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Abstract. A k-universal permutation, or k-superpermutation, is a permutation that contains
all permutations of length k as patterns. The problem of finding the minimum length of a k-
superpermutation has recently received significant attention in the field of permutation patterns.
One can ask analogous questions for other classes of objects. In this paper, we study k-supertrees.
For each d ≥ 2, we focus on two types of rooted plane trees called d-ary plane trees and [d]-trees.
Motivated by recent developments in the literature, we consider “contiguous” and “noncontiguous”
notions of pattern containment for each type of tree. We obtain both upper and lower bounds on
the minimum possible size of a k-supertree in three cases; in the fourth, we determine the minimum
size exactly. One of our lower bounds makes use of a recent result of Albert, Engen, Pantone, and
Vatter on k-universal layered permutations.

1. Introduction

1.1. Background. Let Sn denote the set of permutations of the set [n] = {1, . . . , n}. We write
permutations as words in one-line notation. Given µ ∈ Sm, we say that the permutation σ =
σ1 · · ·σn ∈ Sn contains the pattern µ if there are indices i1 < · · · < im such that σi1 · · ·σim has
the same relative order as µ. Otherwise, we say that σ avoids µ. Consecutive pattern containment
and avoidance are defined similarly by requiring the indices i1, . . . , im to be consecutive integers.
An enormous amount of research in the past half-century has focused on pattern containment and
pattern avoidance in permutations [7, 30, 31]. Plenty of particularly popular permutation pattern
problems possess the following form:

What is the minimum length of a permutation that contains all patterns of a certain type?

For example, one can ask for the smallest size of a permutation containing all length-k patterns;
such a permutation is often called a k-universal permutation or a k-superpermutation [4, 20, 32].
The analogous question for consecutive pattern containment has also received attention [5,27–29].
Rather than discuss all of the variants of this problem that have emerged, we refer the reader to
the beautiful article [19], which surveys many of the results in this area.

In recent years, the notion of pattern containment has spread to other combinatorial objects. It
is natural to ask about the minimum possible sizes of “universal objects” in these contexts. This
idea dates back to 1964, when Rado [34] asked for the minimum number of vertices in a graph that
contains all k-vertex graphs as induced subgraphs. A vast amount of literature has been devoted
to “Rado’s problem” alone (see [2, 3, 8, 9, 21] and the references therein).

In this paper, we focus on rooted plane trees. Several variations on the theme of contiguous and
noncontiguous pattern containment in rooted plane trees have appeared in [6, 15,18,23–25,33,35].
The purpose of the present article is to investigate the minimum possible size of a k-universal tree,
or k-supertree, in some of these contexts. Similar questions about universal trees have been studied
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since the 1960’s [10–14, 26]. However, our notions of universal rooted plane trees are new and are
inspired by more recent definitions of pattern containment in trees.

1.2. Main Definitions and Terminology. Let d ≥ 2 be an integer. A d-ary plane tree is either
an empty tree or a root vertex with d subtrees that are linearly ordered from left to right and are
themselves d-ary plane trees. A 2-ary plane tree is also called a binary plane tree. Note that the
subtrees of a vertex can be empty. By the “ith subtree” of a vertex, we simply mean the ith subtree
from the left. We say an edge has “type i” if it connects a vertex to the root of its ith subtree.
A d-ary plane tree is called full if every vertex has either 0 or d children (or, equivalently, if only
leaves have empty subtrees).

Every connected induced subgraph T ∗ of a d-ary plane tree T can be viewed as a d-ary plane
tree in the obvious way. If T ∗ is isomorphic as a d-ary plane tree to another d-ary plane tree T ,
then we say that T ∗ is a contiguous embedding of T in T and that T contiguously contains T . For
example, the 3-ary plane tree

contiguously contains but does not contiguously contain .

Rowland [35] defined contiguous pattern containment in full binary plane trees, and the authors
of [25] made a similar definition for full 3-ary plane trees. In general, for any k ≥ 0, the operation
of removing (pruning) all leaves provides a natural bijection from the set of full d-ary plane trees
with dk + 1 vertices to the set of d-ary plane trees with k vertices. Using this bijection, one can
easily see that our definition of contiguous pattern containment for d-ary plane trees corresponds
to the definitions in [25, 35] when d ∈ {2, 3}. Our formulation has the advantage of working with
smaller trees so that diagrams are not cluttered with unnecessary leaves.

Given a vertex u in a d-ary plane tree, let χ(u) be the set of all i ∈ [d] such that u has a nonempty
ith subtree. Suppose e is an edge of type i that connects u to one of its children v (meaning i ∈ χ(u)).
We can consider the operation of contracting the edge e. We call this operation a legal contraction
if every element of χ(u) \ {i} is either strictly smaller than min(χ(v)) or strictly greater than
max(χ(v)). Informally speaking, this definition ensures that edges do not “overlap” or “cross” each
other during a legal contraction. After legally contracting an edge in a d-ary plane tree, we are
left with a new d-ary plane tree. Given d-ary plane trees T and T , we say that T noncontiguously
contains T if we can obtain T from T through a sequence of legal edge contractions. For example,
the 3-ary plane tree

noncontiguously contains but does not noncontiguously contain .

When d = 2, we can use the pruning bijection mentioned above to show that our definition of
noncontiguous pattern containment in binary plane trees is consistent with the notion considered
in [15,33].

Given a set S of positive integers, an S-tree is a rooted tree in which the children of each vertex
are linearly ordered from left to right and the number of children of each vertex is an element
of S ∪ {0}. One can think of a [d]-tree as a tree obtained from a d-ary plane tree by forgetting
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about empty subtrees and the types of edges. What we term [2]-trees are more commonly called
“unary-binary trees” or “Motzkin trees.”

Every connected induced subgraph T ∗ of a [d]-tree T is itself a [d]-tree. If T ∗ is isomorphic as a
[d]-tree to another [d]-tree T , then we say that T ∗ is a contiguous embedding of T in T and that T
contiguously contains T . For example, the [3]-tree

contiguously contains but does not contiguously contain .

Suppose e is an edge in a [d]-tree that connects a vertex u to one of its children v. If the total
number of children of u and v, excluding v itself, is at most d, then the operation of contracting
the edge e is a legal contraction. Note that if v′ was a child of u to the left (respectively, right)
of v, then v′ remains to the left (respectively, right) of the children of v after we legally contract
e. After legally contracting an edge in a [d]-tree, we are left with a new [d]-tree. Given [d]-trees T
and T , we say that T noncontiguously contains T if we can obtain T from T through a sequence
of legal edge contractions. For example, the [3]-tree

noncontiguously contains but does not noncontiguously contain .

A contiguous k-universal d-ary plane tree is a d-ary plane tree that contiguously contains all
d-ary plane trees with k vertices. Similarly, a noncontiguous k-universal d-ary plane tree is a d-
ary plane tree that noncontiguously contains all d-ary plane trees with k vertices. Let N con

d-ary(k)

(respectively, Nnon
d-ary(k)) denote the minimum number of vertices in a contiguous (respectively,

noncontiguous) k-universal d-ary plane tree. Contiguous and noncontiguous k-universal [d]-trees
are defined analogously. We refer to k-universal trees as “k-supertrees” when the type of tree and
the type of containment are clear from context. Let N con

[d] (k) (respectively, Nnon
[d] (k)) denote the

minimum number of vertices in a contiguous (respectively, noncontiguous) k-universal [d]-tree.

We say the root of a rooted plane tree has depth 0; a nonroot vertex has depth r if its parent
has depth r− 1. The height of a rooted plane tree is the maximum depth of its vertices. We write

|T | for the number of vertices in T . The perfect tree P
(d)
h is the unique d-ary plane tree of height

h that has exactly dr vertices of depth r for each r ∈ {0, . . . , h}.

It will be useful to have a formally defined “gluing” operation for combining trees. Suppose T is
a rooted plane tree and v is a leaf of T . If T ′ is another rooted plane tree (of the same type as T ,
of course), then we can glue T ′ to v by attaching T ′ to T , where we identify the root of T ′ with v.
For example, if T and v are

and T ′ is , then the result of gluing T ′ to v is .

