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A STRONGER CONNECTION BETWEEN THE

ERDŐS-BURGESS AND DAVENPORT CONSTANTS

NOAH KRAVITZ AND ASHWIN SAH

Abstract. The Erdős-Burgess constant of a semigroup S is the smallest pos-
itive integer k such that any sequence over S of length k contains a nonempty
subsequence whose elements multiply to an idempotent element of S. In the
case where S is the multiplicative semigroup of Z/nZ, we confirm a conjecture
connecting the Erdős-Burgess constant of S and the Davenport constant of
(Z/nZ)× for n with at most two prime factors. We also discuss the extension
of our techniques to other rings.

1. Introduction and main results

The Erdős-Burgess constant is an invariant which measures how much a semigroup
avoids idempotent products. An element x of a multiplicative semigroup is called
idempotent if x2 = x. We offer the following formal definition.

Definition 1.1. The Erdős-Burgess constant of a multiplicative semigroup S (de-
noted I(S)) is the smallest positive integer k such that any sequence of k (not
necessarily distinct) elements of S contains a nonempty subsequence (preserving
relative order) whose elements multiply to an idempotent element of S. If no such
k exists, we say that I(S) = ∞.

The most interesting cases arise when S is the multiplicative semigroup of a finite
commutative ring, in which case we let Ir(R) denote the Erdős-Burgess constant
of the multiplicative semigroup of R. When R = Z/nZ, clearly the idempotent
elements of R are exactly the elements that are equivalent to 0 or 1 modulo each
prime power dividing n.

The problem of computing these constants originated in a question of Erdős: Is it
always true that I(S) ≤ |S| for a finite semigroup S? In 1969, Burgess [4] answered
this question in the affirmative when S is commutative or contains only a single
idempotent element. In 1972, Gillam, Hall, and Williams [11] proved the stronger
result that I(S) ≤ |S| − |E| + 1 for all finite semigroups S, where E is the set of
idempotent elements of S. They also showed that this bound is sharp in the sense
that for any positive integers m < n, there exists a semigroup S with |S| = n,
|E| = m, and I(S) = |S| − |E|+ 1.

The computation of Erdős-Burgess constants is closely related to the the study of
zero-sum problems. (See [5, 8] for an overview of this field.) For a finite additive
abelian group G, a typical zero-sum problem asks for the smallest positive integer k
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Key words and phrases. Erdős-Burgess constant, Davenport constant, zero-sum problem,

idempotent element.

1

http://arxiv.org/abs/1808.06031v1


2

such that any sequence of k elements of G contains a nonempty subsequence whose
terms sum to 0 while also fulfilling certain other properties. The most celebrated
result in this area is the Erdős-Ginzburg-Ziv Theorem [7], published in 1961, which
says that in any set of 2n − 1 integers, there are n whose sum is divisible by n,
whereas the same is not true of all sets of 2n − 2 integers. Popular zero-sum
group invariants include the Erdős-Ginzburg-Ziv, Olson, Harborth, and Davenport
constants. The last of these will be the most relevant to our study of Erdős-Burgess
constants.

Definition 1.2. The Davenport constant of a finite abelian group G (denoted D(G))
is the smallest positive integer k such that any sequence of k elements of G contains
a nonempty subsequence whose terms sum to 0.

The study of this group invariant traces back to a 1963 paper of Rogers [16] and
has appeared more recently in a variety of contexts. (See, e.g., [1, 2, 6, 9, 19].)

The connection between the Erdős-Burgess and Davenport constants first appeared
in a recent paper of Wang [18] on maximal sequences over semigroups that avoid
idempotent products. When S is a finite abelian group, for instance, the identity is
the only idempotent element, so I(S) = D(S) trivially. In two papers in 2018, Hao,
Wang, and Zhang [12, 13] studied this connection for the multiplicative semigroups
of Z/nZ and Fq[t]/a, where a is an ideal of Fq[t]. For any integer n > 1, let Ω(n)
denote the total number of primes in the prime factorization of n (with multiplicity),
and let ω(n) denote the number of distinct primes dividing n. Hao, Wang, and
Zhang prove the following theorem.

Theorem 1.3 ([13, Theorem 1.1]). For any integer n > 1, we have

Ir(Z/nZ) ≥ D((Z/nZ)×) + Ω(n)− ω(n).

Moreover, equality holds if n is either a prime power or a product of distinct primes.

They also conjecture that this inequality is an equality for all n > 1.

Conjecture 1.4 ([13, Conjecture 3.2]). For any integer n > 1, we have

Ir(Z/nZ) = D((Z/nZ)×) + Ω(n)− ω(n).

In [12], they derive analogous results relating Ir(Fq[t]/a) and D((Fq[t]/a)
×) and

pose the corresponding conjecture. Wang [17] has investigated other aspects of the
Erdős-Burgess constant, especially in the context of infinite semigroups.

In this paper, we resolve Conjecture 1.4 for some classes of positive integers and
make progress on others. In Section 2, we derive an upper bound on Ir(Z/nZ) for
the case where n has only a single repeated prime factor. We let φ denote Euler’s
totient function.

Theorem 1.5. Let n = spk, where s > 1 is a squarefree integer, p is a prime not
dividing s, and k is a positive integer. Then

Ir(Z/nZ) ≤ D((Z/nZ)×) + (k − 1) + (φ(s) − 1).

