
Functional Queues

Gaurav Arya

May 22, 2021

1 Functional data structures

A functional data structure can never be modified. Instead, when performing an operation,
a new copy of the data structure is returned. This implies a property called full persistence:
previous versions of the data structure remain accessible forever, and we can perform operations
on any version we choose.

2 Functional stacks

A functional stack is probably the simplest example of a functional data structure. It consists
solely of a pointer to the head of a one-way linked list, which contains the stack’s elements from
top to bottom. To push, we add a new element to the one-way linked list, and return the pointer
to this new element. To pop, we return a pointer to the second element of the linked list.

3 What about a functional queue?

Functional queues are a natural next step. Ideally, we would like to implement them with a
constant number of changes per enqueue/dequeue. This turns out to be much harder than for
stacks! But there is a solution: using our functional stacks as a black box, we can simulate each
queue operation using a constant number of operations on a set of six stacks. The primary goal
of our visualizer is to show these operations in action, and how they come together to make a
functional queue.

4 Outline of functional queue implementation

4.1 Overview

We will represent our functional queue Q by a tuple (INS, POP, POPrev, POP2, INS2, HEAD, n, ops left).
Here, INS, POP, POPrev, POP2, INS2 and HEAD are functional stacks, and n and ops left are
integers. When Q is created, all stacks are empty.

Broadly speaking, our queue Q works by maintaing a stack INS that contains the most recently
added elements of Q, and a stack POP that contains the remaining elements. INS keeps more
recently added elements higher, whereas POP keeps less recently added elements higher. Thus,
INS will allow for easy insertions into our queue, while POP will allow for easy pops from our
queue.

At any moment, Q is either in “normal mode” or “transfer mode”. In normal mode, Q maintains
the invariants above, and does not worry about the other stacks: inserted elements are placed

1



into INS1, and deletions pop from POP. In normal mode, operations are clearly O(1), and as
long as POP is non-empty these operations will be valid.

However, if the size n of INS becomes equal to the size of POP, Q will switch into transfer mode
for the next 2 n− d operations, where d ≥ 0 is the number of deletions that occur during the
transfer mode. At the end of transfer mode, all elements of INS will be moved into POP. We now
describe how this happens.

4.2 Transfer Mode

4.2.1 Initializing

To begin, HEAD points to the top of the POP stack, and POPrev, POP2, and INS2 are empty. We
set ops left to 2 n, which will keep track of how many operations are left in transfer mode.

4.2.2 Passive operations

The following happens independent of the operation type. We always reduce ops left by 1. For
the first n operations of transfer mode, we will:

� Pop an element from POP and add it into POPrev.

� Pop an element from INS and add it into POP2.

For the next n− d operations of transfer mode, we will pop an element from POPrev and add it
into POP2. We are able to tell when transfer mode ends by checking when ops left is 0. Note
that since we stop after n− d operations, we do not copy elements of POPrev into POP2 if they
have been deleted.

4.2.3 Insertion

We simply place the element into INS2.

4.2.4 Deletion

First, we reduce ops left by 1. Then, we move the HEAD pointer down by one (apply the tail
operation to the stack it points to), and return the value it points to. Note that there can be at
most n deletions before termination of transfer mode, and hence that we can always apply the
tail operation.

4.2.5 Cleanup

At the end of transfer mode, POP2 has become the amalgation of the original INS and POP,
with elements in decreasing order of recency, as desired. Meanwhile, INS2 has collected all the
elements that have been inserted during transfer mode. So we simply assign POP to POP2 and
INS to INS2, and return to normal mode. Note that transfer mode lasts for 2 n− d operations,
and when it ends POP has size 2 n− d. Thus, after transfer mode ends, the size of INS cannot
exceed the size of POP. This justifies our assumption that during normal mode INS has size at
most the size of POP, and that transfer mode is triggered when INS grows in size to become
equal in size to POP.

1as a special case, however, when an element is inserted into an empty queue we place it directly into POP.

2



References

[1] Robert Hood and Robert Melville. “Real-time queue operations in pure LISP”. In: Infor-
mation Processing Letters 13.2 (1981), pp. 50–54. issn: 0020-0190. doi: https://doi.org/
10.1016/0020-0190(81)90030-2. url: https://www.sciencedirect.com/science/
article/pii/0020019081900302.

3

https://doi.org/https://doi.org/10.1016/0020-0190(81)90030-2
https://doi.org/https://doi.org/10.1016/0020-0190(81)90030-2
https://www.sciencedirect.com/science/article/pii/0020019081900302
https://www.sciencedirect.com/science/article/pii/0020019081900302

	Functional data structures
	Functional stacks
	What about a functional queue?
	Outline of functional queue implementation
	Overview
	Transfer Mode
	Initializing
	Passive operations
	Insertion
	Deletion
	Cleanup