1.3. Main Results. Let η2 = 1, and let ηd = 1
2 for every d ≥ 3. In Section 3, we will define numbers

ρd, which arise as reciprocals of roots of certain polynomials. The purpose of the subsequent sections
is to prove the following estimates (where d ≥ 2 is a fixed integer):
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(I) N con
d-ary(k) = dk−1 + k − 1;

(II) ηd k log2(k)(1 + o(1)) ≤ Nnon
d-ary(k) ≤ k

1
2
log2(k)(1+o(1));

(III) d
k−2
d ≤ N con

[d] (k) ≤ (ρd + o(1))k;

(IV)
ηd
d
k log2(k)(1 + o(1)) ≤ Nnon

[d] (k) ≤ k
1
2
log2(k)(1+o(1)).

Some remarks are in order regarding these estimates. First of all, note that it is unusual to be
able to prove an exact formula for the minimum size of a universal object, as we have done in
(I). Next, a contiguous k-universal d-ary plane (respectively, [d]-) tree is certainly also a noncon-
tiguous k-universal d-ary plane (respectively, [d]-) tree, so we trivially have N con

d-ary(k) ≥ Nnon
d-ary(k)

and N
con(k)
[d] ≥ N

non(k)
[d] . Furthermore, one can change a d-ary plane tree into a [d]-tree by simply

forgetting about empty subtrees and edge types. Doing so allows us to view a contiguous (respec-
tively, noncontiguous) k-universal d-ary plane tree as a contiguous (respectively, noncontiguous)
k-universal [d]-tree. Therefore, it follows from (I) that Nnon

d-ary(k), N con
[d] (k), and Nnon

[d] (k) are all at

most dk−1 + k − 1. However, the upper bounds in (II), (III), and (IV) greatly improve upon this
observation. Indeed, the upper bounds in (II) and (IV) are subexponential in k, and the base of
the exponential in the upper bound in (III) is much smaller than d. In Section 3, we will see that

ρd = 1+ 4 log d
d (1+o(1)) as d→∞. Compare this with the exponential lower bound in (III), in which

the base of the exponential is d1/d = 1+ log d
d (1+o(1)). Finally, note that since Nnon

[d] (k) ≤ N con
[d] (k),

we could deduce immediately from (III) that Nnon
[d] (k) ≤ (ρd + o(1))k. However, the subexponential

upper bound in (IV) greatly improves upon this. Similarly, the lower bound in (III) beats the lower
bound in (IV). We will show in Section 3 that Nnon

d-ary(k) and Nnon
[d] (k) differ by at most a constant

factor (for each fixed d); this fact explains why (II) and (IV) look similar.

Producing nontrivial lower bounds for the sizes of noncontiguous k-universal trees is fairly dif-
ficult; this is analogous to the permutation setting, where nontrivial lower bounds are scarce. For
example, the best known lower bound for the length n of a permutation that contains all length-k
patterns is given by n ≥ k2/e2; this is a consequence of the simple observation that

(
n
k

)
≥ k!. The

number of d-ary plane trees with k vertices is 1
(d−1)k+1

(
dk
k

)
, so a similar argument in our setting

shows that
(Nnon

d-ary(k)

k

)
≥ 1

(d−1)k+1

(
dk
k

)
. This translates to a lower bound of roughly dk for Nnon

d-ary(k).

Although many of the lower bounds in the (noncontiguous) permutation setting are trivial, there is
a noteworthy exception: Albert, Engen, Pantone, and Vatter managed to obtain an explicit formula
for the minimum length of a permutation that (noncontiguously) contains all length-k layered per-
mutations. Making use of a bijection between 231-avoiding permutations and binary plane trees,
we will invoke this result in order to prove the lower bound in (II).

2. d-ary plane trees

2.1. Contiguous containment. In the case of contiguous containment for d-ary plane trees, we
obtain the exact size of the smallest k-supertree. The upper bound comes from an explicit con-
struction, and the lower bound comes from considering the family of paths.

Theorem 2.1. For all integers d ≥ 2 and k ≥ 1, we have N con
d -ary(k) = dk−1 + k − 1.
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Proof. We first show that dk−1 + k − 1 is a lower bound for the size of a k-supertree. Let T be
a contiguous k-universal d-ary plane tree. Let T1, . . . , Tdk−1 be the d-ary plane trees on k vertices
in which each nonleaf vertex has exactly one child (i.e., the d-ary plane trees that are paths on
k vertices). For each i ∈ {1, . . . , dk−1}, there is a contiguous embedding T ∗i of Ti in T. Let v∗i
denote the vertex in T that corresponds to the unique leaf of Ti under this embedding. Starting
at v∗i and tracing up k − 1 edges, we immediately recover all of the edges of T ∗i , so the location of
v∗i in T completely determines the isomorphism class of T ∗i . Because the trees T ∗1 , . . . , T

∗
dk−1 are

pairwise nonisomorphic, the vertices v∗1, . . . , v
∗
dk−1 are pairwise distinct. Thus, T contains at least

dk−1 vertices at depth at least k− 1. Since T contains vertices at depth k− 1, it must also contain
at least one vertex at each depth j for 0 ≤ j ≤ k − 2. This gives at least k − 1 additional vertices,
so T contains at least dk−1 + k − 1 vertices, as desired.

We now construct a contiguous k-universal d-ary plane tree ∆d(k) on exactly dk−1+k−1 vertices.
First, the tree ∆d(1) consists of a single vertex. Now, consider k ≥ 2. To construct ∆d(k), first
consider a d-ary plane tree that is a path on k − 1 vertices in which every edge is of type 1. Let v

denote the unique leaf of this path. For each 2 ≤ i ≤ d, attach a copy of the perfect tree P
(d)
k−2 in

the ith subtree of v. (Recall the definition of perfect trees from the introduction.) Note that each of
these d− 1 added trees contains exactly 1 +d+ · · ·+dk−2 vertices, which means that together they

have dk−1 − 1 vertices in total. Next, consider the leftmost leaf in the copy of P
(d)
k−2 that is sitting

in the second subtree of v. Add one more vertex in the first subtree of this leaf. The resulting tree
∆d(k) has the desired number of edges. See Figure 1 for an example.

Figure 1. The tree ∆3(4) is depicted on the right. This tree contiguously contains
all 3-ary plane trees on 4 vertices, three of which are shown on left.

Finally, we show that ∆d(k) is in fact a k-supertree. Fix any d-ary plane tree T with k vertices.

If T is not a path, then it has height at most k−2, so it fits into one of the copies of P
(d)
k−2. If T is a

path whose edges are all of type 1, then we can embed T in ∆d(k) by mapping the root of T to the
root of the second subtree (i.e., the leftmost nonempty subtree) of v. Now, suppose T is a path in
which at least one edge is not of type 1. Let m be the smallest element of {1, . . . , k − 1} such that
the mth edge from the top of T is not of type 1. We can embed T into ∆d(k) by mapping the unique
vertex in T of depth m− 1 to v. This exhausts all cases and shows that ∆d(k) is k-universal. �

2.2. Noncontiguous containment.

2.2.1. Lower bounds. Recall that η2 = 1 and ηd = 1
2 for all d ≥ 3. In this subsection we will prove

the following theorem.

Theorem 2.2. For all integers d ≥ 2 and k ≥ 1, we have

Nnon
d -ary(k) ≥ ηd

(
(k + 1) dlog2(k + 1)e − 2dlog2(k+1)e + 1

)
.
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The first step is to show that it suffices to consider the specific case in which d = 2.

Proposition 2.3. For all integers d ≥ 3 and k ≥ 1, we have

Nnon
d -ary(k) >

1

2
Nnon

2 -ary(k).

Proof. Fix d ≥ 3, and consider the d-ary plane tree path on m vertices in which every edge has
type 1. Place a single child in the dth subtree of each nonleaf vertex in this path to obtain a new
d-ary plane tree, which we call Jm.