We remark that this upper bound is φ(s)− 1 greater than the conjectured value of
Ir(Z/nZ). In Section 3, we relate Ir(Z/2mZ) to Ir(Z/mZ) when m is odd.
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Theorem 1.6. Let m > 1 be an odd integer. Then

Ir(Z/2mZ) = Ir(Z/mZ).

In particular, this implies that if an odd integer m > 1 satisfies Conjecture 1.4
then so does 2m. Thus Conjecture 1.4 holds for n twice a prime power, using
Theorem 1.3. In Section 4, we confirm Conjecture 1.4 for the case where exactly
two distinct primes appear in the prime factorization of n. This is our main result.

Theorem 1.7. Let n = pkqℓ, where p and q are distinct primes and k and ℓ are
positive integers. Then

Ir(Z/nZ) = D((Z/nZ)×) + (k − 1) + (ℓ − 1).

Taken together, the previous two results confirm Conjecture 1.4 for n = 2pkqℓ,
where p and q are distinct odd primes.

In Section 5, we generalize Theorem 1.3 to both unique factorization domains and
Dedekind domains, which are the rings with a notion of unique prime factorization
of elements and ideals, respectively. In Section 6, we make some concluding remarks
and pose a few questions for future research.

2. An Upper Bound When Only One Prime Is Repeated

Before we prove Theorem 1.5, we choose some notation.

Definition 2.1. Given a sequence S over a multiplicative semigroup, let
∏

≥k(S)

denote the set of all products of at least k elements of S. In other words,
∏

≥k(S) is
the set of elements that appear as the product of the elements of some subsequence
T in S of length at least k. By convention, let 1 ∈

∏

≥0(S) in all cases.

The following lemma will be useful in both this and the following sections.

Lemma 2.2. Let S = a1, . . . , ak+t be a sequence over an abelian group (G,×) of
length k + t for some integers k > 0 and t ≥ 0. Let P =

∏

≥k(S). Then either

1 ∈ P or |P | ≥ t+ 1.

Proof. The statement |P | ≥ 1 is trivially true for t = 0, so we restrict our attention
to the case t ≥ 1. Suppose |P | ≤ t. We will show that this implies 1 ∈ P . Consider

the t+1 products
∏k+j

i=1 ai for 0 ≤ j ≤ t. (By definition, these are all in P .) The Pi-
geonhole Principle tells us that some two of these products are equal, so there exist

integers 0 ≤ c < d ≤ t such that
∏k+c

i=1 ai =
∏k+d

i=1 ai and hence
∏k+d

i=k+c+1 ai = 1.

Now, we re-order the elements of S to obtain the sequence S′ = a′1, . . . , a
′
k+t, where

a′i =











ak+c+i, 1 ≤ i ≤ d− c

ai−(d−c), d− c+ 1 ≤ i ≤ k + d

ai, k + d+ 1 ≤ i ≤ k + t.

In other words, we have moved the 1-product subsequence of length d − c to the
beginning of our sequence and shifted the displaced elements to the right. If d−c ≥
k, then we are done. Otherwise, we can repeat the process described above, which
gives us a new 1-produce subsequence of length d′ − c′ in front of the 1-product
subsequence of length d−c. Once again, we are done if (d−c)+(d′−c′) ≥ k because
these elements have product 1. Otherwise, we continue iterating this process until
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our 1-product subsequences have total length at least k, which shows that 1 ∈ P , as
desired. The process must terminate because the 1-product prefix of our sequence
gets strictly longer at each iteration. �

The following adaptation of the methods of [12, 13] allows us to restrict our atten-
tion to sequences that do not contain certain elements.

Lemma 2.3. Suppose n = p1p2 · · · prm, where the pi’s are distinct primes that do
not divide m, and let (Z/nZ)∗ denote the set of elements of Z/nZ that are relatively
prime to all of p1, . . . , pr. If every sequence of length t over (Z/nZ)∗ contains a
nonempty subsequence whose elements multiply to an idempotent element of Z/nZ,
then every sequence of length t over Z/nZ also contains a nonempty subsequence
whose elements multiply to an idempotent element of Z/nZ.

Proof. Assume for the sake of contradiction that there exists a sequence S =
a1, . . . , at over Z/nZ such that there is no nonempty subsequence of S whose ele-
ments multiply to an idempotent element of Z/nZ. For each aj , let a

′
j be the unique

element of Z/nZ that is equivalent to 1 (mod pi) if pi divides aj and aj (mod pi)
otherwise for each 1 ≤ i ≤ r and that is also equivalent to aj modulo m. Such a
unique element exists by the Chinese Remainder Theorem. Thus, S′ = a′1, . . . , a

′
t

is a sequence of length t over (Z/nZ)∗. By assumption, S′ contains a nonempty
subsequence T ′ = a′j1 , . . . , a

′
jℓ

such that the idempotent product a′j1 · · · a
′
jℓ

is equiv-
alent to either 0 or 1 modulo each prime power dividing n.

