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We study band gaps in photonic crystals, which are fundamental to understanding numerous phe-
nomena such as light confinement and omnidirectional mirrors. To begin, we introduce the reader
to the Hermitian eigenproblem underpinning electromagnetism, showing how many of the ideas of
standard quantum mechanics carry over to this domain. In particular, we adapt the tools of symme-
try and perturbation theory to the electromagnetic context. Finally, we use these tools to explain
photonic band gaps.
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FIG. 1: An example of a 2D photonic crystal.

I. INTRODUCTION

Some of the most interesting optical devices are pho-
tonic crystals, which have periodic structure in their di-
electric permittivity. This periodicity leads to a number
of important physical phenomena, such as omnidirec-
tional reflection and light confinement. To understand
these phenomena, it is crucial to understand the band
structure of photonic crystals, and in particular the for-
mation of photonic band gaps.

In this paper, we approach this phenomenon using the
tools of symmetry and perturbation theory. First, we
show that in a source-free setting, the solution modes
to Maxwell’s equations can be found by solving a Her-
mitian eigenproblem, in close analogy with the time-
independent Schrodinger equation of quantum mechanics
(Section IIA). This allows us to bring many of the tech-
niques of quantum mechanics to bear on this domain.

In particular, we study translational symmetry, in both
the cases of discrete (Section IIIA) and continuous (Sec-
tion III B) translational symmetry. Our key motivating
question involves both these cases: what happens when
we start with a system that has continuous translational
symmetry (i.e. a homogeneous medium) and “turn on” a
periodic perturbation that immediately imposes discrete
translational symmetry instead?

Our claim is that a band gap is a natural result of
this transition. To explain this, we adapt first-order per-
turbation theory to electromagnetism (Section II B). We
then apply it to a periodic perturbation of a multilayer

film, thereby providing an intuitive, physical explanation
for the origin of band gaps (Section IV).
We emphasize that we work at a length scale signif-

icantly larger than the Bohr radius, such that classical
electromagnetism applies. Throughout this paper, our
focus will be on adapting the ideas from quantum me-
chanics to this new context, thereby showing how their
wide applicability to arbitrary Hermitian eigenproblems.

II. EIGENPROBLEMS IN
ELECTROMAGNETISM

We work in a source-free setting, where there are no
free charges or currents. Further, we assume that the
magnetic permeability is always µ0. We begin by writing
down Maxwell’s equations in this setting.

∇ ·E = 0 (1)

∇ ·B = 0 (2)

∇×E = −dB
dt

(3)

∇×B = ε(r)
dE

dt
. (4)

Note that Maxwell’s equations are linear in the electric
field E and magnetic field B. Furthermore, note that
they are time-independent. Thus, assuming that ε(r)
is also time-independent, by time-invariance symmetry
we can restrict our attention to the case of frequency
“modes” where E and B can be decomposed into a spa-
tial component and a time-varying exponential,

E(r, t) = E(r)e−iωt, (5)

B(r, t) = B(r)e−iωt. (6)

We are now ready to state our concrete problem: given
the spatial distribution ε(r) of the dielectric permittivity,
what are the possible frequency modes E(r),B(r)? This
is analogous to the problem in time-independent quan-
tum mechanics, where we are given a potential V (r) and
asked to find the stationary states ψ(r).
As in quantum mechanics, we can derive an eigenprob-

lem, where the Hermitian operator depends on the given
quantity, which is ε(r) in this case. First, note that by
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Eq. (5) and Eq. (6)

dE

dt
= −iωE, (7)

dB

dt
= −iωB. (8)

Here, we supress the dependency on r in writing the
modes E and B, just as one often thinks of ψ in quan-
tum mechanics more abstractly as an element of a Hilbert
space. Now, the Maxwell equations Eq. (3) and Eq. (4)
become

∇×E = −dB
dt

= iωB (9)

∇×B = −iωε(r)E. (10)

At this stage, we can choose to either eliminate E or B.
It will actually be helpful to do both approaches, as we
will understand shortly. Using Eq. (10) to eliminate E
in Eq. (9), we obtain,

