theorem 1] gives the following: let Nc (respectively Nc′) denote the
number of (n − 2h) × n matrices with row sums d = λn and column sums c1, . . . , cn (respectively
c′1, . . . , c

′
n) where ci, c

′
i ∈ [d−2h, d]. Then, max{Nc/Nc′ , Nc′/Nc} ≤ exp(Oλ(h)), for all n sufficiently

large (in terms of λ).
In particular, the following is immediate: let E be an event for digraphs depending on at most 2h

specified rows, let p denote the probability of E for a uniformly chosen random d-regular digraph,
and let p′ denote the probability of E for a uniformly chosen {0, 1}-matrix subject to each row
having sum d. Then, p ≤ p′ exp(Oλ(h)) for all n sufficiently large (in terms of λ). Moreover,
letting p′′ be the probability of E for the model where each entry of the 2h specified rows is an
i.i.d. copy of Ber(λ), and each of the remaining rows is chosen independently from the uniform
distribution on vectors in {0, 1}n summing to d, we see by a simple conditioning argument that
p′ ≤ O(nλ(1− λ))hp′′.

Finally, the requisite probability bounds for the last model follow from a straightforward appli-
cation of Hoeffding’s inequality and the union bound, at which point we can conclude by the above
comparison argument. �

2.4. Invertibility with respect to a single vector. The goal of this subsection is to show that
for any fixed vector x ∈ S

n−1
0 , ‖Ax‖2 &λ

√
n, except with exponentially small probability.

Lemma 2.18 (Invertibility with respect to a fixed sum-zero vector). Let d = λn. There is an
absolute constant cλ > 0 for which the following holds. Let A be chosen uniformly at random from
Mn,d. Then,

sup
x∈Sn−1

0

P[‖Ax‖2 ≤ cλ
√
n] ≤ 2e−cλn.

Proof. To start we note that ‖D(x)‖22 = n. We denote the rows of A by Ai, and the columns of A

by A(i). For indices i 6= j, let Si,j denote the switching set of rows Ai and Aj , and let S(i,j) denote

the switching set of columns A(i) and A(j) (i.e., the set of k with aki 6= akj). Let m = ⌊n/2⌋. For
(σ,A) distributed uniformly in S[n] × Mn,d, let G be the sigma-algebra generated by σ and the
random variables given by the row sums Aσ(1) +Aσ(2), Aσ(3) +Aσ(4), . . . , Aσ(2m−1) +Aσ(2m) (so
that if n is odd, then Aσ(n) is measurable with respect to G). Note that conditioned on G, each of
the vectors Aσ(2i−1) −Aσ(2i) for i ∈ [m] is distributed uniformly on the set of vectors supported on
the switching set Sσ(2i−1),σ(2i) that have ±1 entries within the support and sum to 0.

Let E1 denote the event that |S(i,j)| &λ n for every pair of distinct i, j ∈ [n]. Then, from
Theorem 2.17 (and row-column symmetry), we know that P[Ec

1] ≤ exp(−Ωλ(n)).
Next, for every pair of distinct rows i, j, we define their weight (with respect to the vector x) to

be

wi,j =
∑

k,ℓ∈Si,j

(xk − xℓ)
2.

Then, we see that
∑

i,j

wi,j ≥
∑

k,ℓ

|S(k,ℓ)|2
2

(xk − xℓ)
2,

since every configuration with aik = ajℓ = 1 − aiℓ = 1− ajk is counted on the left, and the right is
a clear lower bound for this quantity. In particular, on the event E1, we have

∑

i,j

wi,j &λ n2‖D(x)‖22.



THE SMALLEST SINGULAR VALUE OF DENSE RANDOM REGULAR DIGRAPHS 11

Furthermore, since wi,j ≤ ‖D(x)‖22, we find that on the event E1, there are at least Ωλ(n
2) pairs of

distinct i, j ∈ [n] with wi,j &λ ‖D(x)‖22 = n.
Let E2 denote the event (measurable with respect to G) that at least Ωλ(n) ‘good’ pairs (σ(2i −

1), σ(2i)) satisfy wσ(2i−1),σ(2i) &λ n. Then, the above discussion, along with a similar argument as
in the proof of Lemma 2.6 shows that Pr[Ec

2 ] ≤ exp(−Ωλ(n)). On the event E2, define P to be the
set of indices i ∈ [m] such that (σ(2i − 1), σ(2i)) is a good pair.

We now demonstrate anticoncentration of (Aσ(2i−1) − Aσ(2i)) · x for i ∈ P. Let y be the length
|Sσ(2i−1),σ(2i) | vector of ±1 values in (Aσ(2i−1) − Aσ(2i))|Sσ(2i−1),σ(2i)

(noting that the rest of the

vector is deterministically 0). It is sum 0 and uniform on this slice. Consider the linear function
f(y) = (Aσ(2i−1)−Aσ(2i)) ·x. Then, the hypercontractivity of linear functions on the central slice of
the Boolean hypercube (cf. [10, Lemma 5.2]) shows that there exists some absolute constant C ≥ 1
for which

E[|f(y)|4] ≤ C4
E[f(y)2]2.

Then, setting λ2 = E[f(y)2]/2, the Paley-Zygmund inequality in [16, Lemma 3.5] gives

P[|f(y)| > λ] ≥ E[f(y)2]2

4E[f(y)4]
≥ 1

4C4
.