Consider the product aj1 · · · ajℓ (which appears as a subsequence T of S). Since
aj ≡ a′j (mod m) for all j, it follows that aj1 · · · ajℓ is still equivalent to 0 or 1

modulo each prime power dividing m. We also know that a′j1 · · · a
′
jℓ

is equivalent

to 1 modulo each pi. If no ajk is divisible by pi, then each ajk ≡ a′jk (mod pi),
and we can conclude that aj1 · · · ajℓ is equivalent to 1 modulo pi. If any ajk is
divisible by pi, then the product aj1 · · · ajℓ is equivalent to 0 modulo pi. So, in
both cases, aj1 · · · ajℓ is equivalent to 0 or 1 modulo each prime power dividing n,
and in fact aj1 · · ·ajℓ is an idempotent element of Z/nZ. This yields the desired
contradiction. �

Lemma 2.3 tells us that if we want to establish some t as an upper bound for
Ir(Z/nZ) (with n as in the lemma), it suffices to show that every sequence of
length t over (Z/nZ)∗ contains a nonempty subsequence whose elements multiply
to an idempotent element. In other words, we don’t have to worry about sequences
containing elements divisible by any of the pi’s. (The same is not true for primes
that divide n multiple times.) We now prove Theorem 1.5.

Theorem 1.5. Let n = spk, where s > 1 is a squarefree integer, p is a prime not
dividing s, and k is a positive integer. Then

Ir(Z/nZ) ≤ D((Z/nZ)×) + (k − 1) + (φ(s) − 1).

Proof. Let (Z/nZ)∗ denote the set of elements of Z/nZ that are relatively prime to
s. We will show that any sequence of length N = D((Z/nZ)×)+(k−1)+(φ(s)−1)
over (Z/nZ)∗ contains a nonempty subsequence whose elements multiply to an
idempotent element of Z/nZ. By Lemma 2.3, this will be sufficient to establish the
result.
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Let S = a1, . . . , aN be a sequence over (Z/nZ)∗ where, without loss of gener-
ality, exactly the first t elements are divisible by p. We note that the remain-
ing D((Z/nZ)×) + (k − 1) + (φ(s) − 1) − t elements are all units of Z/nZ. If
t ≤ (k − 1) + (φ(s) − 1), then S contains at least D((Z/nZ)×) units. By the
definition of the Davenport constant, this guarantees the existence of a nonempty
subsequence of S whose elements multiply to 1, which is certainly idempotent. If
t > (k − 1) + (φ(s) − 1), then we will find a subsequence of a1, . . . , at of length at
least k whose product is equivalent to 1 modulo s. Such a product is idempotent:
it is automatically divisible by pk because these ai’s are all divisible by p. Consider
the sequence a′1, . . . , a

′
t over (Z/sZ)

× that is obtained by reducing each ai modulo
s. Lemma 2.3 tells us that either 1 ∈

∏

≥k(a
′
1, . . . , a

′
t) (in which case we are done)

or
∣

∣

∣

∏

≥k(a
′
1, . . . , a

′
t)
∣

∣

∣ ≥ t − k + 1 ≥ φ(s). In the latter case,
∏

≥k(a
′
1, . . . , a

′
t) is the

entire group (Z/sZ)× (since |(Z/sZ)×| = φ(s)), and hence 1 ∈
∏

≥k(a
′
1, . . . , a

′
t). So,

in all cases, S contains a nonempty subsequence whose product is an idempotent
element of Z/nZ, and we can conclude that D((Z/nZ)×) + (k − 1) + (φ(s) − 1) is
in fact an upper bound for Ir(Z/nZ). �

As mentioned in Section 1, the upper bound in this lemma is φ(s)− 1 greater than
the conjectured actual value of Ir(Z/nZ).

3. The Case n = 2m for Odd m

This short section is devoted to proving Theorem 1.6 and discussing its ramifications
for Conjecture 1.4.

Theorem 1.6. Let m > 1 be an odd integer. Then

Ir(Z/2mZ) = Ir(Z/mZ).

Proof. LetN = Ir(Z/mZ). First, assume for the sake of contradiction that Ir(Z/2mZ) <
Ir(Z/mZ). By definition, there exists a sequence S = a1, . . . , aN−1 over Z/mZ

of length Ir(Z/mZ) − 1 such that there is no nonempty subsequence of S whose
elements multiply to an idempotent element of Z/mZ. Consider the sequence
S′ = a′1, . . . , a

′
N−1 over Z/2mZ, where each a′i is equivalent to ai modulo m and

0 ≤ ai ≤ m − 1. (As usual, these elements exist by the Chinese Remainder
Theorem.) By assumption, S′ contains a nonempty subsequence T ′ = b′1, . . . , b

′
ℓ

whose product x′ is idempotent in Z/2mZ. Then x′ is equivalent to either 0 or 1
modulo each prime power dividing 2m. Consider the corresponding subsequence
T = b1, . . . , bℓ of S with product x. Because each a′i ≡ ai (mod m), we have x ≡ x′

(mod m). Hence, x remains equivalent to either 0 or 1 modulo each prime power
dividing m, which means that x is idempotent in Z/mZ. This yields a contradic-
tion, so in fact Ir(Z/2mZ) ≥ Ir(Z/mZ).