Let T be a d-ary plane tree. Choose a vertex v1 of T that has at least 3 children, say exactly
m1 children. Replace v1 with a copy of Jm1 in the following manner. Detach the subtrees of v1,
and glue Jm1 to v1. Then glue the (detached) ith nonempty subtree (counted from the left) of v1
to the ith leaf (again counted from the left) of the copy of Jm1 . Choose another vertex v2 that has
m2 ≥ 3 children, and replace it in the same fashion with a copy of Jm2 . Continue this process until

reaching a tree T̃ in which each vertex has at most 2 children. We can naturally associate T̃ with

a binary plane tree T̃ ′. If there is an only child of type 1 in T̃ , it becomes an only child of type 1 in

T̃ ′. If there is an only child of type other than 1 in T̃ , it becomes an only child of type 2 in T̃ ′. See

Figure 2 for an example when d = 4. Our construction guarantees that T̃ noncontiguously contains
T , so it also noncontiguously contains every d-ary plane tree that T noncontiguously contains.

Figure 2. Transforming T into T̃ ′. We have used the color red to indicate the
edges of the inserted copy of Jmi added in the ith step.

Let T be a noncontiguous k-universal d-ary plane tree with α = Nnon
d -ary(k) vertices. The tree T̃

obtained via the above construction is also a noncontiguous k-universal d-ary plane tree, so T̃′ is a

noncontiguous k-universal binary plane tree. The trees T̃ and T̃′ have the same number of vertices,
say β. We know that β ≥ Nnon

2 -ary(k). We will show that β < 2α, establishing the desired result.

Let fr denote the number of vertices in T with exactly r children. We obtained T̃ from T
by substituting a copy of Jm for each vertex v of T with m ≥ 3 children. Note that each such

substitution increased the number of vertices in the tree by m−2. Thus, β = α+
∑d

m=3(m−2)fm.

We know that
∑d

m=0 fm = α. Furthermore, counting the α−1 edges in T according to the number

of children of their parent vertices gives α− 1 =
∑d

m=0mfm. Consequently,

β = α+

d∑
m=3

(m− 2)fm = α+ 2f0 + f1 +

d∑
m=0

(m− 2)fm

= α+ 2f0 + f1 + (α− 1)− 2α = 2f0 + f1 − 1 < 2
d∑

m=0

fm = 2α. �
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For the proof of Theorem 2.2, it now remains only to show that

(1) Nnon
2-ary(k) ≥ (k + 1) dlog2(k + 1)e − 2dlog2(k+1)e + 1.

Let us first establish some terminology and notation concerning labeled trees and tree traversals.

Let PT
(2)
n denote the set of binary plane trees with n vertices. A decreasing binary plane tree is

a binary plane tree whose vertices are labeled with distinct positive integers so that the label of

each nonroot vertex is smaller than the label of its parent. Let DPT
(2)
n be the set of decreasing

binary plane trees with n vertices in which the labels form the set [n]. We can read the labels of
a decreasing binary plane tree in in-order by first reading the labels of the left subtree of the root
in in-order, then reading the label of the root, and finally reading the labels of the right subtree
of the root in in-order. Let I(Υ) denote the in-order reading of the decreasing binary plane tree

Υ. The map I : DPT
(2)
n → Sn is a bijection [7, Chapter 8]. Alternatively, we can read the labels

of a decreasing binary plane tree in postorder by first reading the labels of the left subtree of the
root in postorder, then reading the labels of the right subtree of the root in postorder, and finally
reading the label of the root.

For each unlabeled tree T ∈ PT
(2)
n , there is a unique way to label the vertices of T so that the

resulting labeled tree ω(T ) ∈ DPT
(2)
n has postorder reading 123 · · ·n (the increasing permutation).

This gives us a map ω : PT
(2)
n → DPT

(2)
n . Let ψ(T ) = I(ω(T )). It is not difficult to check that the

permutation ψ(T ) avoids the pattern 231. In fact, we have the following useful proposition.

Proposition 2.4. The map ψ is a bijection from the set of binary plane trees with n vertices to the
set of 231-avoiding permutations in Sn. If T is a binary plane tree that noncontiguously contains
the binary plane tree T , then the permutation ψ(T ) contains the pattern ψ(T ).

Proof. The map ψ is injective because ω and I are injective. The first statement of the proposition
now follows from the fact that the number of binary plane trees with n vertices and the number of
231-avoiding permutations in Sn are both equal to the nth Catalan number.1

To prove the second statement, we need to understand the effect of legal edge contractions on

the corresponding permutations. Let T ∈ PT
(2)
n be a binary plane tree, and let e be an edge of

T that can be legally contracted. Let a and b be, respectively, the labels of the upper and lower

endpoints of e in ω(T ). Let T /e ∈ PT
(2)
n−1 denote the tree that is obtained by contracting the edge e

in T . One can check that if e is a type-1 edge, then ψ(T /e) is the permutation obtained by deleting
the entry b from ψ(T ) and then normalizing to obtain a permutation in Sn−1. Similarly, if e is a
type-2 edge, then ψ(T /e) is the permutation obtained by deleting the entry a from ψ(T ) and then
normalizing. In either case, ψ(T ) contains ψ(T /e) as a pattern. If T noncontiguously contains a
binary plane tree T (meaning T is obtained from T via a sequence of legal edge contractions), then
ψ(T ) contains ψ(T ) as a pattern. �

Let us illustrate the proof of the second statement of Proposition 2.4 with an example. If

T is , then ω(T ) is
1

2

6

7

54

3

8

, and ψ(T ) = I(ω(T )) = 17324658.

1The first statement of this proposition is not new; it is essentially equivalent to the fact that a permutation is
1-stack-sortable if and only if it avoids 231 (see one of the references [7, 16,17] for more details).



8

Contracting the edge labeled e, we find that

T/e is , ω(T/e) is 1

2

3 4

5

6

7

, and ψ(T/e) = I(ω(T/e)) = 1632547.

Note that since e is a left edge, the permutation ψ(T/e) = 1632547 is obtained by deleting the
entry b = 4 from the permutation ψ(T ) = 17324658 and then normalizing.

We can finally deduce inequality (1). Suppose T is a noncontiguous k-universal binary plane tree
with Nnon

2-ary(k) vertices. Proposition 2.4 tells us that ψ(T ) contains every 231-avoiding permutation

in Sk. A permutation is called layered if it avoids both 231 and 312. Thus, ψ(T ) is a permutation
of length Nnon

2-ary(k) that contains all layered permutations in Sk. The authors of [1] proved that the

minimum size of a permutation that contains all layered permutations in Sk is (k+1) dlog2(k + 1)e−
2dlog2(k+1)e + 1. This establishes (1) and hence completes the proof of Theorem 2.2.

2.2.2. Upper bounds. For every d ≥ 2 and k ≥ 1, we now construct a noncontiguous k-universal
d-ary plane tree ξd(k). The construction is natural but fairly intricate. We begin by defining a
few specific d-ary plane trees that will form the building blocks in our construction of ξd(k). The
d-crescent is the path on d+ 1 vertices in which the vertex at depth i is connected to its parent by
an edge of type i. Now, take three copies of the d-crescent. Remove the lowest vertex from the first
of these d-crescents, and glue the remaining tree to the vertex of depth 1 in the second crescent.
Next, remove the root vertex from the third d-crescent, and glue the remaining tree to the root of
the second d-crescent. We call the resulting tree the d-vertebra and denote it by Vd. Note that Vd
has exactly 3 leaves, which we call the left, center, and right leaves (in the obvious fashion).

Figure 3. From left to right: the 3-crescent; the 3-vertebra V3, with the left, center,
and right leaves labeled `, c, and r (respectively); and the 2nd 3-spine.

For m ≥ 1, we obtain the mth d-spine by consecutively gluing m copies of the d-vertebra Vd
under a single copy of the d-crescent: the first Vd is glued to the single leaf of the d-crescent, and
each subsequent Vd is glued to the center leaf of the previous Vd. We speak of the first, second, etc.
d-vertebra beginning with the highest one.