Noting that

2λ2 = E[f(y)2] =
w2i−1,2i

|S2i−1,2i| − 1
&λ 1

for i ∈ P, it follows that there exists some c′λ > 0 such that for all i ∈ P,

P[|f(y)| > c′λ] ≥
1

4C4
.

Finally, since Aσ(2i−1)−Aσ(2i) are conditionally independent given G, and since ‖Ax‖2 ≥ ∑
i∈P((Aσ(2i−1)−

Aσ(2i)) ·x)2, it follows from tensorization (cf. [25, Lemma 2.2(2)]) that there exists a constant cλ > 0
such that for any G ∈ E2,

P[‖Ax‖2 < cλ
√
n|G = G] ≤ exp(−cλn).

The desired conclusion now follows using the law of total probability, after noting that P[Ec
2] ≤

exp(−Ωλ(n)) and after possibly decreasing cλ > 0. �

3. Rerandomization, Switching, and Quantile Combinatorial LCD

In this section, we introduce our main new ingredients – refined switching operations, and the
quantile Combinatorial LCD (QCLCD).

3.1. Rerandomization and switching. Fix (S, σ) ∈
( [n]
n/2

)
×S[n]. For A ∈ Mn,d with rows Ai,

let Ri = Aσ(i) and let ri(S) (respectively ri(S
c)) denote the sum of Ri|S (respectively Ri|Sc).

Definition 3.1 (Revealed information). For A chosen uniformly from Mn,d, let FS,σ denote the
sigma-algebra generated by the collection of random variables

{ri(S), ri(Sc)}i∈[n] ∪ {(R2i−1 +R2i)|S , (R2i +R2i+1)|Sc}i∈[⌊(n−1)/2⌋] ∪ {R1|Sc , Rn|P },
where P = S if n is odd and P = Sc if n is even.

The key point is that conditioned on FS,σ, there is additional randomness in the form of each
(R2i−1 − R2i)|S and (R2i − R2i+1)|Sc . Note that each of these vectors has many fixed 0s and
some random ±1 signs (constrained to have a fixed sum), and moreover, that the random ±1 signs
occur precisely where the two rows have a switching set (in the sense of Definition 2.15), which
is measurable given FS,σ. This demonstrates the nomenclature: the sets S allow one to, in the
remaining randomness, ‘switch’ between having 01 in Ri and 10 in Ri+1 to 10 and 01, respectively.

We will also make use of the following sets.
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Definition 3.2 (Support of remaining randomness). With notation as above, and for each i ∈ [⌊(n−
1)/2⌋], let T2i−1 = S ∩Sσ(2i−1),σ(2i) (i.e., it is the subset of S such that the entry of (R2i−1 +R2i)|S
is 1), and similarly, let T2i = Sc ∩ Sσ(2i),σ(2i+1) . Note that these are measurable with respect to
FS,σ.

We note that in the study of the singularity and smallest singular value of random d-regular
digraphs, the idea of ‘injecting randomness’ using such switching operations goes back to the work of

Cook [5]. The main difference in our switching operation is the introduction of (σ, S) ∈ S[n]×
( [n]
n/2

)
,

which will ultimately be chosen from a family Rδ,ρ satisfying the conclusion of Lemma 2.6. As
we will see in (4.5), the presence of the set S will ensure that the event of a vector having small
image is the tensorization of n−O(1) independent random walks concentrating in a small interval;
the crucial point here is that for proving the conjecture of Cook, n − O(1) cannot be replaced by
n − ω(1), whereas the switching construction in [5] would naively only provide n/2 independent
random walks. The permutation σ dictates the order in which we reveal rows, and its properties
will be crucially used in Section 4.4 (see the averaging step there), to ensure that the first term in

Theorem 1.1 is κ
√
n as opposed to κn1/2+c for some c > 0.

3.2. Quantile Combinatorial LCD. We introduce a notion of arithmetic structure of vectors,
which removes the ‘very worst’ CLCDs of certain restrictions of the given vector.

Definition 3.3 (Quantile CLCD (QCLCD)). Let v ∈ R
n and t ∈ N. Given t sets (possibly

repeated) of coordinates T = {{T1, . . . , Tt}} and ℓ ∈ [t], we define the quantile combinatorial LCD
or QCLCDT

ℓ,α,γ(v) to be the ℓth smallest value in the multiset

{{CLCDα,γ(v|Ti
) : i ∈ [t]}}.

Remark. Our notion of QCLCD can be modified in the obvious way to yield a notion of QLCD
for the standard LCD, which can, for instance, be used to study the simpler model of random d-
regular digraphs, each of whose non-zero entries is independently replaced by a Rademacher random
variable.

In the rest of this subsection, we show that QCLCD is not too small if the family of sets T is
‘well-spread’ and the vector is not almost constant.

Definition 3.4 (Well-spread family). For Q, t ∈ N, η ∈ (0, 1), and U ⊆ [n], we say that a multifamily
U of sets of coordinates Ui ⊆ U for i ∈ [t] is (Q, η)-well-spread with respect to U if:

(W1) (compare with (P1) in Definition 2.16) for every Q distinct indices i1, . . . , iQ, we have

∣∣∣∣U \
Q⋃

j=1

Uij

∣∣∣∣ ≤ η|U |, and

(W2) (compare with (P2) in Definition 2.16) for every pair i, j ∈ [t]× [t], we have |Ui∩Uj | ≥ η|U |.