Second, assume (again for the sake of contradiction) that Ir(Z/2mZ) > Ir(Z/mZ).
Then there exists a sequence S = a1, . . . , aN over Z/2mZ of length Ir(Z/mZ)
such that there is no nonempty subsequence of S whose elements multiply to an
idempotent element of Z/2mZ. Consider the sequence S′ = a′1, . . . , a

′
N over Z/mZ

where each a′i is equivalent to ai modulo m. But S′ must contain some nonempty
subsequence T ′ = b′1, . . . , b

′
ℓ whose product x′ is idempotent in Z/nZ. By the same

reasoning as above, the corresponding subsequence T = b1, . . . , bℓ of S with product
x satisfies x ≡ x′ (mod m). Hence, x remains equivalent to either 0 or 1 modulo
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each prime power dividing m, and, furthermore, x is trivially equivalent to either
0 or 1 modulo 2. This means that x is idempotent in Z/2mZ, which yields a
contradiction. So we conclude that Ir(Z/2mZ) = Ir(Z/mZ). �

The following consequence of this result holds particular interest.

Corollary 3.1. For any odd integer m > 1, let cm be the integer such that
Ir(Z/mZ) = D((Z/mZ)×) + Ω(m)− ω(m) + cm. Then we also have

Ir(Z/2mZ) = D((Z/2mZ)×) + Ω(2m)− ω(2m) + cm.

Proof. Note that

(Z/2mZ)× ∼= (Z/2Z)× × (Z/mZ)× ∼= 1× (Z/mZ)× ∼= (Z/mZ)×.

Hence, D((Z/2mZ)×) = D((Z/mZ)×). It is also clear that Ω(2m) − ω(2m) =
Ω(m) − ω(m) since m is odd. Combining these two equalities with Theorem 1.6
establishes the result. �

This corollary tells us that whenever an odd integer m > 1 satisfies Conjecture 1.4
(i.e., cm = 0), 2m also satisfies Conjecture 1.4. As such, we can immediately
confirm Conjecture 1.4 for n twice a prime power.

Corollary 3.2. Let n = 2pk, where p is an odd prime and k is a positive integer.
Then

Ir(Z/nZ) = D((Z/nZ)×) + (k − 1).

Proof. This follows immediately from Theorem 1.3 and Corollary 3.1. �

4. The Cases n = pkqℓ and n = 2pkqℓ

In this section, we prove Theorem 1.7 and an immediate corollary for the case
n = 2pkqℓ. As usual, we begin with some notation.

Definition 4.1. Given a sequence S = a1, . . . , ak over a multiplicative semigroup
and any element x of the semigroup, let xS denote the sequence a′1, . . . , a

′
k where

each a′i = xai. When we speak of the elements of S as a set (respectively, multiset),
the set (multiset) xS is defined in the same fashion.

We require a lemma on the structure of subset products in abelian groups.

Lemma 4.2 (Stabilizer Bound). Let S = a1, . . . , a|S| be a sequence of non-identity
elements over an abelian group (G,×), and let P =

∏

≥0(S). If the stabilizer

subgroup StabG(P ) = {x ∈ G : xP = P} contains only the identity, then |P | ≥
|S|+ 1.

Proof. Let Pi =
∏

≥0(a1, . . . , ai) for each 1 ≤ i ≤ |S|, so that P1 = {1, a1} and

P|S| = P . (Note that |P1| = 2 since a1 6= 1.) Clearly, each Pi ⊆ Pi+1. We will
show that this containment is proper, which in turn implies that |Pi| ≥ i+1 for all i.

Assume for the sake of contradiction that Pi = Pi+1 for some 1 ≤ i ≤ |S| − 1.
Writing Pi+1 = Pi ∪ ai+1Pi, we see that ai+1Pi ⊆ Pi. Since |Pi| = |ai+1Pi|,
we must have ai+1Pi = Pi, i.e., ai+1 ∈ StabG(Pi). We claim that StabG(Pj) ⊆
StabG(Pj+1) for all 1 ≤ j ≤ |S| − 1. To see this, let x ∈ StabG(Pj). Then
xPj = Pj and x(aj+1Pj) = aj+1Pj , which implies that xPj+1 = x(Pj ∪ aj+1Pj) =
(xPj)∪ (xaj+1Pj) = Pj ∪aj+1Pj = Pj+1. Thus, we have ai+1 ∈ StabG(P ), but this
contradicts StabG(P ) consisting of only the identity. �
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We will also use the following result of Olson [14, 15].

Theorem 4.3 ([14, 15, Theorem 1.1]). For a finite abelian group G = Cn1
×

· · · × Cnr
, where each ni divides ni+1, define M(G) = 1 +

∑r
i=1(ni − 1). Then

D(G) ≥ M(G). Moreover, equality holds whenever r ≤ 2 or |G| is a prime power.

We specialize to a case that will be useful in the proof of Theorem 1.7.

Corollary 4.4. For any positive integers a, b ≥ 2, we have

D(Ca × Cb) = (gcd(a, b)− 1) + (lcm(a, b)− 1) + 1.

Proof. The corollary follows from noting that Ca × Cb
∼= Cgcd(a,b) × Clcm(a,b) and

gcd(a, b) divides lcm(a, b). �

Finally, we will need the following simple inequality.

Proposition 4.5. For any positive integers a, b, and c such that b divides c, we
have

(gcd(a, c) + lcm(a, c))− (gcd(a, b) + lcm(a, b)) ≥
c

b
− 1.

Proof. Note that lcm(a, b) divides lcm(a, c). We treat the cases lcm(a, b) = lcm(a, c)
and lcm(a, b) < lcm(a, c) separately.