At last, we recursively define the families ξd(k). We first describe the following base cases:

• Let ξd(1) consist of a single vertex.
• Let ξd(2) be the d-crescent.
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• Obtain ξd(3) from a d-crescent by giving the leaf d children (one in each position).

The construction for larger k is recursive and differs for d = 2 and d > 2. (The d = 2 construction
is a slight improvement on the d > 2 construction.) If d = 2, then for k ≥ 4, we obtain ξ2(k) from

the
(⌊

k
2

⌋
− 1
)th

2-spine as follows:

(1) For each 1 ≤ i ≤
⌊
k
2

⌋
− 2, glue a copy of ξ2(i) to each of the left and right leaves of the ith

2-vertebra.
(2) Glue a copy of ξ2(

⌊
k
2

⌋
− 1) to the right leaf of the

(⌊
k
2

⌋
− 1
)th

(i.e., lowest) 2-vertebra.

(3) Glue a copy of ξ2(
⌈
k
2

⌉
− 1) to the left leaf of the

(⌊
k
2

⌋
− 1
)th

2-vertebra.

(4) Glue a copy of ξ2(
⌈
k
2

⌉
) to the center leaf of the

(⌊
k
2

⌋
− 1
)th

2-vertebra.

If d > 2, then for k ≥ 4, we obtain ξd(k) from the
⌊
k
2

⌋th
d-spine as follows:

(1) For each 1 ≤ i ≤
⌊
k
2

⌋
− 2, glue a copy of ξd(i) to each of the left and right leaves of the ith

d-vertebra.
(2) Glue a copy of ξd(

⌊
k
2

⌋
−1) to the right leaf of the

(⌊
k
2

⌋
− 1
)th

(i.e., second-lowest) d-vertebra.

(3) Glue a copy of ξd(
⌈
k
2

⌉
− 1) to the left leaf of the

(⌊
k
2

⌋
− 1
)th

d-vertebra.

(4) Glue a copy of ξd(
⌈
k
2

⌉
) to the center leaf of the

⌊
k
2

⌋th
(i.e., lowest) d-vertebra.

(5) Glue a copy of ξd
(⌊

k+1
4

⌋)
to each of the left and right leaves of the

⌊
k
2

⌋th
d-vertebra.

For k ≥ 4, the tail of ξd(k) is the copy of ξd(
⌈
k
2

⌉
) that is glued to the center leaf of the bottom of

the spine in step (4) (in both the d = 2 and d > 2 constructions). Figure 4 shows ξ2(k) for some
small values of k.

Figure 4. The trees ξ2(k) for 1 ≤ k ≤ 5, along with ξ2(9). In ξ2(4), ξ2(5), and
ξ2(9), the pink edges represent the spine. The orange edges represent the copies of
the previously-constructed trees that are glued to the spine, and the green edges
represent the tail.

We now show that ξd(k) noncontiguously contains every d-ary plane tree with k vertices. The
big-picture idea is that we can “siphon off” small subtrees of the tree that we are trying to contain
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until what remains fits into the tail. Many of the arguments are the same for d = 2 and d > 2,
so we present the proofs together. The reader may find it helpful to bear in mind the example of
ξ2(9) (as shown in Figure 4).

Theorem 2.5. For all integers d ≥ 2 and k ≥ 1, the tree ξd(k) noncontiguously contains every
d-ary plane tree with k vertices.

Proof. Fix d. We proceed by strong induction on k. The statement is obviously true for k ≤
3. Now, consider k ≥ 4. Let T be a d-ary plane tree on k vertices. We will show that ξd(k)
noncontiguously contains T by showing that ξd(k) noncontiguously contains a larger tree T ′, which
in turn noncontiguously contains T .

We construct T ′ from T by defining a finite sequence of pairs (Ti, vi), where Ti is a tree and vi
is a vertex of Ti; we then let T ′ be the last Ti. We will see that we can naturally view the vertices
v0, . . . , vi as vertices in the tree Ti+1. In particular, we can view all of the vertices vi as vertices
in the last tree T ′. First, let T0 = T , and let v0 be the root of T0. If at any time the subtree in
Ti below vi (including vi itself) contains at most

⌈
k
2

⌉
vertices, then the sequence terminates. As

long as this situation is not achieved, we obtain (Ti+1, vi+1) from (Ti, vi) as follows. If vi has only
a single child, then we let vi+1 denote this child and let Ti+1 = Ti. If vi has exactly 2 children,
then we let vi+1 denote the child with the larger subtree (breaking ties with preference for the right
child) and let Ti+1 = Ti.

Otherwise, vi has at least 3 children. (This possibility of course pertains only to d > 2.) We
consider the leftmost and rightmost nonempty subtrees of vi and obtain Ti+1 by performing the
following operations. If the leftmost nonempty subtree contains fewer vertices than the rightmost
nonempty subtree or these two subtrees contain the same number of vertices, then detach all of
the subtrees of vi except the leftmost nonempty one, add a new child vi+1 in the dth subtree of vi
via a red edge of type d, and reattach the detached subtrees as new subtrees of vi+1 (so that the
reattached edges have the same types that they originally had). If the rightmost nonempty subtree
contains fewer vertices than the leftmost nonempty subtree, then detach all of the subtrees of vi
except the rightmost nonempty one, add a new child vi+1 in the 1st subtree of vi via a red edge of
type 1, and reattach the detached subtrees as new subtrees of vi+1.

Figure 5. An illustration of the sequence transforming T into T ′, where d = 3 and
k = 10. We also have s0 = 2, s1 = 0, and s2 = 1.

This sequence terminates in some (Tm, vm) with 1 ≤ m ≤
⌊
k
2

⌋
since each vi+1 has strictly fewer

vertices below it than vi. Note that each Ti is either the same as Ti+1 or else can be obtained
from Ti+1 by (legally) contracting the added red edge between vi and vi+1. In particular, T ′

noncontiguously contains T . (When d = 2, T ′ equals T because we did not add any red edges.)
Each vertex vi, for 0 ≤ i ≤ m − 1, has at most 2 children in T ′. When vi has exactly 2 children
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in T ′, we think of the subtree containing vi+1 as continuing down the main “trunk” of T ′ and the
other (smaller) subtree, which we call τi, as “branching off.” In this case, we let si = |τi|. If vi
has only 1 child, then we let si = 0. Note that the difference between the number of non-red edges
below vi and the number of non-red edges below vi+1 is given by

1, if vi has only a single child in T ′

si, if vi has two children in T ′ and the edge between vi and vi+1 is red

si + 1, if vi has two children in T ′ and the edge between vi and vi+1 is not red.

We can write this number of non-red edges more concisely as

(2)

{
max{1, si}+ 1, if vi has two children and the edge between vi and vi+1 is not red

max{1, si}, otherwise.

This characterization will be useful later. Now, we condition on m: if m = 1, then it is in fact
easier to embed T in ξd(k) directly; if m > 1, then we describe the embedding of T ′ in ξd(k).

First, suppose m = 1, i.e., the algorithm terminates after a single step. If k is even, then the
root of T must have two children, with k

2 and k
2 − 1 vertices, respectively. We identify the root

of T with the top vertex of the
(
k
2 − 1

)th
vertebra. If the subtree with k

2 − 1 vertices is the right

(respectively, left) child of the root, then we can embed this subtree in the copy of ξd
(
k
2 − 1

)
that

is attached to the right (respectively, left) leaf of the
(
k
2 − 1

)th
vertebra; and we embed the subtree

with k
2 vertices in the copy of ξd

(
k
2

)
in the tail. (We have used the inductive hypothesis that ξd(κ)

is actually a κ-supertree for all κ < k.) If k is odd, then there are two possibilities for the subtrees
of the root of T .

(i) There are two subtrees, each with k−1
2 vertices. We identify the root of T with the top vertex

of the
(
k−3
2

)th
vertebra. We can embed the left subtree in the copy of ξ2

(
k−1
2

)
that is attached

to the left leaf of the
(
k−3
2

)th
vertebra, and we can embed the right subtree in the tail.