Lemma 3.5 (Bi-spread vectors have large QCLCD for well-spread families). Let S ∈
( [n]
n/2

)
, and

suppose that T1 is (Q, η)-well-spread with respect to S and T2 is (Q, η)-well-spread with respect to
Sc. Let x ∈ S

n−1, and suppose that x satisfies Jν(x, S). Then, for T = T1 ∪ T2 (as a multifamily),
we have

(C1) There are at most 2Q sets T ∈ T (with multiplicity) for which

‖D(x|T )‖2 .ν,η,Q

√
n or x|T ∈ Consδ′,ρ′ ; (3.1)

(C2) QCLCDT
2Q,α,γ(x) &ν,η,Q

√
n,

as long as η ≪ν 1, δ′, ρ′ ≪ν,η,Q 1, γ ≪ν,η,Q 1.
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Proof. Suppose for the sake of contradiction that (C1) is false. By the pigeonhole principle, at least Q
of the sets (with multiplicity) satisfying (3.1) lie in S or Sc; without loss of generality assume that Q
of these sets lie in S. Then, since S has at least ν1n indices j for which xj ∈ [ν2/

√
n, ν3/

√
n], it follows

from (W1) of Definition 3.4 that for η ≤ ν1/2, at least one of the Q sets satisfying (3.1) has ν1n/(2Q)
positive coordinates between [ν2/

√
n, ν3/

√
n]. A similar argument shows that at least one of the Q

sets satisfying (3.1) has ν1n/(2Q) negative coordinates between [−ν3/
√
n,−ν2/

√
n]. Consider the

common intersection of these two sets, which by (W2) of Definition 3.4 has size at least ηn, and
note that this intersection has either ηn/2 nonnegative coordinates or ηn/2 negative coordinates.
Without loss of generality, suppose that there are at least ηn/2 nonnegative coordinates. But then,
for T being the set with at least ν1n/(2Q) coordinates between [−ν3/

√
n,−ν2/

√
n], we see that

‖D(x|T )‖2 ≥
√

ν1ν2η/2Q · √n (and also, x|T is clearly not in Consδ′,ρ′) which contradicts that T
satisfies (3.1).

Finally, for (C2), note that for every set T ∈ T for which x|T /∈ Consδ′,ρ′ , it follows from

Lemma 2.11 and ‖x|T ‖2 ≤ 1 that CLCDα,γ(x|T ) &δ′,ρ′
√
N as long as γ ∈ (0, δ′ρ′/12). Then, the

conclusion follows immediately from (C1) and the definition of QCLCD. �

3.3. Nets for QCLCD. In this subsection, we will construct sufficiently small nets for level sets of
the QCLCD.

Definition 3.6 (Level sets of QCLCD). Fix a set system T , an integer Q ∈ N, ν = (ν1, ν2, ν3) ∈ R
3

with νi > 0, µ ∈ (0, 1), and S ∈
( [n]
n/2

)
. Suppose H > 0. We define

KT ,H,µ = {x ∈ S
n−1 : Jν(x, S) ∧H ≤ QCLCDT

2Q,µn,γ(x) ≤ 2H}.
Our goal is to show the following.

Lemma 3.7 (Nets for level sets of QCLCD). With notation as in Definition 3.6 and θ ∈ (0, 1),
suppose that T1 is (Q, η)-well-spread with respect to S and T2 is (Q, η)-well-spread with respect to
Sc, with each set in T = T1∪T2 of size at least 2θn. Assume that 0 < δ, ρ ≪ 1, 0 < µ ≪δ,ρ γ ≪δ,ρ 1,
and H &δ,ρ,γ

√
n. Then, there exists a collection N ⊆ KT ,H,µ+(200µ

√
n/H)Bn

2 such that for every
x ∈ KT ,H,µ and m× n matrix B, there is a point y ∈ N with

‖B(x− y)‖2 ≤
100µ

H
‖B‖HS,

and such that

|N | ≤ H3|T |
(
Cδ,ρ,γ,ν,η,Q,θHµθ−1

√
n

)n

,

as long as n is sufficiently large and |T | > 4Q.

Remark. The critical point here is that – compared to a (200µ
√
n/H)-net obtained using the usual

volumetric argument, which would have dependence µn in the size of the net – the above net has
the improved dependence µ(θ−1)n; this saving of µθn will be crucial for us. Another important
point is the appearance of ‖B‖HS (as opposed to the standard

√
n‖B‖2), since the operator norm

is ‘unusually large’ compared to the Hilbert-Schmidt norm in our application (although this point
can likely be bypassed, see the remark after Theorem 3.8).

The key ingredient in the proof of this lemma is the following randomized-rounding based net
construction due to Livshyts [20].

Theorem 3.8 (Specialization of [20, Theorem 4]). There exists an absolute constant C3.8 > 0
for which the following holds. Fix α ∈ (0, 1/2) and β ∈ (0, α/10). Consider any K ⊆ S

n−1 and
n ≥ 1/α2. Then, there exists a deterministic net N ⊆ K + (4β/α)Bn

2 such that for every x ∈ K
and m× n matrix B, there is a point y ∈ N with

‖B(x− y)‖2 ≤
2β

α
√
n
‖B‖HS,
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and such that

|N | ≤ N(K,βBn
2 ) exp(Cα0.08 log(1/α)n),

where N(K,βBn
2 ) is the covering number of the set K with balls of radius β.