If lcm(a, b) = lcm(a, c), then c
b = gcd(a,c)

gcd(a,b) since gcd(x, y) lcm(x, y) = xy for all

positive integers x and y. Since gcd(a, b) ≥ 1, we find

gcd(a, c)− gcd(a, b) ≥
gcd(a, c)− gcd(a, b)

gcd(a, b)
=

c

b
− 1,

and combining this with lcm(a, b) = lcm(a, c) establishes the desired inequality.

If lcm(a, b) < lcm(a, c), then in fact lcm(a, b) ≤ lcm(a,c)
2 because lcm(a, b) divides

lcm(a, c). When b ≥ 2, we get

lcm(a, c)− lcm(a, b) ≥
lcm(a, c)

2
≥

c

2
≥

c

b
≥

c

b
− 1,

and combining this with gcd(a, c) ≥ gcd(a, b) establishes the result. When b = 1,
we get gcd(a, b) = 1 and lcm(a, b) = a. Using lcm(a, c) = ac

gcd(a,c) , we also have

0 ≤ gcd(a, c)

(

a

gcd(a, c)
− 1

)(

c

gcd(a, c)
− 1

)

= lcm(a, c)− a− c+ gcd(a, c).

Rearranging gives

(gcd(a, c) + lcm(a, c))− (1 + a) ≥
c

1
− 1,

and substituting 1 = gcd(a, b) and a = lcm(a, b) completes this last case. �

We can now prove Theorem 1.7.

Theorem 1.7. Let n = pkqℓ, where p and q are distinct primes and k and ℓ are
positive integers. Then

Ir(Z/nZ) = D((Z/nZ)×) + (k − 1) + (ℓ − 1).
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Proof. We already know from Theorem 1.3 that Ir(Z/nZ) ≥ D((Z/nZ)×) + (k −
1)+(ℓ−1), so it remains to show only that this lower bound is also an upper bound.
To this end, assume for the sake of contradiction that there exists some sequence S
of length D((Z/nZ)×) + (k − 1) + (ℓ− 1) over Z/nZ such that S has no nonempty
subsequence the product of whose elements is idempotent. Recall that an element
of ∈ Z/nZ is idempotent exactly when it is equivalent to either 0 or 1 modulo pk

and modulo qℓ.

If S contains at least k elements divisible by p and ℓ elements divisible by q, then
the product of all of the elements of S is idempotent, which yields a contradic-
tion. So, without loss of generality, we can restrict our attention to the case where
S contains at most ℓ − 1 elements divisible by q. As such, S contains at least
D((Z/nZ)×) + (k − 1) elements not divisible by q. We restrict our attention to
these elements since the elements divisible by q cannot be used in any idempotent
product.

If S contains at most k − 1 elements divisible by p, then it contains at least
D((Z/nZ)×) elements that are not divisible by p, i.e., that are units of Z/nZ.
But then, by the definition of the Davenport constant, S contains a nonempty sub-
sequence whose elements multiply to 1, which is certainly idempotent. So we can
further restrict our attention to the case where S contains k + t elements divisible
by p, for some t ≥ 0.

Let N = D((Z/nZ)×). We know that S contains the disjoint subsequences A =
a1, . . . , ak+t and B = b1, . . . , bN−t−1, where all of the ai’s are divisible by p but
not by q and all of the bi’s are units of Z/nZ (i.e., are divisible by neither p nor
q). We will now focus on the residues of the ai’s and bi’s modulo qℓ. Our goal
is to show that there exist x ∈ Q1 =

∏

≥k(A) and y ∈ P1 =
∏

≥0(B) such that

xy ≡ 1 (mod qℓ). Then the product xy will be idempotent in Z/nZ because xy ≡ 0
(mod pk) by construction.

Let P2 be the set of residues modulo qℓ induced by the elements of P1. Note that
P2 is a subset of G = (Z/qℓZ)×, and let H = StabG(P2) be the stabilizer of P2

in (Z/qℓZ)×. Furthermore, let P3 be the set of residues in G/H induced by the
elements of P2. Define the sequence B′ = b′1, . . . , b

′
N−t−1, where each b′i is the im-

age of bi in G/H under the quotient map (after passing through an intermediate
element in G, if one likes). Note that P3 =

∏

≥0(B
′).

In a similar fashion, let Q2 be the set of residues modulo qℓ induced by the elements
of Q1, and let Q3 be the set of residues in G/H induced by the elements of Q2. Also
as above, let A′ = a′1, . . . , a

′
k+t be the image of A in G/H , where Q3 =

∏

≥k(A
′).

By Lemma 2.2, we know that either 1 ∈ Q3 or |Q3| ≥ t+ 1.

If 1 ∈ Q3, then there exists some x ∈
∏

≥k(A) such that the image of x in G/H is

the identity, i.e., x′ ∈ StabG(P2), where x′ is the residue of x modulo qℓ. We know
that 1 ∈ P1 (from the empty product) and hence 1 ∈ P2. Because x′ stabilizes P2

in G, there exists some y ∈ P1 such that its image y′ in G satisfies x′y′ = 1, i.e.,
xy ≡ 1 (mod qℓ). But then xy is idempotent, as desired. For the remainder of the
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proof, we consider the case |Q3| ≥ t+ 1.

