Graph Algorithms

July 24th, 2021 (Class \#3)

What is a graph?

Title of the bar graph

What actually are graphs?
A graph shows connections between $\frac{\text { objects. }}{\text { edges es }}$

What are some interesting questions to ask about graphs?

Are they connected?

Trees...?

Distance between two nodes?

Shortest path in an unweighted graph
Input: A graph

Output: Distance from s to t

(Unweighted) Graph Algorithms...

For graph connectivity?

For cycle detection?

For the shortest path problem?

Break for 5 Minutes

Why do we need a "representation" of a graph?

- Input has to be given in a standardized format.
- We need to know how to store the graph.

What's a good representation?

Representation

Adjacency List

I: [2,9]
2: $[1,4,3]$
3: [2,5]
4: $[6,2]$
5: [3,6]
6: [5, $, 7,7]$
7: [6]
8: [6]
$9:[1]$

Adjacency Matrix

Representation

$$
\begin{array}{lllllllll}
1 & 2 & 2 & 4 & 5 & 6 & 7 & 8 & 9 \\
1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 \\
3 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\
4 & 0 & 0 \\
5 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
6 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\
7 & 0 & 0 \\
8 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
8 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
9 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
$$

Shortest Path in an Unweighted Graph
Input: - A graph

- A start node S
- An end node t

Output: Distance from s to t

How do we solve shortest path? Is it hard?

Is it easier on a tree?

Breadth First Search - Concept

Breadth First Search - Walkthrough

What about the other two problems?
Just use any graph traversal algorithon.

- Start from any node
- Explore the other nodes by following edges.
connectivity?
cycle detection?

BFS: Expand in waves (0)
ops: Just as simple! But out of slope:)

Can we solve all graph problems with DFS and BFS?
No! We can solve many, but...
What if the graph is weighted?
\rightarrow Lots mole algorithms!
Longest path problem?
\rightarrow No fast algorithm!