Remark. In [20], the above statement is proved with ‖B‖HS replaced by a certain regularized Hilbert-
Schmidt norm (which is always at most the standard Hilbert-Schmidt norm), and in fact, a consid-
erable amount of the effort in [20] is devoted to obtaining this more refined quantity on the right
hand side. For our application, this is unnecessary since all matrices B to which we will need to
apply Theorem 3.8 and Lemma 3.7 are {0, 1}-valued, and hence, have ‖B‖HS ≤ √

mn – in par-
ticular, this permits a much more streamlined proof (using the techniques in [20]) of Theorem 3.8
than the general [20, Theorem 4]. We also note that one can replace the use of Theorem 3.8 with a
spectral gap estimate (as in [13, 31]) for d-regular digraphs, which can likely be derived from more
recent and refined asymptotic enumeration results due to Barvinok and Hartigan [1]; this approach
is substantially more technical and hence we have decided to use [20] instead.

Proof of Lemma 3.7. Let β = (20µ
√
n/H). We will bound N(KT ,H,µ, βB

n
2 ), at which point the

result will follow immediately from Theorem 3.8 (with α = 1/3). In order to do this, we will
construct a β-net for KT ,H,µ and bound its size.

If x ∈ KT ,H,µ, then by definition, at least |T | − (2Q− 1) of the sets T ∈ T have

CLCDµn,γ(x|T ) ∈ [H, 2H].

Moreover, by Lemma 3.5, at least |T |− 2(2Q− 1) of these |T |− (2Q− 1) sets T additionally satisfy

‖x‖2
√
n ≥ ‖D(x|T )‖2 &ν,η,Q

√
n.

Since |T | > 4Q, we can choose T ∈ T satisfying both of the above equations. For the rest of the
proof, fix such a set T ∈ T ; at the end, we will introduce an overall multiplicative factor of |T | in
the size of the net to account for this choice.

We note that by Lemma 2.14 applied with χ and ζ constants depending on ν, η,Q, there is a
(9µ

√
|T |/H)-net for x|T of size at most

µ−3H3

(
Cδ,ρ,γ,ν,η,QH√

|T |

)|T |
.

We take a (9µ
√
n/H)-net of B

n−|T |
2 for x|T c (with size bounded by the standard volumetric argu-

ment), and then take the product net, which has size at most

µ−3H3

(
Cδ,ρ,γ,ν,η,QH√

|T |

)|T |
×

(
4H

9µ
√
n

)n−|T |
. H3

(
Cδ,ρ,γ,η,Q,θHµθ−1

√
n

)n

.

In the last step, we used n ≥ |T | > 2θn and absorbed the µ−3 term into the exponential. The result
now follows as indicated in the first paragraph of the proof. �

4. Singular value bound – Proof of Theorem 1.1

4.1. Initial reduction. Note that the vector (1/
√
n, 1/

√
n, . . . , 1/

√
n) is deterministically a unit

vector achieving the largest singular value; hence, the singular vector attaining the smallest singular
must be orthogonal to it, so that we may restrict ourselves to S

n−1
0 in the subsequent discussion. In

particular, we fix maps x : Mn,d → S
n−1
0 and y : Mn,d → S

n−1
0 such that for A ∈ Mn,d, x(A) is a

right least singular vector and y(A)T is a left least singular vector.
Throughout, we fix κ as in Theorem 1.1. Let S be the event that ‖Ax(A)‖2 ≤ κ, which is the

principal event we wish to study. Let χ > 0 be a sufficiently small constant to be determined at
the end of the analysis (this should not be confused with the abstract parameter χ appearing in
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Definition 2.13, Lemma 2.14). We will assume that κ ≥ e−χn, since the statement of Theorem 1.1
for κ < e−χn follows from the statement for κ = e−χn.

Our proof will involve various parameters; the dependencies between them may be succinctly
represented as follows:

(n−1α :=)µ ≪ γ ≪ η,Q−1 ≪ ν1, ν2, ν3 ≪ δ, ρ ≪ λ, (4.1)

with µ chosen at the very end to enable various union bound arguments to go through with expo-
nential room (technically, χ is chosen after µ but this is conceptually unimportant). More precisely,
λ is fixed in the statement of Theorem 1.1. We choose δ, ρ (depending only on λ) as in Lemma 4.1
below. Next, we choose ν = (ν1, ν2, ν3) as in Lemma 2.6, based on δ, ρ. This also gives us a fam-

ily R = Rδ,ρ of pairs (σ, S) ∈ S[n] ×
( [n]
n/2

)
with certain properties that we will need. Note that

|R| = Oδ,ρ(1), and hence Oλ(1) under the choices we have made. Next, choose Q and η such that

η < λ2(1− λ)2, 2(λ2 + (1− λ)2)Q := η ≪ν 1, (4.2)

with the requisite smallness coming from Lemma 3.5. Having chosen η,Q, ν, we choose γ sufficiently
small as per Lemma 3.5. Finally, we will work with the QCLCD as in Definition 3.3 with parameter
α = µn, where µ will be taken to be a constant much smaller than all previously defined constants
in accordance with (4.6).

For the reader’s convenience, we collect various events that will appear during the course of our
proof.

S = {‖Ax(A)‖2 ≤ κ},
CR = {∃x ∈ Comp0δ,ρ : ‖Ax‖2 = ‖Ax(A)‖2}, CL = {∃y ∈ Comp0δ,ρ : ‖yTA‖2 = ‖Ax(A)‖2},
C = CL ∪ CR,
QQ,R as in Section 2.3,

Iν(y(A), σ) as in Definition 2.4,

Jν(x(A), S) as in Definition 2.5,

FS,σ is the sigma-algebra in Definition 3.1.