∇× 1

ε(r)
∇×︸ ︷︷ ︸

Θ̂

B = ω2B. (11)

Instead using Eq. (9) to eliminate B in Eq. (10), we
obtain

∇×∇×E = ω2εE. (12)

Although one might expect Eq. (11) and Eq. (12) to be
essentially the same, they are actually quite different. In
particular, Eq. (11) is a familiar eigenproblem in B: the
right-hand side is a scalar multiplied by B. In contrast,
in Eq. (12), there are non-trivial linear operators on both
sides of the equation.

In the remainder of this section, we will see why both of
these equations are useful to keep in mind. In particular,
we will see that Eq. (11) is a Hermitian eigenproblem;
this allows us to borrow many concepts from quantum
mechanics, such as the existence of a complete set of so-
lution modes, without re-derivation. On the other hand,
Eq. (11) is difficult to work with perturbatively; we will
use Eq. (12) to derive a quantitative expression for first-
order perturbation theory.

A. Hermitian Eigenproblem

To make the eigenproblem more explicit, we denote the
linear operator of Eq. (11) on the left-hand side as Θ̂, so
that

Θ̂B = ω2B. (13)

Before formally declaring Eq. (13) an eigenproblem, we
need to take a step back and define the Hilbert space on
which Θ̂ acts. Note that we have not yet used Eq. (2),
which gives us another constraint on B. Thus, we form

a Hilbert space consisting of all vector fields F defined
over our volume of interest (which is either all of space
or a finite region with periodic boundary conditions) that
also obey a transversality condition,

∇ · F = 0. (14)

As in the standard treatment of quantum mechanics, we
neglect functional analysis issues.
Our inner product over the Hilbert space assumes a

similar form to that of quantum mechanics. However,
since we are dealing with vector fields, we cannot per-
form a scalar multiplication at each spatial coordinate.
Instead, we take the natural generalization, which is the
dot product of the vectors at each spatial coordinate,

⟨F ·G⟩ =
∫

F ∗(r) ·G(r)dV. (15)

Equipped with this inner product, we can show that Θ̂
is Hermitian,

⟨Θ̂F ,G⟩ = ⟨F , Θ̂G⟩ (16)

The proof is by integration by parts, which we omit from
this treatment as it does not offer much intuition. The
Hermicity of Θ̂ has deep physical implications, notably
the idea of Lorentz reciprocity, which states that one can
interchange the positions of current sources and electric
field measurements in any setup, and keep the relation-
ship between the two the same.

B. Electromagnetic Perturbation theory

In this section, we develop first-order, non-degenerate
perturbation theory for electromagnetism.
Eq. (12) is actually a generalized eigenproblem, with

Hermitian operators on both sides. (For readers who
have seen the wave equation in electromagnetism before,
this is the same equation in disguise.) While it was eas-
ier to work directly with the traditional eigenproblem to
apply the theory from quantum mechanics directly, when
working perturbatively it is easier to deal with Eq. (12),
as we do not have to deal with the differentiation of the
1/ε(r) term inside the curl operator.
We are interested in the effect of a perturbation ∆ε(r)

to the initial dielectric permittivity ε0(r). Expanding
everything as a power series in a small parameter λ,

ε(r) = ε0(r) + λ∆ε(r) (17)

E(r) = E0(r) + λ∆E(r) +O(λ2) (18)

ω = ω0 + λ∆ω +O(λ2), (19)

where E0 and ω0 represent an unperturbed frequency
mode and angular frequency, respectively. We drop the
superscripts in the usual treatment since we are only ex-
panding to first order. Substituting into Eq. (12) and
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implicitly dropping terms of order O(λ2),

∇×∇× (E0 + λ∆E) ≈ (20)

(ω0 + λ∆ω)2(ε0 + λ∆ε)(E0 + λ∆E). (21)

Matching the terms of order λ,

∇×∇×∆E = 2ω0∆ωε0E0+ω
2
0∆εE0+ω0ε0∆E. (22)

As in the standard treatment, we make the useful choice
of normalization

⟨E,∆E0⟩ = 0. (23)

Then, taking the component of E0 on both sides of
Eq. (22),

⟨E0,∇×∇×∆E⟩ = 2ω0∆ω⟨E0, εE0⟩+ ω2
0⟨E0,∆εE0⟩.