Consider x ∈ StabG/H(P3) satisfying xP3 = P3. Lift this equation to G such that
x is lifted to x′. We see that

x′P2 ⊆
⋃

y∈P2

yH =





⋃

y∈P2

y



H = P2H = P2

implies x′P2 = P2 and x′ ∈ StabG(P2) = H . Thus, x′ must reduce to the identity
in G/H , so StabG/H(P3) = {1}. Let g be the number of non-identity elements of
B′. By applying Lemma 4.2 to these elements of B′, we get |P3| ≥ g + 1.

If (t+1)+ (g +1) > |G/H |, then the sets {x−1 : x ∈ Q3} and P3 intersect in G/H
by the Pigeonhole Principle. In other words, there exist x ∈ Q1 and z ∈ P1 such
that the image of x−1 in G/H equals the image of z in G/H . Letting x′ and z′ be
the images of x and z in G, we see that (x′)−1 ∈ z′H ⊆ P2, where the last inclusion
follows from the discussion of the previous paragraph. Hence, there exists some
y ∈ P1 with image y′ in G such that (x′)−1 = y′ and x′y′ = 1. But this means that
xy ≡ 1 (mod qℓ), in which case we are done.

We now treat the case where (t + 1) + (g + 1) ≤ |G/H |. Recall that when the
sequence B is reduced modulo qℓ, exactly g elements end up outside H . So the
remaining (D((Z/nZ)×)− t− 1)− g elements of B reduce to elements of H . Let C
be the subsequence of these elements, in Z/nZ. Recall the decomposition

(Z/nZ)× ∼= (Z/pkZ)× × (Z/qℓZ)× ∼= Cpk−1(p−1) × Cqℓ−1(q−1).

Corollary 4.4 tells us that

D((Z/nZ)×) = gcd(pk−1(p− 1), qℓ−1(q − 1)) + lcm(pk−1(p− 1), qℓ−1(q − 1))− 1.

Because they reduce to elements of H modulo qℓ, the elements of C must actually
be in a subgroup of (Z/nZ)× that is isomorphic to Cpk−1(p−1)×C|H|. (Note that H

is cyclic because it is a subgroup of the cyclic group (Z/qℓZ)×.) In the next para-
graph, we will show that |C| ≥ D(Cpk−1(p−1) ×C|H|). This will imply that there is
a nonempty subsequence of C whose elements multiply to the identity, which is, of
course, idempotent in Z/nZ.

Because

|C| = D((Z/nZ)×)− ((t+ 1) + (g + 1)) + 1 ≥ D((Z/nZ)×)−
qℓ−1(q − 1)

|H |
+ 1,

it remains only to show that

D((Z/nZ)×)−
qℓ−1(q − 1)

|H |
+ 1 ≥ D(Cpk−1(p−1) × C|H|).

Corollary 4.4 tells us that

D(Cpk−1(p−1) × C|H|) = gcd(pk−1(p− 1), |H |) + lcm(pk−1(p− 1), |H |)− 1,

and an application of Proposition 4.5 with a = pk−1(p − 1), b = |H |, and c =
qℓ−1(q − 1) establishes the desired inequality. This completes the proof. �

This theorem also lets us confirm Conjecture 1.4 for the case n = 2pkqℓ.
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Corollary 4.6. Let n = 2pkqℓ, where p and q are distinct odd primes and k and ℓ
are positive integers. Then

Ir(Z/nZ) = D((Z/nZ)×) + (k − 1) + (ℓ − 1).

Proof. This corollary follows immediately from Corollary 3.1 and Theorem 1.7. �

5. Other Rings

We now turn to a more general discussion of Erdős-Burgess constants in rings. We
focus on the rings in which we can define analogs of Ω(n) and ω(n): unique factor-
ization domains (UFDs), which have unique prime factorization of elements, and
Dedekind domains, which have unique prime factorization of ideals. We remark that
even though UFDs and Dedekind domains are both extensions of principal ideal do-
mains (PIDs), there exist both UFDs that are not Dedekind domains and Dedekind
domains that are not UFDs. We remark also that UFD and PID are equivalent
in a Dedekind domain. Many of the arguments presented in the previous sections
still apply in these more general settings, which unify the cases presented in [12, 13].

In order to apply the techniques of [12, 13] and the previous sections of this paper,
we need a more general Chinese Remainder Theorem. The version stated in the
standard algebra text of Atiyah and MacDonald [3] will suffice.

Proposition 5.1 ([3, Proposition 1.10]). If {a1, . . . , an} is a set of pairwise coprime
ideals of a commutative ring A (i.e., ai + aj = A for all i 6= j), then the natural
projection map φ : A →

∏n
i=1 A/ai is surjective.

We now show that the results of [12, 13] mostly generalize to UFDs. For any
element a of a UFD R, let Ω(a) denote the total number of primes in the prime
factorization of a (with multiplicity), and let ω(a) denote the number of distinct
primes (up to multiplication by units) in this prime factorization.

Theorem 5.2. Let R be a UFD, and let a = (a) for some a ∈ R such that R/a is
a finite ring. Then

Ir(R/a) ≥ D((R/a)×) + Ω(a)− ω(a).

Moreover, equality holds whenever a is a prime power. If R is a PID, then equality
also holds whenever a is a product of distinct primes, i.e., a is not divisible by the
square of any prime.