We will also repeatedly abuse notation by stating expectation of events; events should be under-
stood as the appropriate indicator.

With these preliminaries, note that we have

P[S] ≤ P[C ∩ S] + P[Qc
Q,R] + P[Cc ∩ QQ,R ∩ S]

≤ Oλ(exp(−cn)) + P[QQ,R ∩ Cc ∩ S],
where c is the smaller of the two constants found in Theorem 2.17 and Lemma 4.1 below (note that
this application of Lemma 4.1 requires κ .λ

√
n, which we may assume without loss of generality,

since Theorem 1.1 is trivially true outside this regime).
Now

P[QQ,R ∩ Cc ∩ S] ≤
∑

(σ,S)∈R
P[QQ,R ∩ Cc ∩ S ∩ Iν(y(A), σ) ∩ Jν(x(A), S)];

this holds since Cc guarantees that x(A), y(A) ∈ Incomp0δ,ρ, so that by Lemma 2.6, the events

Iν(y(A), σ) and Jν(x(A), S) must hold for some choice of (σ, S) ∈ R. Since |R| = Oλ(1) by
Lemma 2.6, it follows that up to losing an overall multiplicative factor of Oλ(1), we may (and will)
restrict our attention to a fixed choice of (σ, S) ∈ R i.e., we will provide a uniform (in (σ, S) upper
bound on each summand on the right hand side of the above equation).

Therefore, fix (σ, S) ∈ R and for i ∈ [⌊(n − 1)/2⌋], recall the definition of T2i−1, T2i from
Definition 3.2. Let T1 be the multifamily of the odd-indexed sets T2i−1 and T2 be the multifamily
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of the even-indexed sets T2i. Then, by the law of total probability, we have

P[QQ,R ∩ Cc ∩ S ∩ Iν(y(A), σ) ∩ Jν(x(A), S)]

= EFS,σ
[P[QQ,R ∩ Cc ∩ S ∩ Iν(y(A), σ) ∩ Jν(x(A), S)|FS,σ ]].

We will provide an upper bound on the inner probability which is uniform over the realisations of
FS,σ.

Note that by the parameter choice in (4.2), it follows that on the event QQ,R, T1 is (Q, η)-well-
spread with respect to S (recall Definition 3.4) and T2 is (Q, η)-well-spread with respect to Sc.
Thus, on the event QQ,R ∩ Jν(x(A), S), it follows from Lemma 3.5 that

‖D(x(A)|T )‖2 &ν,η,Q
√
n

for all but less than 2Q sets T ∈ T , and hence, from Lemma 3.5 that

QCLCDT
2Q,α,γ(x(A)) &ν,η,Q

√
n.

for all but less than 2Q sets T ∈ T . Therefore, letting D = 2d,

P[QQ,R ∩ Cc ∩ S ∩ Iν(y(A), σ) ∩ Jν(x(A), S)|FS,σ ]

≤
log(µn/κ)∑

d=log(cν,η,Q
√
n)

P[QQ,R ∩ Cc ∩ S ∩ Iν(y(A), σ) ∩ Jν(x(A), S) ∩QCLCDT
2Q,µn,γ(x(A)) ∈ [D, 2D]|FS,σ ]

+ P[QQ,R ∩ Cc ∩ S ∩ Iν(y(A), σ) ∩ Jν(x(A), S) ∩QCLCDT
2Q,µn,γ(x(A)) ≥ µn/κ|FS,σ], (4.3)

where cν,η,Q is a constant depending on ν, η,Q coming from Lemma 3.5. We will deal with the first
term in Section 4.3 and the second term in Section 4.4.

4.2. Compressible vectors. In this short subsection, we quickly show that P[C∩S] is exponentially
small. In fact, the following is a much stronger statement.

Lemma 4.1. There exist δ, ρ, c ∈ (0, 1) (depending only on λ) so that

P

[
inf

x∈Comp0δ,ρ

‖Ax‖2 < c
√
n

]
≤ 2 exp(−cn).

Proof. As is by now standard, the proof follows easily from combining the estimate for invertibility
with respect to a single vector (Lemma 2.18) with an appropriate net argument (Theorem 3.8). We
provide the details for completeness.

By Lemma 2.18, for any fixed x ∈ S
n−1
0 , P[|Ax| ≤ cλ

√
n] ≤ 2e−cλn. Now we choose α3.8

sufficiently small in terms of cλ so that −C3.8α
0.08
3.8 log(α3.8) ≤ cλ/4 and β3.8 sufficiently small

in terms of α3.8 so that 2β3.8 ≤ cλα3.8/2 (recall that C3.8 > 0 is an absolute constant) Then,

we choose δ, ρ sufficiently small so that N(Comp0δ,ρ, β3.8B
n
2 ) ≤ ecλn/4 (which is easily seen to be

possible).
Applying Theorem 3.8 to S = Comp0δ,ρ and α3.8, β3.8, there is a net N of size at most ecλn/4 ·

ecλn/4 = ecλn/2 such that for any m×n matrix B with ‖B‖HS ≤ n and x ∈ Comp0δ,ρ, there is y ∈ N
with ‖B(x− y)‖2 ≤ cλ