(24)
By the Hermicity of the double curl operator ∇ × ∇×,
the left hand side evaluates to 0, and so we derive

∆ω = −ω0

2

⟨E0,∆εE0⟩
⟨E0, εE0⟩

. (25)

As a basic sanity check on Eq. (25), we note that ω
decreases when ∆ε is everywhere positive. This makes
sense, because the speed of light v in a medium is pro-
portional to 1/

√
ε and thus decreases, so so from the

plane-wave relation ω = vk we would expect ω to also
decrease.

But Eq. (25) also affords us new insight. In particular,
it tells us that modes which are concentrated in regions
where ∆ε is the largest / most positive will decrease the
most in frequency, while modes which are concentrated
in regions where ∆ε is the smallest / most negative will
increase the most in frequency.

III. SYMMETRIES

Now that we have a Hermitian eigenproblem, we can
apply what we know from quantum mechanics to un-
derstand the effect of symmetries in the electromagnetic
case, which play a crucial role in understanding photonic
band gaps.

A. Discrete translational symmetry

We first discuss discrete translational symmetry. Dis-
crete translation symmetry is important because pho-
tonic crystals have periodic structures, meaning that the
dielectric permittivity ε(r) is invariant under transla-
tion by integer multiples of a vector d. Expressed al-
gebraically, this symmetry implies that

[Θ̂, Td] = 0, (26)

where Td is the operator that translates by d, i.e.
Td(B(r)) = B(r − d). Thus, we know that Td and

Θ̂ can be simultaneously diagonalized, and in particu-
lar each frequency mode B(r) must be a member of an
eigenspace of Td.
What are these eigenspaces? We must have thatB(r+

d) = CB(r) for some constant C, which is close to but
not quite periodicity. To strip away this multiplicative
constant, we extract an exponential prefactor eikdrd from
B(r). Here, rd is the component of the position vector
in direction d and kd is a scalar. We can then write,

B(r) = eikdrdBkd
(r), (27)

where Bkd
(r) is truly periodic, satisfying Bkd

(r) =
Bkd

(r+d). This is the famous Bloch’s theorem of quan-
tum mechanics, which as we see applies in general to any
Hermitian eigenproblem with discrete translational sym-
metry.
Notice that kd identifies the eigenspace, but there is

some freedom in its choice. For example, if we choose
kd = 2π

|d| , then the exponential eik·r would itself be in-

variant under shifts in d, i.e. eik·d = 1, and thus could be
folded into Bkd

(r). To avoid this issue, we can restrict
the possible choices of kd to the range −π/|d| < kd ≤
π/|d|, which defines the so-called “Brillouin zone”.
When there are multiple vectors which exhibit discrete

translational symmetry, which we shall call lattice vec-
tors, we can add a prefactor for each of them. Or more
simply, we can combine all of them into a single wave
vector k that belongs to the span of the lattice vectors
(which explains our previous notation kd), such that

B(r) = eik·rBk(r), (28)

where Bk(r) is periodic for all lattice vectors. Once
again, we can define a Brillouin zone that contains a
complete set of wave vectors k that lead to a unique
eigenspace.

B. Continuous translational symmetry

Let us now discuss continuous translational symmetry.
This arises when a system is invariant to translations of
any magnitude in the direction of a vector d. Recalling
Eq. (27), this means that Bk(r) must be invariant to

shifts ad̂ for any distance a. The only way for this to
happen is if Bkd

(r) is constant along the direction d.
Thus,

B(r) = eikdrdBkd
(r) (29)

where Bkd
(r) is constant along the direction d, i.e. only

a function of the component of r orthogonal to d. Once
again, we can generalize to multiple directions of conti-
nouous translation symmetry by introducing a wave vec-
tor k that belongs to the span of these directions, and
writing

B(r) = eik·rBk(r). (30)
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FIG. 2: Conservation of kx at interface

whereBk(r) only depends on the component of r orthog-
onal to all directions of continuous translational symme-
try.