(ii) There are two subtrees, with k−3
2 and k+1

2 vertices, respectively. If the subtree with k−3
2

vertices is the right (respectively, left) child of the root, then we can embed this subtree in the

right (respectively, left) tree that is glued to the
(
k−3
2

)th
vertebra; and we embed the subtree

with k+1
2 vertices in the tail.

We now turn to the case m > 1. We will describe how to noncontiguously embed T ′ into ξd(k).
We first define functions f2 : {0, . . . ,m} → {0, . . . ,

⌊
k
2

⌋
} and f>2 : {0, . . . ,m} → {0, . . . ,

⌊
k
2

⌋
+ 1}

that, roughly speaking, tell us how far down ξd(k) to embed each vi. Unsurprisingly, f2 will be for
the d = 2 case, and f>2 will be for the d > 2 case. In what follows, we will write f∗ in statements
that apply to both f2 and f>2. Let f2(0) = f>2(0) = s0. For 1 ≤ i ≤ m− 1, let

f2(i) = max{f2(i− 1) + 1, si} and f>2(i) = max{f>2(i− 1) + 1, si}.
Finally, let f2(m) =

⌊
k
2

⌋
and f>2(m) =

⌊
k
2

⌋
+ 1. We will see that f∗ is strictly increasing and in

fact has the claimed codomain; before establishing these facts, we show that they will let us embed
T ′ in ξd(k).

For each 0 ≤ i ≤ m, we identify vi with a vertex of ξd(k) as follows. For the d = 2 case, we
identify vi with: the root of ξ2(k) if f2(i) = 0; the topmost vertex in the f2(i)

th vertebra of ξ2(k)
if 1 ≤ f2(i) ≤

⌊
k
2

⌋
− 1; and the topmost vertex of the tail if f2(i) =

⌊
k
2

⌋
. For the d > 2 case, we

identify vi with: the root of ξd(k) if f>2(i) = 0; the topmost vertex in the f>2(i)
th vertebra of ξd(k)

if 1 ≤ f>2(i) ≤
⌊
k
2

⌋
; and the topmost vertex of the tail if f>2(i) =

⌊
k
2

⌋
+ 1.
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Consider any i with si > 0 and f∗(i) ≤
⌊
k
2

⌋
− 1. If τi is the left subtree of vi, then the inductive

hypothesis and the definition of f∗ guarantee that we can embed τi into the copy of ξd(f∗(i)) that
is glued to the left leaf of the f∗(i)

th vertebra. Contract this glued subtree to a copy of τi; then
contract the right subtree of this vertebra to a point; then contract the vertebra itself to the edge
connecting vi to τi and one other edge below vi of the same type as the edge connecting vi and
vi+1 in T ′. The exact same procedure can be done in the case where τi is the right subtree of vi.
If si = 0 and i 6= m, then we contract everything in the f∗(i)

th vertebra except for a single edge
of the type that connects vi and vi+1 in T ′. Things are even easier for i > 0 with si = 0 and
f∗(i) ≤

⌊
k
2

⌋
− 1: in this case, we simply embed the (unique) edge below vi in the “center” crescent

of the ith vertebra (i.e., the crescent whose bottom is the center leaf of the vertebra). When i = 0
and s0 = 0, we embed this edge into the crescent at the top of the spine.

For d = 2, we finish by contracting the tail of ξ2(k) to a copy of the tree below vm in T ′. This
completes the contraction of ξ2(k) to T ′, which, as remarked earlier, can be further contracted to
T . Now, we turn to d > 2. We will later show that if f>2(m − 1) =

⌊
k
2

⌋
, then sm−1 ≤

⌊
k+1
4

⌋
, so

we can embed τm−1 at the level of the
⌊
k
2

⌋th
d-vertebra as in the previous paragraph. And then we

contract the tail of ξd(k) to a copy of the tree below vm in T ′, which completes the contraction of
ξd(k) to T ′.

The next order of business is showing that f2 and f>2 have the desired properties for the em-
bedding described above. We first show that f2(m − 1) ≤

⌊
k
2

⌋
− 1 and f>2(m − 1) ≤

⌊
k
2

⌋
. Both

functions are strictly increasing on i ≤ m− 1, so this will also prove that they are injective. Easy
induction on r shows that

f∗(r) ≤
r∑
i=0

max{1, si},

with equality exactly when s0 ≥ 1 and si ≤ 1 for all 1 ≤ i ≤ r. In particular,

(3) f∗(m− 2) ≤
m−2∑
i=0

max{1, si}.

At the same time, recall that max{1, si} is controlled by the number of edges of T (non-red edges
of T ′) that “peel away” at the vertex vi (compare with (2)), so the condition for the termination
of the sequence (Ti, vi) implies that

(4)

m−2∑
i=0

max{1, si} ≤
⌊
k
2

⌋
− 1.

This immediately implies the claim about f>2(m− 1).

Next, we can show that the inequalities (3) and (4) cannot both be tight for d = 2; this will imply
that f2(m− 2) ≤

⌊
k
2

⌋
− 2, and the inequality f2(m− 1) ≤

⌊
k
2

⌋
− 1 will immediately follow from the

definition of f2. To see that this improvement is in fact achieved, note that the first condition in
equation (2) (which implies an improvement to (4)) always occurs somewhere unless T consists of
a path on

⌊
k
2

⌋
+ 1 vertices with a tree on

⌈
k
2

⌉
vertices glued to the bottom. But in this exceptional

case, we have s0 = 0, so inequality (3) is not tight. This completes the proof for d = 2.

We still need to check that if d > 2 and f>2(m − 1) =
⌊
k
2

⌋
, then sm−1 ≤

⌊
k+1
4

⌋
. Suppose

f>2(m−1) =
⌊
k
2

⌋
, so that the inequalities (3) and (4) are equalities. This means that f>2(m−2) =⌊

k
2

⌋
− 1. Because (3) is an equality, the vertex vm−1 has exactly

⌈
k
2

⌉
vertices (including vm−1)

below it in Tm−1. If here vm−1 has only a single nonempty subtree, then sm−1 = 0 and we are
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done. Otherwise, vm−1 has at least two nonempty subtrees. The (weakly) smaller of the rightmost
and leftmost of these subtrees must have at most

⌊
1
2

⌈
k
2

⌉⌋
=
⌊
k+1
4

⌋
vertices, so we conclude that

sm−1 ≤
⌊
k+1
4

⌋
, as desired. �

We remark that in the d = 2 case, ad hoc arguments show that this construction is in fact
optimal for k ≤ 5; however, small refinements are possible for sufficiently large k.

Now that we have shown that the ξd(k)’s are in fact noncontiguous k-universal d-ary plane trees,
we focus on their sizes. Let Md(k) denote the number of vertices in ξd(k). The following proposition,
whose proof we omit, follows from counting the various parts of ξd(k) as described in the recursive
construction above. Let δx,y denote the Kronecker delta, which has the value 1 when x = y and
the value 0 otherwise. Note that the −1’s below account for “overlap” vertices that are contained
in multiple parts.

Proposition 2.6. For fixed d, the sequence Md(k) has the initial conditions

Md(1) = 1, Md(2) = d+ 1, Md(3) = 2d+ 1,

and for k ≥ 4, it obeys the recurrence

Md(k) = (d+ 1) +
(⌊

k
2

⌋
− δd,2

)
(3d− 2) + 2

b k2c−2∑
i=1

(Md(i)− 1) +Md

(⌊
k
2

⌋
− 1
)
− 1

+Md

(⌈
k
2

⌉
− 1
)
− 1 +Md

(⌈
k
2

⌉)
− 1 + 2(1− δd,2)

(
Md

(⌊
k+1
4

⌋)
− 1
)
.

We can use Proposition 2.6 and an argument similar to one of the proofs in [26] to obtain
asymptotics for Md(k).