√
n

2 .
Since ‖A‖Hs ≤ n for all A ∈ Mn,d, it therefore immediately follows that

P

[
inf

x∈Comp0δ,ρ

‖Ax‖2 <
cλ
√
n

2

]
≤ P

[
∃y ∈ N : ‖Ay‖2 < cλ

√
n

]
≤ 2cλn/2(2e−cλn) = 2e−cλn/2. �
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4.3. Small QCLCD. In this subsection, we will bound the first term on the right hand side in
(4.3), by showing that each summand is exponentially small. Thus, fix D ∈ [cν,η,Q

√
n, µn/κ]. Then,

recalling the definition of the level sets of the QCLCD, denoted by KT ,D,µ (Definition 3.6), we have

P[QQ,R ∩ Cc ∩ S ∩ Iν(y(A), σ) ∩ Jν(x(A), S) ∩QCLCDT
2Q,µn,γ(x(A)) ∈ [D, 2D]|FS,σ ]

≤ P[QQ,R ∩ ‖Ax(A)‖2 ≤ κ ∩ x(A) ∈ KT ,D,µ|FS,σ].

Note that on the event QQ,R, we have in particular that T1 is (Q, η)-well-spread with respect to S
and T2 is (Q, η)-well-spread with respect to Sc, and also that each T ∈ T (:= T1 ∪ T2) has size at
least 2θn, where 2θ = λ2(1− λ)2.
Approximation by a net: Applying Lemma 3.7, we find that there is a net N ⊆ KT ,D,µ +
(200µ

√
n/D)Bn

2 such that every x ∈ KT ,D,µ and every m × n matrix A with ‖A‖HS ≤ n, there
exists a y ∈ N with

‖A(x− y)‖2 ≤ 100µn/D.

Moreover, Lemma 3.7 guarantees that

|N | ≤ D3|T |
(
CDµθ−1

√
n

)n

,

where C depends only on δ, ρ, γ, ν, η,Q, θ.
Anti-concentration of net points: By definition of N , for every y ∈ N , we have z ∈ KT ,D,µ

such that ‖y − z‖2 ≤ 200µ
√
n/D. Moreover, since z ∈ KT ,D,µ, it follows from Definition 3.6 and

Lemma 3.5 (noting the well-spread properties of T1,T2 that are guaranteed on the event QQ,R) that
‖D(z|T )‖2 &ν,η,Q

√
n for all but at least |T | − 2Q sets T ∈ T . But then, for all such choices of T ,

we have

‖y|T − z|T ‖2 ≤ ‖y − z‖2 ≤
200µ

√
n

D
≤ γ‖D(z|T )‖2

5
√
n

(4.4)

as long as µ ≪ν,η,Q γ (since D ≥ cν,η,Q
√
n), which we will be able to ensure. Moreover, since

z ∈ KT ,D,µ, for at least |T | − 4Q sets T ∈ T , (4.4) holds, and also CLCDµn,γ(z|T ) ≥ D. Therefore,
by Lemma 2.12, for at least |T | − 4Q sets T ∈ T , we have

CLCDµn/2,γ/2(y|T ) ≥ min

(
D,

µn

4
√
n‖y|T − z|T ‖2

)
≥ D

800
.

Let the exceptional set of indices i ∈ [|T |] for which Ti does not satisfy this property be Y , with
|Y | ≤ 4Q. Then, for all i /∈ Y and i ≥ 2, we have from Lemma 2.10 that

L(Aσ(i) · y|FS,σ, Aσ(1), . . . , Aσ(i−1); ǫ) .γ,ν,η,Q ǫ+
1

D
+ e−4µ2N/9, (4.5)

where N = |Ti−1| &λ n. Let us be more explicit about this deduction. First, note that the only
randomness left in the row Aσ(i) corresponds to the choices of 0 and 1 in Aσ(i)|Ti−1 and furthermore,
the fraction of zeros versus ones is constrained to be

t :=
1

2
+

wσ(i−1),σ(i)(S)

N
∈ [1/3, 2/3].

To see this, note that wσ(i−1),σ(i)(S) counts the difference in the number of forced ones in Ti−1 for
Aσ(i−1) and Aσ(i), and the sum of the number of ones in the two rows, when restricted to Ti−1

is |Ti−1| by definition. The inclusion of t in the interval [1/3, 2/3] holds because of the quasi-
randomness condition QQ,R (specifically, Q′′

S). Therefore the random variable Aσ(i) · y, conditioned
on the given information, is a shift of some variable WtN,v (Definition 2.9) where N = |Ti−1| &λ n
and v = y|Ti−1 (and the shift corresponds to the inner product of the remaining coordinates of
Aσ(i−1) and y, which is fixed). Given this, the anticoncentration claim for Aσ(i) · y follows as the
various additional conditions for Lemma 2.10 follow from the fact that i /∈ Y .
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Finally, it follows easily from (4.4) that for µ ≪ν,η,Q 1, which we will be able to ensure, there is
a lower bound on the length of D(y|Ti−1), dependent only on ν, η,Q, for all i /∈ Y .
Tensorization and union bound: From (4.5) applied with ǫ ≥ ǫ0 = 1/D, and noting that

e−4µ2N/9 ≤ 1/D since κ ≥ e−χn (and χ ≪ µ), we have for all i /∈ Y , i ≥ 2 that

L(Aσ(i) · y|FS,σ, Aσ(1), . . . , Aσ(i−1); ǫ) . Kγ,ν,η,Qǫ.