1. Snell’s Law

To understand the power of exploiting symmetry, let
us provide a direct proof of Snell’s law using continu-
ous translational symmetry. Suppose that a light wave is
incident at an interface, as shown in Fig. 2, with wave-
vector in the xz-plane. Eq. (29) immediately tells us that
the x-component kx of the wave vector is conserved for
both the reflected and refracted rays. Since the magni-
tude of the wave vector is proportional to the refractive
index (from classical wave optics), we have

n1 sin θ1 =
n1kx
n1ω/c

=
ckx
ω

=
n2kx
n2ω/c

= n2 sin θ2. (31)

So Snell’s law is an immediate consequence of continu-
ous translational symmetry of the system in the direction
along the interface.

C. Connection between continuous and discrete
symmetry

For both continuous and discrete symmetry, a wave
vector k is used to identify the eigenspace. However,
there are two crucial differences.

1. The function Bk(r) is much more tightly con-
strained in the continuous case, as it must have
no dependence whatsoever on the directions with
translational symmetry. In contrast, Bk(r) only
needs to be periodic with respect to the lattice vec-
tors in the discrete case.

2. Each choice of wave vector k gives a unique
eigenspace in the continuous case, but not in the
discrete case, where instead the wave vectors that
generate all unique eigenspaces form a Brillouin
zone.

ε ε + ∆ε ε ε + ∆ε ε

x

y

d
2

d
2

d
2

. . .. . .

FIG. 3: Introducing a periodic perturbation ∆ε to form a
photonic crystal.

For simplicity, let us focus on symmetry in a single
direction d. From the second point above, we can un-
derstand that a particular wave vector in the Brillouin
zone with magnitude kd in the discrete case is formed
by “folding together” the wave vectors in the continuous
case with magnitudes

kd +
2πn

|d|
(32)

for integer n. Intuitively, this folding of an infinite set
of states in one permits greater freedom in the function
Bk(r), explaining point 1.
This discussion will prove useful when we discuss the

appearance of band gaps in Section IV.

IV. APPEARANCE OF PHOTONIC BAND
GAPS

We now give an intuitive, physical explanation of the
origin of photonic band gaps using the tools we have de-
veloped so far. Imagine starting with a homogeneous
medium and “turning on” a periodic perturbation ∆ε
such that we get a structure with discrete periodic struc-
ture. The motivating question is: how does the contin-
uous spectrum suddenly obey the rules of discrete pe-
riodicity, and how do band gaps appear? We will aim
to give a satisfactory answer to this question by working
perturbatively.
The precise setup is shown in Fig. 3. The photonic

crystal consists of alternating slabs of permittivities ε
and ε+∆ε, where each slab has width d/2. We consider
the case of on-axis propagation, where waves propagate
along the x-axis. The electric field, along which we orient
the y-axis, then depends only on x.
Before perturbation, the solutions for a particular k =

kx are two-fold degenerate, given as

E(x) = (Aeikx +Be−ikx)ŷ. (33)
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Initially, all possible values of ω = kc/ε are allowed, so
there is no band gap.

Before applying perturbation theory, we need to de-
cide which of these degenerate subspaces we are inter-
ested in studying to reveal the band gap behaviour. This
requires some physical insight. Recall from Eq. (32) of
Section III C that we can think of the wave vectors as
“folding over” when transitioning to the discrete case.
Also recall from Section IIIA that, once discrete trans-
lational symmetry is imposed, each Bloch wave vector
k = kx will correspond to a countable (i.e. discretely
spaced) set of solution modes.