Proof. We begin with the lower bound. We remark that the Davenport constant
D((R/a)×) is finite because R/a is finite. Following the example of [12, 13], we
simply construct a sequence S of length D((R/a)×) + Ω(a) − ω(a) − 1 that does
not contain a nonempty subsequence whose elements multiply to an idempotent
element of R/a. Write a =

∏n
i=1 p

ki

i as a product of powers of distinct primes in
R. By the definition of the Davenport constant, there exists a sequence T over
(R/a)× of length D((R/a)×) − 1 that does not contain a nonempty subsequence
the product of whose elements is idempotent. We obtain the sequence S of length
D((R/a)×)+Ω(a)−ω(a)−1 by augmenting T by ki−1 elements with representative
pi for each 1 ≤ i ≤ n, and we claim that this S works. It is clear that any idempo-
tent element of R/a must be equivalent to either 0 or 1 modulo each prime power
dividing a, so there cannot be an idempotent product that includes any elements
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of S that are not in T . But we know that we cannot make an idempotent prod-
uct using the only the elements of T , so we conclude that S does not contain any
nonempty subsequence whose elements multiply to an idempotent product. This
establishes the lower bound.

Next, we show that equality holds whenever a = pk is a prime power. Let N =
D((R/a)×) and let S = a1, . . . , aN+k−1 be a sequence overR/a of length D((R/a)×)+
k− 1. We will show that S contains a nonempty subsequence the product of whose
elements is idempotent. If at least k elements of S are divisible by p, then the
product of these elements in R/a is 0, which is certainly idempotent. If fewer than
k elements of S are divisible by p, then at least D((R/a)×) elements of S are in
(R/a)×.

We must justify the assertion that non-divisibility by p is sufficient for an element
x ∈ R/a to be a unit. The quotient R/(p) is an integral domain because p is prime.
Furthermore, R/(p) is finite (because it is a quotient ofR/a) and hence a field. Since
x /∈ (p), its image in R/(p) is nonzero and hence a unit, so (in the lift to R/a) there
exist y, z ∈ R/a such that xy = 1+zp. Then xy(1− (zp)+ · · ·+(−1)k−1(zp)k−1) =
(1 + zp)(1− (zp) + · · · + (−1)k−1(zp)k−1) = 1 + (−1)k−1zkpk = 1 shows that x is
in fact a unit in R/a.

Now, by the definition of the Davenport constant, some nonempty product of these
units is 1, which is idempotent. Hence, in both cases, S contains a nonempty sub-
sequence the product of whose elements is idempotent, which shows that the lower
bound is also an upper bound.

Finally, we show that equality holds when R is a PID and a = p1 · · · pn is a product
of distinct primes in R, i.e., a is squarefree. Because any nonzero prime ideal is
maximal in a PID, we see that {(p1), . . . , (pn)} is a set of pairwise coprime ideals in
R, so we can use Proposition 5.1 (Generalized Chinese Remainder Theorem). By
the argument of Lemma 2.3, we can establish the upper bound by considering only
sequences of elements that are not divisible by any of the pi’s, i.e., sequences of
units of R/a. As above, we must justify the claim that any such element x is a unit
in R/a. Let x′ be any lift of x to R. We know that x′ has an inverse modulo each
ideal (pi), i.e., for each 1 ≤ i ≤ r, there exist yi, zi ∈ R such that x′yi = 1 + zipi.
By the Generalized Chinese Remainder Theorem, there exists y ∈ R/a such that
xy = 1 in R/a, as desired. Now, similar to above, any sequence S over (R/a)× of
length D((R/a)×) contains a nonempty subsequence whose elements multiply to 1
by the definition of the Davenport constant. This completes the proof. �

We now prove the analogous result for Dedekind domains. For any ideal a of
a Dedekind domain R, let Ω(a) denote the total number of prime ideals in the
prime ideal factorization of a (with multiplicity), and let ω(a) denote the number
of distinct prime ideals in this factorization.

Theorem 5.3. Let R be a Dedekind domain and a an ideal of R such that R/a is
a finite ring. Then

Ir(R/a) ≥ D((R/a)×) + Ω(a)− ω(a).
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Moreover, equality holds if a is either a power of a prime ideal or a product of
distinct prime ideals.

Proof. Once again, we begin with the lower bound. Write a =
∏n

i=1 p
ki

i as a prod-
uct of powers of distinct prime ideals of R. As in the proof of Theorem 5.2, let T
be a sequence over R/a of length D((R/a)×)− 1 that does not contain a nonempty
subsequence the product of whose elements is idempotent. For each 1 ≤ i ≤ n,
note that pki

i ⊆ p
ki−1
i but these two ideals are not equal because Dedekind domains

have unique prime factorization of ideals. (We let p0i = R.) Hence, the inclusion

is proper. Since p
ki−1
i is generated by products of the form r1 · · · rki−1 with each

rj ∈ pi, there exists some xi ∈ p
ki−1
i \pki

i of the form xi = ai,1 · · · ai,ki−1, where each
ai,j ∈ pi. We now obtain a sequence S of length D((R/a)×) + Ω(a) − ω(a)− 1 by
augmenting T by these ai,j elements (or, rather, their images in R/a, which retain
the inclusion and exclusion properties mentioned above). We require the following
two observations for our claim that S does not contain a nonempty subsequence
the product of whose elements is idempotent.