Corollary 2.7. For fixed d ≥ 2, we have

Nnon
d -ary(k) ≤Md(k) = k

1
2
log2(k)(1+o(1)).

Proof. Fix d. It will be convenient to work with natural logarithms, so note that k
1
2
log2(k) =

exp
(

1
2 log 2 log2 k

)
. We first prove that there is some constant C (depending on d) such that

Md(k) < C exp
(

1
2 log 2 log2 k

)
for all k. We proceed by induction on k, where making C large

deals with any base cases. It is obvious (by construction) that Md(k) = |ξd(k)| is monotonically
increasing in k. We compute (for sufficiently large k):

Md(k) = Md(k − 2) + (3d− 2) + 2
(
Md

(⌊
k
2

⌋
− 2
)
− 1
)

+Md

(⌊
k
2

⌋
− 1
)

−Md

(⌊
k
2

⌋
− 2
)

+Md

(⌈
k
2

⌉)
−Md

(⌈
k
2

⌉
− 2
)

+ 2(1− δd,2)
(
Md

(⌊
k+1
4

⌋)
−Md

(⌊
k−1
4

⌋))
≤Md(k − 2) + 3d− 2 +Md

(⌊
k
2

⌋
− 1
)

+Md

(⌈
k
2

⌉)
+ 2Md

(⌊
k+1
4

⌋)
< C exp

(
1

2 log 2
log2(k − 2)

)
+ 5C exp

(
1

2 log 2
log2

(
k + 1

2

))
= C exp

(
1

2 log 2
log2(k − 2)

)(
1 + 5 exp

(
1

2 log 2
log

(
(k + 1)(k − 2)

2

)
log

(
k + 1

2(k − 2)

)))
= C exp

(
1

2 log 2
log2(k − 2)

)(
1 +

5

k
+ o

(
1

k

))
.
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At the same time, this expression is certainly smaller than

C exp

(
1

2 log 2
log2 k

)
= C exp

(
1

2 log 2
log2(k − 2)

)(
1 +

2 log k

k log 2
+ o

(
log k

k

))
for sufficiently large k, which establishes the first claim.

Second, we show that for any γ < 1
2 log 2 , there exists a constant c > 0 (depending on γ) such

that Nd(k) > c exp(γ log2 k) for all k. As above, we proceed by induction on k, where making c
small deals with the base cases. This time, we compute:

Md(k) > Md(k − 2) + 2Md

(
k − 5

2

)
> c exp

(
γ log2(k − 2)

)(
1 + 2 exp

(
γ log

(
(k − 5)(k − 2)

2

)
log

(
k − 5

2(k − 2)

)))
= c exp

(
γ log2(k − 2)

)(
1 +

2

k2γ log 2
+ o

(
1

k2γ log 2

))
.

Since 2γ log 2 < 1, this expression is larger than

c exp
(
γ log2 k

)
= c exp

(
γ log2(k − 2)

)(
1 +

4γ log k

k
+ o

(
log k

k

))
for sufficiently large k, as desired. The two claims together imply the result. �

3. [d]-trees

3.1. Contiguous containment.

3.1.1. Lower bounds. We can obtain a lower bound for N con
[d] (k) by modifying the argument in the

proof of the first part of Theorem 2.1. In particular, we apply this argument to a slightly different
family of trees that are difficult to contain.

Theorem 3.1. For d ≥ 2 and k ≥ 2, we have

N con
[d] (k) ≥

(
k − 1− d

⌊
k−2
d

⌋)
db

k−2
d c +

⌊
k−2
d

⌋
+ 1 ≥ d

k−2
d .

Proof. Let T be a contiguous k-universal [d]-tree. Consider the following procedure for building
[d]-trees with k vertices. Start with a [d]-tree that is a path on

⌊
k−2
d

⌋
+ 1 vertices, and color the

edges of this path red. Add d − 1 additional children to each nonleaf vertex of this path. When
adding these additional children to a nonleaf vertex v, we choose freely how many children to place
on the left of the red edge coming down from v, then we place the remaining children on the right
of this red edge. Finally, place k − 1− d

⌊
k−2
d

⌋
vertices as children of the leaf of the original path.

This forms a [d]-tree with k vertices, and there are db
k−2
d c trees that can be built in this fashion.

Each of these trees has k − 1 − d
⌊
k−2
d

⌋
vertices at depth

⌊
k−2
d

⌋
+ 1, an easy modification of the

argument in Theorem 2.1 shows that these vertices must correspond to pairwise distinct vertices
in T of depth at least

⌊
k−2
d

⌋
+ 1. Thus, T has at least(

k − 1− d
⌊
k−2
d

⌋)
db

k−2
d c

vertices at depth at least
⌊
k−2
d

⌋
+ 1. The term

⌊
k−2
d

⌋
+ 1 in the statement of the theorem accounts

for the fact that T must also have at least one vertex at each depth 0, 1, . . . ,
⌊
k−2
d

⌋
. �
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3.1.2. Upper bounds. As mentioned in the introduction, the quantity N con
d -ary(k) = dk−1 +k−1 is an

upper bound for N con
[d] (k). We can dramatically improve the base of the exponential by describing

an explicit construction for a family {Λd(k)} of contiguous k-universal [d]-trees.

The construction of Λd(k) is recursive. We first let Λd(1) be a single vertex. For 2 ≤ k ≤ d,
we construct Λd(k) by attaching the subtrees Λd(1),Λd(2), . . . ,Λd

(⌊
k
2

⌋
− 1
)
, then Λd(k − 1), then

Λd
(⌈

k
2

⌉
− 1
)
,Λd

(⌈
k
2

⌉
− 2
)
, , . . . ,Λd(1) to the root, in that order from left to right. For k > d,

we construct Λd(k) by attaching the subtrees Λd(k − d),Λd(k − d+ 1), . . . ,Λd
(
k −

⌊
d
2

⌋
− 2
)
, then

Λd(k − 1), then Λd
(
k −

⌈
d
2

⌉
− 1
)
,Λd

(
k −

⌈
d
2

⌉
− 2
)
, . . . ,Λd(k − d) to the root, in that order from

left to right. The proof that these trees are in fact k-supertrees is similar in spirit to the proof of
Theorem 2.5.

Theorem 3.2. Let d ≥ 2 and k ≥ 1 be integers. For every k-vertex [d]-tree T , there is a contiguous
embedding T ∗ of T in Λd(k) such that the root of T ∗ coincides with the root of Λd(k).

Proof. We proceed by strong induction on k, where the base case k = 1 is trivial. For the induction
step, we begin with the case in which 2 ≤ k ≤ d. Let T be a [d]-tree on k vertices. Let T1, . . . , T`
be the subtrees of the root of T , from left to right. Of these ` trees, let Tm be one with the
most vertices. We embed T1, . . . , T` into the subtrees of the root of Λd(k) in a greedy way, with
a preference for subtrees farther to the left. We consider two cases based on the size of Tm. If
|Tm| ≥

⌈
k
2

⌉
, then by the induction hypothesis, we can embed Tm in the subtree of the root of Λd(k)

that is isomorphic to Λd(k− 1) (with the roots coinciding). The remaining subtrees, which contain
at most

⌊
k
2

⌋
− 1 vertices in total, can easily be embedded in the smaller subtrees of the root of

Λd(k). Otherwise, |Tm| ≤
⌈
k
2

⌉
− 1 ≤

⌊
k
2

⌋
. In this case, we let f(1) = |T1| and, for 2 ≤ i ≤ `, let

f(i) = max{1 + f(i− 1), |Ti|}. Note that f is strictly increasing. We have

f(r) ≤
r∑
i=1

|Ti| ≤ k − 1− (`− r)

for each r, where the second inequality uses the fact that |Ti| ≥ 1 for all i. In particular, f(`) ≤ k−1.
We now claim that we can embed each Tr in the f(r)th subtree of the root of Λd(k) (with the roots
coinciding). This is certainly possible when f(r) ≤

⌊
k
2

⌋
by the induction hypothesis because

f(r) ≥ |Tr|. It is also possible when f(r) >
⌊
k
2

⌋
because f(r) ≤ k − 1 − (` − r). (These two

statements also use the fact that |Tm| ≤
⌊
k
2

⌋
.) This completes the argument when 2 ≤ k ≤ d.