The diamond shape in Fig. 4 shows the implications of
these two ideas, where the first two Bloch solutions are
depicted for each k. As the perturbation is turned on,
the sides of this diamond will evolve continuously. From
the picture, we can see that the only place a band gap
can be formed is at the energy corresponding to the edge
of the Brillouin zone, where k = ±π

d (neglecting higher
order band gaps that come from considering the third
Bloch states, and so on). So, let us apply perturbation
theory to the eigenspace given by Eq. (33) for the choice
k = π

d .
Although this is strictly speaking a case of degenerate

perturbation theory, we are only interested in the first-
order change. So Eq. (25) is still applicable, as long as we
apply it to the “good basis” for the eigenspace in which
∆ε is diagonal. (Here, we slightly abuse notation by using
∆ε to refer both to the scalar change in ε for each layer,
and as the function ∆ε(x) that gives the perturbation of
ε(x) over all of space.)
Given that the good basis has size two, by the vari-

ational theorem we can find its elements by considering
the solution modes which maximize and minimize the
quadratic form ⟨B,∆εB⟩. For ∆ε > 0, this quadratic
form is maximized by a mode that peaks in the layer
with permittivity ε+∆ε, and it is minimized by a mode
that peaks in the layer with permittivity ε. For ∆ε < 0,
it is the opposite way around, but the modes are still the

same. We depict these two modes in Fig. 5: this is our
good basis. Setting x = 0 at the left end of a layer with
permittivity ε + ∆ε, the electric fields of the modes are
given by

E1(x) = sin2
(πx
d

+
π

4

)
(34)

E2(x) = sin2
(πx
d

− π

4

)
. (35)

We apply non-degenerate pertubation theory (Eq. (25))
to E2(x), considering only the range 0 ≤ x < d due to
the periodic structure.

∆ω2

ω
= −1

2

∫ d

0
|E2(x)|2∆ε(x)dx∫ d

0
|E2(x)|2ε(x)dx

(36)

= −1

2

∆ε

ε

∫ 1/2

0
sin2

(
πx+ π

4

)
dx∫ 1

0
sin2

(
πx+ π

4

)
dx

(37)

= −1

2

∆ε

ε

∫ 1/2

0

(
1− cos

(
2πx+

π

2

))
dx (38)

= −
(
1

4
+

1

4π

[
sin

(
2πx+

π

2

)]1/2
0

)
∆ε

ε
(39)

= −
(
1

4
+

1

2π

)
∆ε

ε
. (40)

By an identical argument, we have

∆ω1

ω
= −

(
1

4
− 1

2π

)
∆ε

ε
. (41)

Immediately, we see that ∆ω2 ̸= ∆ω1; the degeneracy
has been broken, as shown in Fig. 4, forming a band gap.
Note that this agrees with the intuition presented at the
end of Section II B: the electric fields of the two modes
are concentrated in regions with different permittivities,
so we would expect the degeneracy to be broken.
We can obtain a quantitative expression for the size of

the photonic band gap by subtracting the two,

∆ω

ω
=

∆ω1 −∆ω2

ω

1

π

∆ε

ε
, (42)

obtaining a quantitative expression for the relative height
of the gap, to the first-order approximation.

V. CONCLUSION

We have shown how to adapt the formalism of quantum
mechanics to the electromagnetic context. This shows
the generality of the ideas of quantum mechanics, and
also highlights new problems that can arise in different
contexts, such as generalized eigenproblems and vector-
valued fields satisfying transversality constraints.
By drawing an analogy to quantum mechanics, we have

introduced the reader to the field of photonic crystals.
Using electromagnetic perturbation theory, we have ex-
plained how a photonic band gap is form. Although it
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FIG. 5: The good basis for the degenerate eigenspace k = π
d
.

is true that explicit non-perturbative forms can be given
for the band gap, the value of our perturbative treatment
is the physical intuition it provides into why a gap arises,
and how it is fundamentally linked to the transition from
continuous to discrete translational symmetry.

This work could be extended by considering two- and
three-dimensional photonic crystals, and the interesting
physical phenomena that can arise in these settings, such
as a complete photonic band gap in all settings.
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