Therefore, a straightforward conditional version of the tensorization inequality [25, Lemma 2.2(1)]
shows that for an absolute constant C > 0,

P

[
‖Ay‖2 ≤ κ+

100µn

D

]
≤ (CK)n−1−4Q

(
κ√
n
+

100µ
√
n

D

)n−1−4Q

≤
(
Cµ

√
n

D

)n−4Q−1

,

using κ ≤ µn/D and changing C between the second and third quantities. Here we implicitly used
that n ≥ 8Q.

Finally, putting everything together, we have

P[QQ,R ∩ ‖Ax(A)‖2 ≤ κ ∩ x(A) ∈ KT ,D,µ|FS,σ]

≤
∑

y∈N
P

[
‖Ay‖2 ≤ κ+

100µn

D

∣∣∣∣FS,σ

]

≤ D3|T |
(
CDµθ−1

√
n

)n

·
(
Cµ

√
n

D

)n−4Q−1

≤ D4Q+4µ−4Q−1(Cµθ)n, (4.6)

changing C between the final two quantities. Note here that C does not depend on µ (or χ), and
that θ > 0 is fixed by the value of λ. Therefore, taking µ sufficiently small yields the desired result
in this case, noting that we have an upper bound D ≤ µn/κ ≤ µneχn and can choose χ sufficiently
small depending on µ.

4.4. Large QCLCD. In this subsection, we will bound the second term on the right hand side of
(4.3), i.e.,

EFS,σ
[P[QQ,R ∩ Cc ∩ S ∩ Iν(y(A), σ) ∩ Jν(x(A), S) ∩QCLCDT

2Q,µn,γ(x(A)) ≥ µn/κ|FS,σ]].

In this case, we will not be able to use a direct union bound argument as in the previous subsection,
and will instead use a variant of an argument given in [19], with the crucial addition of consideration
of arithmetic structure. As before, we will provide an upper bound on the inner probability which
is uniform over the realisations of FS,σ.

Averaging: For any x ∈ S
n−1
0 , we define on the event Jν(x, S) ∩ QQ,R the set SmT (x) to contain

the at most 2Q (by Lemma 3.5) indices i which satisfy ‖D(x|Ti
)‖2 .ν,η,Q

√
n and the 2Q indices

corresponding to the 2Q lowest values of CLCD2Q,µn,γ(x|Ti
). In particular, |SmT (x)| ≤ 4Q.

Thus, on the event Jν(x(A), S) ∩ QQ,R, we have by definition that

1[Iν(y(A), σ)] ≤
1

ν1n− 4Q

n∑

i=1

1[|y(A)σ(i) − y(A)σ(i+1)|
√
n ≥ ν2 ∩ i /∈ SmT (x(A))],

so that on the event QQ,R,

1[Iν(y(A), σ) ∩ Jν(x(A), S) ∩QCLCDT
2Q,µn,γ(x(A)) ≥ µn/κ]

≤ 1

ν1n− 4Q

n−1∑

i=1

1[|y(A)σ(i) − y(A)σ(i+1)|
√
n ≥ ν2 ∩ i /∈ SmT (x) ∩QCLCDT

2Q,µn,γ(x(A)) ≥ µn/κ]

≤ 1

ν1n− 4Q

n−1∑

i=1

1[|y(A)σ(i) − y(A)σ(i+1)|
√
n ≥ ν2 ∩ CLCDT

µn,γ(x(A)|Ti
) ≥ µn/κ

∩ ‖D(x(A)|Ti
)‖2 &ν,η,Q

√
n].
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Using this, and taking probabilities gives

EFS,σ
[P[QQ,R ∩ Cc ∩ S ∩ Iν(y(A), σ) ∩ Jν(x(A), S) ∩QCLCDT

2Q,µn,γ(x(A)) ≥ µn/κ|FS,σ]]

≤ 1

ν1n− 4Q

n−1∑

i=1

P[QQ,R ∩ Cc ∩ S ∩ Iν(y(A), σ) ∩ Jν(x(A), S) ∩QCLCDT
2Q,µn,γ(x(A)) ≥ µn/κ

∩ |y(A)σ(i) − y(A)σ(i+1)|
√
n ≥ ν2 ∩ CLCDµn,γ(x(A)|Ti

) ≥ µn/κ ∩ ‖D(x(A)|Ti
)‖2 &ν,η,Q

√
n].

(4.7)

In the remainder of the proof, we will bound each of the n − 1 probabilities in the above equation
by a constant (depending on γ, η, ν,Q) times κ

√
n+ exp(−Ωλ(n)), which will suffice. Without loss

of generality, we will do this for the index i = 1 (the argument for other indices follows by purely
notational changes).
Partitioning Mn,d: We follow a similar idea as in [19] of partitioning our event space based on
realisations of rows other than Aσ(1), Aσ(2).

More precisely, let H be the set of all possible realizations of FS,σ as well as all elements other
than Aσ(1)|T1 , Aσ(2)|T1 . In particular, given an element in H ∈ H, extending it to an element of
Mn,d amounts to choosing the vector (Aσ(1) − Aσ(2))|T1 , which is a ±1-valued vector with a fixed
sum wσ(1),σ(2)(T1) (note that the sum is fixed by H). For H ∈ H, let CH be the subset of Mn,d

extending H in this manner. Let GH be the subset of CH satisfying

CLCDµn,γ(x(M)|T1) ≥ µn/κ ∩ ‖D(x(M)|T1)‖2 &ν,η,Q

√
n.