First, we can choose the elements ai,1, . . . , ai,ki−1 not to be in any other ideal pj.
Since nonzero prime ideals are maximal in Dedekind domains, pi and pj are coprime

in R, i.e., there exist x ∈ pi and y ∈ pj such that x+ y = 1. Moreover, pki

i and pj

are coprime since xki ∈ pi
ki and 1− (1−y)ki ∈ pj satisfy (xki)+(1− (1−y)ki) = 1.

This lets us apply the Generalized Chinese Remainder Theorem to the set of ideals
{p1, . . . , pi−1, p

ki

i , pi+1, . . . , pn}, and we can guarantee that each ai,ℓ = 1 in the quo-
tient R/pj for all i 6= j.

Second, suppose x ∈ R/a is an idempotent element that is also in the image of

some pi. We will show that in fact x is in the image of pki

i . Let x′ be the image of

x in the (further) quotient R/pki

i . Since x2 = x in R/a, we also have x′(1− x′) = 0

in R/pki

i . We compute 0 = x′(1− x′)(1 + x′ + · · ·+ (x′)ki−1) = x′(1− (x′)ki) = x′,

which implies that x is in the image of pki

i , as desired.

The remainder of the argument proceeds as expected. Assume for the sake of con-
tradiction that there is some nonempty subsequence U of S the product of whose
elements (call it y) is idempotent. Because of the construction of T and the fact
that the only idempotent unit is 1, it is clear that U includes some element x ∈ pi

for some i with ki ≥ 2. Hence, y ∈ pi. As shown in the previous paragraph,
this implies that y ∈ p

ki

i and, moreover, the product π of all of the elements of S

is also in p
ki

i . Since ideal containment in Dedekind domains corresponds to ideal

divisibility, (π) ⊆ p
ki

i implies that there are at least ki factors of pi in the prime
factorization of (π). However, the only elements of S that generate ideals divisible

by pi are ai,1, . . . , ai,ki−1, and their product is not in p
ki

i . This yields the required
contradiction.

When a = pk is a prime power, the Pigeonhole Principle argument from the proof
of the corresponding part of Theorem 5.2 applies with no modifications.
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Finally, when a = p1 · · · pn is a product of distinct prime ideals, the corresponding
argument from the proof of Theorem 5.2 works here, too, because all we needed
was the Generalized Chinese Remainder Theorem.

�

6. Concluding Remarks and Open Problems

In this paper, we have confirmed Conjecture 1.4 for many positive integers n. In
particular, the conjecture is now known to hold in the following cases:

• n is a product of distinct primes ([13, Theorem 1.1]).
• n is a prime power ([13, Theorem 1.1]).
• n is twice a prime power (Corollary 3.2).
• n has exactly two distinct prime divisors (Theorem 1.7).
• n is double the product of two odd prime powers (Corollary 4.6).

We wish to emphasize that the general conjecture for all integers n > 1 is still open
and seems quite difficult. We consider the following cases particularly approachable
for future research:

• n has exactly three distinct prime factors.
• n is the product of a squarefree integer and a prime power (as discussed in
Section 2).

One might also investigate extension results in the style of Theorem 1.6—for in-
stance, if some m not divisible by 3 satisfies Conjecture 1.4, is it always true that
3m also satisfies Conjecture 1.4?

Our proofs of upper bounds in the previous sections suggest a structure result about
the “most difficult” sequences. Write n = pk1

1 · · · pkr

r as a product of powers of dis-
tinct primes. If we want a product x that is equivalent to either 0 or 1 modulo
each prime power, then factors of pi are “useful” only when x has at least ki such
factors. For this reason, it is strictly harder to find an idempotent product when
the elements of our sequence S over Z/nZ are squarefree with respect to the pi’s,
and, in fact, we can consider only sequences of such quasi-squarefree elements in
our proofs of upper bounds. This property could be of use for future computational
and experimental work on Erdős-Burgess constants.

The inverse Erdős-Burgess problem is also of interest: given some integer n >
1, characterize all sequences S over Z/nZ of length Ir(Z/nZ) − 1 for which no
nonempty subsequence has an idempotent product. In light of Lemma 2.3 and the
discussion in the previous paragraph, we present the following question.

Question 6.1. Fix any n > 1, and write n = pk1

1 · · · pkr

r as a product of powers of
distinct primes. Let S be a sequence over Z/nZ of length Ir(Z/nZ) − 1 that does
not have the Erdős-Burgess property. Is it true all elements of S are squarefree with
respect to each pi and relatively prime to each pi for which ki = 1? How else can
we characterize the structure of S?

For the sake of completeness, we must mention some irregularities in the values of
the Davenport constant. The proof of Theorem 1.7 depends on explicit evaluations
of Davenport constants, namely, D(G) = M(G) for the relevant rank-2 groups G.
Although it is known [10] that D(G) = M(G) for a few classes of abelian groups
beyond what we mention in Theorem 4.3, it is also known that that this formula
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fails for infinitely many abelian groups of rank at least 4. Hence, an approach that
uses explicit values of the Davenport constant seems to fail in general but may work
when n has three prime factors since the problem of determining the Davenport
constant for all rank-3 groups remains open. If Conjecture 1.4 turns out to be false,
it may be possible to construct counterexamples using these anomalous Davenport
constants.

Finally, it would be interesting to see how the results of Sections 2 through 4
generalize to UFDs and Dedekind domains.
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