We now assume k > d. Let T be a [d]-tree on k vertices, and let T1, . . . , T` be the subtrees
of its root, from left to right. Again, we have |T1| + · · · + |T`| = k − 1. As above, it is easy to
dispense with the case in which some |Ti| ≥ k−

⌈
d
2

⌉
, so we restrict our attention to the case where

|Ti| ≤ k −
⌈
d
2

⌉
− 1 ≤ k −

⌊
d
2

⌋
− 1 for all i. Let g(1) = max{1, |T1| − (k − d) + 1}, and for 2 ≤ i ≤ `,

let g(i) = max{1 + g(i− 1), |Ti| − (k − d) + 1}. Note that g is strictly increasing and

g(r) ≤
r∑
i=1

max{1, |Ti| − (k − d) + 1}

for every r. In particular, if we let hs denote the number of trees in the set T1, . . . , T` with exactly
s vertices, then for r = ` we get

g(`) ≤
∑̀
i=1

max{1, |Ti| − (k − d) + 1} =
k−d∑
s=1

hs +
∑

s≥k−d+1

(s− (k − d) + 1)hs
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=
∑
s≥1

shs −
k−d∑
s=1

(s− 1)hs −
∑

s≥k−d+1

(k − d− 1)hs = k − 1−
k−d∑
s=1

(s− 1)hs −
∑

s≥k−d+1

(k − d− 1)hs.

If hs ≥ 1 for some s ≥ k − d+ 1, then this shows that g(`) ≤ d. Otherwise, we have

g(`) ≤ k−1−
k−d∑
s=1

(s−1)hs = k−1−
∑
s≥1

(s−1)hs = k−1−
∑
s≥1

shs+
∑
s≥1

hs = k−1− (k−1)+` ≤ d.

In either case, g(`) ≤ d. Since g is strictly increasing, g(r) ≤ d− (`− r) for all r ∈ {1, . . . , `}.

We now claim that we can embed each Tr in the g(r)th subtree of the root of Λd(k) (with the
roots coinciding). As above, this is possible whenever g(r) ≤

⌈
d
2

⌉
because g(r) ≥ |Tr| − (k− d) + 1.

It is also possible when g(r) >
⌈
d
2

⌉
because g(r) ≤ d− (`− r). �

We can also describe the sizes of these k-universal [d]-trees. Let Ld(k) denote the number of
vertices in Λd(k). The following enumeration follows directly from the definition of Λd(k).

Proposition 3.3. For fixed d ≥ 2, the sequence Ld(k) has the starting value Ld(1) = 1. For
2 ≤ k ≤ d, we have the recurrence

Ld(k) = 1 + Ld(k − 1) +

b k2c−1∑
i=1

Ld(i) +

d k2e−1∑
i=1

Ld(i).

For k > d, we have the recurrence

Ld(k) = 1 + Ld(k − 1) +

k−b d2c−2∑
i=k−d

Ld(i) +

k−d d2e−1∑
i=k−d

Ld(i).

Corollary 3.4. Let

pd(x) = 1− x−
d∑

i=b d2c+2

xi −
d∑

i=d d2e+1

xi.

Let ρd = 1/xd, where xd is the smallest positive real root of pd(x). For each fixed d, we have

N con
[d] (k) ≤ Ld(k) = (ρd + o(1))k.

Furthermore, as d→∞, we have

ρd = 1 +
4 log d

d
− 4 log log d

d
+ o

(
log log d

d

)
.

Proof. The inequality N con
[d] (k) ≤ Ld(k) follows immediately from Theorem 3.2. To see that

Ld(k) = (ρd + o(1))k, we let Gd(x) =
∑

k≥1 Ld(k)xk. Using the recurrence in Proposition 3.3,

it is straightforward to check that Gd(x) is a rational function with denominator pd(x). Since
Gd(x) has nonnegative coefficients, it follows from Pringsheim’s theorem [22, Chapter IV] that xd
is the radius of convergence of Gd(x). This means that Ld(k) = (ρd + o(1))k.

To prove the last statement of the corollary, we consider only the case in which d is odd; the
argument is similar when d is even. All asymptotics are as d→∞. First, note that

pd(x) = 1− x− 2(x
d+1
2

+1 + x
d+1
2

+2 + · · ·+ xd) = 1− x− 2
xc+1 − x2c

1− x
,
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where c = d+1
2 . We have

(1− xd)2 − 2xc+1
d + 2x2cd = 0.

The additional substitution xd = 1− εd
c (where clearly εd > 0 since Ld(k) is growing with k) gives(εd

c

)2
− 2

(
1− εd

c

)c+1
+ 2

(
1− εd

c

)2c
= 0.

One can show that xd → 1, so εd
c → 0. Now, 2

(
1− εd

c

)c+1
= 2e−εd + o(e−εd) and 2

(
1− εd

c

)2c
=

o(e−εd). This means that (εd
c

)2
= 2e−εd(1 + o(1))

and
εd
c

=
√

2e−εd/2(1 + o(1)).

Rearranging, we find that
εd
2
eεd/2 =

c√
2

(1 + o(1)).

Therefore,

εd = 2W

(
c√
2

(1 + o(1))

)
= 2 log c− 2 log log c+ o(log log c),

where W is the Lambert W function. The desired result follows. �

3.2. Noncontiguous containment. The following theorem relates noncontiguous k-universal [d]-
trees with noncontiguous k-universal d-ary plane trees. In particular, it shows that the minimum
sizes of these trees differ by at most a constant factor.

Theorem 3.5. For all integers d ≥ 2 and k ≥ 1, we have

Nnon
[d] (k) ≤ Nnon

d -ary(k) ≤ d(Nnon
[d] (k)− 1) + 1.

Proof. The first inequality is straightforward because if we are given a noncontiguous k-universal
d-ary plane tree T′, then we can obtain a noncontiguous k-universal [d]-tree T by “forgetting” the
exact types of all of the edges in T′. In other words, we interpret T′ as a [d]-tree.

For the second inequality, suppose T is a noncontiguous k-universal [d]-tree on n vertices. We
obtain a noncontiguous k-universal d-ary plane tree T′ on d(n−1)+1 vertices by doing the following
for each edge e in T. Among all edges with the same parent vertex as e, suppose e is the ith from
the left. We replace the edge e (along with its endpoints) with a d-ary plane tree path on d edges
whose topmost edge has type i and whose remaining edges have types 1 through d, skipping i. Note
that |T′| = d(|T| − 1) + 1 since each of the |T| − 1 edges in T has become d edges in T′.

We claim that T′ is in fact a noncontiguous k-universal d-ary plane tree. Let T ′ be a d-ary plane
tree on k vertices, and let T be the corresponding [d]-tree that is obtained by forgetting the types
of the edges in T ′. By hypothesis, T noncontiguously contains T . For each edge e′ in T ′, let e be
the corresponding edge in T . Let e be the edge in T that corresponds to e in the noncontiguous
embedding of T in T. Recall that e becomes d edges, one of each type, in T′; let e′ be the edge
among these with the same type as e′. Color every such edge e′ blue, and color all other edges of
T′ red. It is clear that if we contract away all of the red edges, the blue edges will form a copy of
T ′, so it remains only to show that a sequence of legal contractions exists.

We begin by contracting every red edge whose bottom vertex is a leaf. We continue this process
until every leaf is incident to a blue edge. We contract the remaining red edges, starting with those
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at the greatest depth (i.e., farthest from the root) and working our way upwards. So we can always
assume that all edges of greater depth than our red edges of interest are blue. If the top vertex
of a red edge has no other nonempty subtree, then we can legally contract that red edge. We are
now left with the case where the top vertex v of our red edge r has multiple children. Consider the
nonempty subtrees of v, from left to right. If r is not adjacent to another red edge, then we can
contract r immediately. Otherwise, there are consecutive red edges r1, . . . , rs (s ≥ 2). We will show
that there is some ri that we can legally contract; we will then be able to sequentially contract the
remaining edges by induction.