Let H0 be the set of H ∈ H such that either GH = ∅ or such that the realisation of FS,σ determined
by H does not satisfy QQ,R. In particular, for each H ∈ H \ H0, we have |GH | ≥ 1. Finally, for

each H ∈ H \H0, let M̃H be a fixed (but otherwise arbitrarily chosen) matrix in GH with smallest
least singular value among all matrices in GH . Then, by the definition of GH , we have

CLCDµn,γ(x(M̃H)|T1) ≥ µn/κ ∩ ‖D(x(M̃H)|T1)‖2 &ν,η,Q

√
n.

Reduction to distance to subspace: Noting that for H ∈ H0, no M ∈ CH can simultaneously
satisfy all three events QQ,R and CLCDµn,γ(x(M)|T1) ≥ µn/κ and ‖D(x(M)|T1)‖2 &ν,η,Q

√
n

appearing in the probability on the right hand side of (4.7), it suffices to bound

P[H /∈ H0 ∩ QQ,R ∩ S ∩ |y(A)σ(1) − y(A)σ(2)|
√
n ≥ ν2 ∩ CLCDµn,γ(x(A)|T1) ≥ µn/κ

∩ ‖D(x(A)|T1)‖2 &ν,η,Q

√
n]. (4.8)

Moreover, on the event S and |y(A)σ(1) − y(A)σ(2)|
√
n ≥ ν2, we have

κ ≥ ‖y(A)TA‖2 =
∥∥∥∥

n∑

i=1

y(A)iAi

∥∥∥∥
2

≥
|y(A)σ(1) − y(A)σ(2)|

2
dist(Aσ(1) −Aσ(2), V ),

where V = span{Aσ(1) +Aσ(2), Ak : k /∈ {σ(1), σ(2)}}. Thus, on S ∩ |y(A)σ(1) − y(A)σ(2)|
√
n ≥ ν2|,

we must have,

dist(Aσ(1) −Aσ(2), V ) ≤ 2κ
√
n

ν2
,

so that the probability in (4.8) is bounded above by

P[H /∈ H0 ∩ QQ,R ∩ CLCDµn,γ(x(A)|T1) ≥ µn/κ ∩ ‖D(x(A)|T1)‖2 &ν,η,Q

√
n

∩ dist(Aσ(1) −Aσ(2), V ) ≤ 2κ
√
n/ν2]. (4.9)

Anti-concentration: At this point, note that if x(A) were independent of (Aσ(1) −Aσ(2))|T1 , and
further, if it were the normal to V , then we would be able to use small-ball concentration of this
relatively unstructured vector (Lemma 2.10) to complete the proof. Unfortunately, we do not have
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these two properties. To overcome this problem, we use [19, Lemma 4.3], which allows us to use a
vector ‘approximately normal’ to the subspace V in order to lower bound dist(Aσ(1) −Aσ(2), V ).

Lemma 4.2 ([19, Lemma 4.3]). With notation as above, letting N denote the (n − 2) × n matrix
obtained by removing rows σ(1), σ(2) from A, and for every w ∈ S

n−1, we have

dist(Aσ(1), V ) ≥
sn(A)|〈Aσ(1) , w〉|

sn(A) + ‖Nw‖2 + |〈Aσ(1) +Aσ(2), w〉|
.

Hence, if ‖Nw‖2 ≤ sn(A) and |〈Aσ(1) +Aσ(2), w〉| ≤ 2sn(A), then dist(Rσ(1), V ) ≥ |〈Aσ(1), w〉|/4.

As we will see, one can take the vector w in the above lemma to be x(M̃H), which only depends
on H ∈ H, and hence, is independent of (Aσ(1) −Aσ(2))|T1 . Indeed, note that any A satisfying the

event in (4.9) is in GH for some H ∈ H, and that by definition, sn(M̃H) ≤ sn(A). Let NH be
the (n− 2)× n matrix obtained by removing the rows σ(1), σ(2) from A, and let sH be the vector

Aσ(1) +Aσ(2)(= (M̃H)σ(1) + (M̃H)σ(2)); as the notation suggests, both NH and sH depend only on
H. We have

‖NHx(M̃H)‖2 ≤ ‖M̃Hx(M̃H)‖ = sn(M̃H) ≤ sn(A),

|〈sH , x(M̃H)〉| ≤ |〈(M̃H )σ(1) + (M̃H)σ(2), x(M̃H )〉| ≤ 2sn(M̃H) ≤ 2sn(A).

Therefore, Lemma 4.2 shows that

dist(Aσ(1), V ) ≥ |〈Aσ(1), x(M̃H)〉|/4.
Noting that dist(Aσ(1) −Aσ(2), V ) = 2dist(Aσ(1), V ), which is readily seen using Aσ(1) +Aσ(2) ∈ V ,
it follows from the above equation that the probability in (4.9) is bounded above by

P[H /∈ H0 ∩ QQ,R ∩ |〈x(M̃H), Aσ(1)〉| ≤ 4κ
√
n/ν2] (4.10)

Finally, since by the definition of GH , we have

CLCDµn,γ(x(M̃H)|T1) ≥ µn/κ ∩ ‖D(x(M̃H)|T1)‖2 &ν,η,Q

√
n,

it follows from Lemma 2.10 (in the same manner as (4.5), provided that we first reveal H and then
look at the remaining randomness in Aσ(1)) that the probability in (4.10) is bounded above by

4Cκ
√
n

ν2
+

Cκ

µn
+ Ce−Ωλ(n),

where C depends only on γ, η, ν,Q. This completes the proof.
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