P v.s. NP and Approximation Algorithms

August 14th, 2021 (Class #6)

Our Best Results

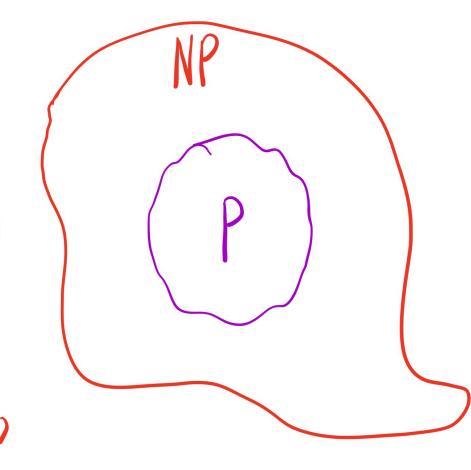
Problem

Running time

Multiplication Softing Unweighted SP Max Disj. Intervals Weighted SP

O(nlog₂³) O(nlog₁) O(n+m)

We've shown that all these problems are...


Problem_ cthinks for polynomial time) instance What is NP? cpolynomial If the true answer is YES,

> Some proof. Otherwise, always REJECT.

then [will ACCEPT for

The P v.s. NP Question

onswer quickly (check a proof) Can we find it quickly? ccome up with a proof)

NP-complete problems

If we could solve an NP-Complete
Ptoblem, we could solve every ptoblem
anickly
in NP.

The surprise: There exist very reasonable sounding problems that are provably NP-Complete.

The invisible wall if we could break this wall, then P=NP! NP-complete

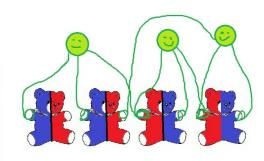
Eulerian Path v.s. Hamiltonian Path

2-SAT v.s. 3-SAT

polynomial time

(A of B) and

(A or not C) and

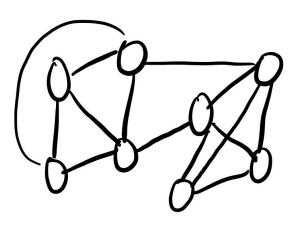

(not B of not A) and

Chot B of ()

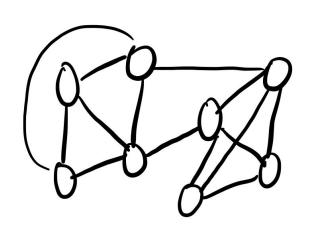
2 Vatiables pet clause

exponential time

CA of B of C) and CC of not B of not D) and

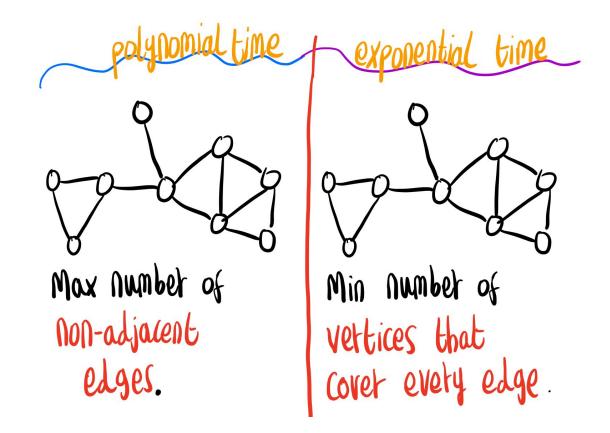


3 Variables per Credit: David https://math.s


Credit: David M, https://math.stackexchange.com/questions.86210/what-is-the-3-sat-problem

Min Cut v.s. Max Cut

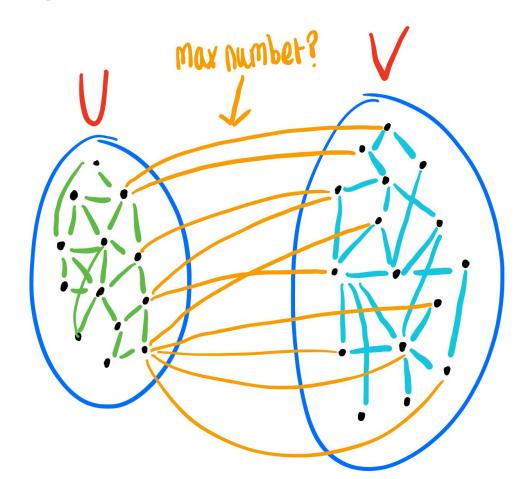
polynomial time exponential time



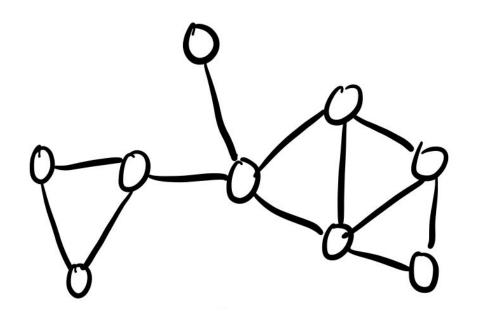
Cut with fewest chossing edges.

Cut with most chossing edges.

Maximum Matching v.s. Minimum Vertex Cover


Break for 5 minutes

Approximation Algorithms


Fot "optimisation problems":

Get within a multiplicative factor of the optimal.

Approximation Algorithm for Max Cut?

<u>Approximation Algorithm for Vertex Cover?</u>

Min number of vertices that cover every edge.

The big ideas of algorithm design

- · Correctness
 Correct answers to well-defined Problems.
- · Asymptotic complexity (measure of efficiency)

How does number of steps SCALE with input size?

Worst-case analysis
 Want to do well on every possible input!

-> Leads to an inchedibly tich design space...

as we've seen!

Further Exploration

```
Exploring more algorithms...

MIT OCH C Ptofs. Devadas & Demaine)

Coursera CPtof. Roughgarden)
```

Further Exploration

Implementing algorithms!

- · Just use yout favorite language and play atound.
 - * Python
- · Competitive Ptogtamming
 - * Codeforces, Atcoder, etc.
 - * CP Handbook by Laaksonen
 - * USACO

Hope you've enjoyed the classes!