Graph Algorithms

July 24th, 2021 (Class #3)

What is a graph?

What actually are graphs?

A graph shows connections between objects.

edges nodes

What are some interesting questions to ask about graphs?

Are they connected?

Do they have...

Trees...?

Distance between two nodes?

Shortest path in an unweighted graph

Input: A graph... Sink node to Start node s

Output: Distance from s to t

(Unweighted) Graph Algorithms...

For graph connectivity?

For cycle detection?

For the **shortest path problem**?

Break for 5 Minutes

Why do we need a "representation" of a graph?

· Input has to be given in a standardized format.

· We need to know how to store the graph.

What's a good representation?

Edge List

Adjacency List

Representation

- 1: [2,9]
- 2: [1,4,3]
- 3: [2,5]
- 4: [6, 2]
- 5:[3,6]
- 6: [5,4,7]
- 7: [6]
- 8: [P]
 - :[1

Adjacency Matrix

Representation

Shortest Path in an Unweighted Graph

- Input: A glaph
 - · A start node S
 - · An end node t

Output: Distance from s to t

How do we solve shortest path? Is it hard?

Is it easier on a tree?

Breadth First Search - Concept

Breadth First Search - Walkthrough

What about the other two problems?

Just use any graph traversal algorithm.

- · Statt from any node
- · Explore the other nodes by following edges.

connectivity?

Cycle detection?

Graph traversal algorithms

BFS: Expand in Waves (6)

OFS: Just as simple! But out of scope:)

Can we solve all graph problems with DFS and BFS?

No! We can solve many, but... What is the graph is weighted? -> Lots More algorithms! longest path problem? -> No fast algorithm!