Let each ri have edge type ai. Let bi denote the minimum type of a (necessarily blue) edge
directly below ri, and let ci denote the maximum type of a (necessarily blue) edge directly below
ri. It follows from our construction that

a1 < · · · < as and b1 ≤ c1 < b2 ≤ c2 · · · < bs ≤ cs.

The condition for being able to legally contract r1 is c1 < a2, and the condition for being able to
legally contract rs is as−1 < bs. For 2 ≤ i ≤ s − 1, the conditions for being able to contract ri
are ai−1 < bi and ci < ai+1. Assume (for contradiction) that we cannot legally contract any of the
edges r1, . . . , rs. Since we cannot contract r1, we must have c1 ≥ a2. Since we cannot contract r2,
we must have either a1 ≥ b2 or c2 ≥ a3. In the first case, we get

b2 ≤ a1 < a2 ≤ c1 < b2,

which is a contradiction, so we conclude that c2 ≥ a3. Similarly, since we cannot contract a3, we
have either a2 ≥ b3 or c3 ≥ a4, and the first possibility yields a contradiction in the same way.
Continuing this line of reasoning, we arrive at cs−1 ≥ as. Then

as−1 < as ≤ cs−1 < bs

tells us that we can legally contract rs, so we are done. This demonstrates that we can legally
contract all of the red edges. �

Now that we have established this connection between d-ary plane trees and [d]-trees, we revisit
the construction of the trees ξd(k) from Section 2.2. Because [d]-trees have more “flexibility” than
d-ary plane trees, we can use a slightly better (and simpler!) construction to beat the first inequality
in Theorem 3.5. We call these new noncontiguous k-universal [d]-trees Ξd(k).

First, we use the path on 2 vertices instead of the d-crescent. If d > 2, we define the modified
d-vertebra to be the [d]-tree on 4 vertices in which the root has 3 children; when d = 2, the modified
2-vertebra is the [2]-tree with 5 vertices in which the root has 2 children and the left child of the
root has 2 children. As in the case of the d-vertebra, we can identify the left, middle, and right
children of the modified vertebra in the obvious way. We then construct the mth spine exactly as
in Section 2.2.

Our recursive definition of the families Ξd(k) resembles the presentation of Section 2.2. We begin
with the following base cases:

• Let Ξd(1) consist of a single vertex.
• Let Ξd(2) be the path on 2 vertices (scil., the analogue of the crescent).
• Obtain Ξd(3) from the path on 2 vertices by giving the bottom vertex 2 children.

The construction for larger k is recursive and differs for d = 2 and d > 2. If d = 2, then for k ≥ 4,

we obtain Ξ2(k) from the
(⌊

k
2

⌋
− 1
)th

2-spine as follows:
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(1) For each 1 ≤ i ≤
⌊
k
2

⌋
− 2, glue a copy of Ξ2(i) to each of the left and right leaves of the ith

modified 2-vertebra.
(2) Glue a copy of Ξ2(

⌊
k
2

⌋
− 1) to the right leaf of the

(⌊
k
2

⌋
− 1
)th

(i.e., lowest) modified 2-
vertebra.

(3) Glue a copy of Ξ2(
⌈
k
2

⌉
− 1) to the left leaf of the

(⌊
k
2

⌋
− 1
)th

modified 2-vertebra.

(4) Glue a copy of Ξ2(
⌈
k
2

⌉
) to the center leaf of the

(⌊
k
2

⌋
− 1
)th

modified 2-vertebra.

If d > 2, then for k ≥ 4, we obtain Ξd(k) from the
(⌊

k
2

⌋
− 1
)th

d-spine as follows:

(1) For each 1 ≤ i ≤
⌊
k
2

⌋
− 2, glue a copy of Ξd(i) to each of the left and right leaves of the ith

modified d-vertebra.
(2) Glue a copy of Ξd(

⌊
k
2

⌋
−1) to the right leaf of the

(⌊
k
2

⌋
− 1
)th

(i.e., second-lowest) modified
d-vertebra.

(3) Glue a copy of Ξd(
⌈
k
2

⌉
− 1) to the left leaf of the

(⌊
k
2

⌋
− 1
)th

modified d-vertebra.

(4) Glue a copy of Ξd(
⌈
k
2

⌉
) to the center leaf of the

⌊
k
2

⌋th
(i.e., lowest) modified d-vertebra.

(5) Glue a copy of Ξd
(⌊

k+1
4

⌋)
to each of the left and right leaves of the

⌊
k
2

⌋th
d-vertebra.

For k ≥ 4, we still say that the tail of Ξd(k) is the copy of Ξd(
⌈
k
2

⌉
) that is glued to the center leaf

of the bottom of the spine in step (4). We remark that the trees Ξ3(k),Ξ4(k), . . . are all identical.

We omit the proof of the following theorem because it is identical to the proof of Theorem 2.5.

Theorem 3.6. For any integers d ≥ 2 and k ≥ 1, the tree Ξd(k) noncontiguously contains all
[d]-trees with k vertices.

Also as before, simple counting gives a recursive formula for the number of vertices in Ξd(k),
which we denote M ′d(k).

Proposition 3.7. For fixed d, the sequence M ′d(k) has the initial conditions

M ′d(1) = 1, M ′d(2) = 2, M ′d(3) = 4.

For k ≥ 4, it obeys the recurrence

M ′d(k) = 2 + (3 + δd,2)
(⌊

k
2

⌋
− δd,2

)
+ 2

b k2c−2∑
i=1

(M ′d(i)− 1) +M ′d
(⌊

k
2

⌋
− 1
)
− 1

+M ′d
(⌈

k
2

⌉
− 1
)
− 1 +M ′d

(⌈
k
2

⌉)
− 1 + 2(1− δd,2)

(
Md

(⌊
k+1
4

⌋)
− 1
)
.

The proof of Corollary 2.7 carries through to show that M ′d(k) = k
1
2
log2(k)(1+o(1)).

Corollary 3.8. For fixed d ≥ 2, we have

Nnon
[d] (k) ≤M ′d(k) = k

1
2
log2(k)(1+o(1)).

4. Conclusions

In Section 2, we found the exact values of N con
d -ary(k) for all d ≥ 2 and k ≥ 1. Furthermore,

the lower and upper bounds that we obtained for N con
[d] (k) are relatively close to each other. By

contrast, our lower and upper bounds for Nnon
d -ary(k) and Nnon

[d] (k) are far apart. This is largely
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because it is difficult to obtain good lower bounds for the sizes of noncontiguous universal objects,
which is also true in the setting of universal permutations. It would be nice to have better methods
for producing lower bounds. Of course, we also encourage the interested reader to try improving
our upper bounds.

Theorem 3.5 leads us naturally to ask the following.

Question 4.1. Fix d ≥ 2. Does the limit

lim
k→∞

Nnon
d -ary(k)

Nnon
[d] (k)

exist, and, if so, what is its value?

Theorem 3.1 and Corollary 3.4 suggest that N con
[d] (k) has an exponential growth rate. It would

be interesting to know its value, beyond the bounds d
1
d and ρd provided.

Question 4.2. Fix d ≥ 2. Does the limit

lim
k→∞

N con
[d] (k)

1
k

exist, and if so, what is its value?

The articles [10–14] investigate universal trees, where the trees under consideration are unrooted
and nonplane. In this setting, a tree T contains a tree T if T is an induced subgraph of T . It would
likely be interesting to consider analogous questions in a noncontiguous framework. More precisely,
say that a tree T noncontiguously contains a tree T if it is possible to obtain T by performing
a sequence of edge contractions on T . In this setting, what is the smallest size of a tree that
noncontiguously contains all k-vertex trees?

There has also been recent interest in pattern containment/avoidance in labeled rooted trees
[6, 18]. It would be interesting to examine universal trees in these contexts, as well.
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