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0. Introduction

Notation 0.1. Let X be a quasicompact quasiseparated scheme. Let H›pXq denote the
∞-category of pointed motivic spaces over X. Let Vecemb

pXq denote the category of
vector bundles over X and injective linear bundle maps between such. And recall that
given a vector bundle V Ñ X, we obtain a corresponding “sphere” SV P H›pXq.

The impetus for these notes was a desire for a formal ∞-categorical understanding
of the following fact:

Proposition 0.2. There is a canonical symmetric monoidal functor

Vecemb
pXq Ñ H›pXq

extending the construction V ÞÑ SV, where Vecemb
pXq is given the direct sum symmetric

monoidal structure and H›pXq is given the smash product symmetric monoidal structure.

Remark 0.3. From Proposition 0.2 it is fairly straightforward to construct the motivic
J-homomorphism as a map of E∞-spaces. See for example the beginning of §16.2 in
[BH18].

We will give a proof of Proposition 0.2 in §3. The proof relies on a fact about smash
products of spaces that we discuss in §2, and the theory of Day convolution symmetric
monoidal structures, reviewed in §1.

1. Day convolution

Construction 1.1. Let C and D be symmetric monoidal ∞-categories. Let

bC : Cˆ CÑ C, bD : DˆDÑ D

denote the underlying bifunctors. Consider the functor category E :“ FunpC,Dq. Given
functors F,G P E, we may form the composite functor

Cˆ C
pF,Gq
ÝÝÝÑ DˆD

bD
ÝÝÑ D.

We denote a left Kan extension of this composite along bC : C ˆ C Ñ C by F f G P E

(when it exists). If this left Kan extension exists for all F,G P E, this construction
extends in an evident way to a bifunctor f : E ˆ E Ñ E. We refer to this bifunctor as
the Day convolution product.

Remark 1.2. A sufficient criterion for the Kan extensions in Construction 1.1 to exist
is that D admit colimits of the diagrams

pCˆ Cq ˆC C{X Ñ Cˆ C
pF,Gq
ÝÝÝÑ DˆD

bD
ÝÝÑ D

for each X P C; here the first functor is the projection, and we are using the functor bC

to form the fiber product on the left-hand side (so informally we may write objects of
the fiber product as of the form UbC V Ñ X). Under the assumption that this criterion
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holds, the pointwise formula for left Kan extension gives the following expression for the
Day convolution product:

pFfGqpXq » colim
UbCVÑX

FpUq bD GpVq.

We are interested in understanding when the Day convolution product extends to a
symmetric monoidal structure on the functor category.

Terminology 1.3. In the situation of Construction 1.1, a diagram of C-Day shape in
D is a diagram of the shape F: p

ś

I Cq ˆC C{X Ñ D, where:
– X P C, I is a finite set, and the fiber product is formed using the multitensor

product functor bC,I :
ś

I CÑ C;
– F is obtained from a set of functors tFi : CÑ DuiPI as the composite

p
ś

I Cq ˆC C{X Ñ
ś

I C
pFiq
ÝÝÑ

ś

I D
bD,I
ÝÝÝÑ D,

where the first functor is the projection.
We accordingly refer to colimits of diagrams of C-Day shape as colimits of C-Day shape.

Proposition 1.4. In the situation of Construction 1.1, assume that D admits colimits
of C-Day shape and that the bifunctorbD : DˆDÑ D preserves colimits of C-Day shape
separately in each variable. Then there is a canonical symmetric monoidal structure on
E “ FunpC,Dq whose underlying bifunctor is the Day convolution product f : EˆEÑ E.

Proof. See [Lur-A, §2.2.6]; the statements there have stronger hypotheses (and apply
in the more general setting of O-monoidal ∞-categories), but the proofs establish the
claim written here.

Terminology 1.5. We refer to the symmetric monoidal structure of Proposition 1.4 as
the Day convolution symmetric monoidal structure on FunpC,Dq.

Remark 1.6. Let C,D,D1 be symmetric monoidal ∞-categories and let Φ: D Ñ D1

be a symmetric monoidal functor. Assume that D and D1 satisfy the hypotheses of
Proposition 1.4, so that we obtain Day convolution symmetric monoidal structures on
FunpC,Dq and FunpC,D1q. Then, if Φ preserves colimits of C-Day shape, there is a
canonical symmetric monoidal structure on the functor Φ› : FunpC,Dq Ñ FunpC,D1q
given by composition with Φ.

Proposition 1.7. Let C be a small symmetric monoidal ∞-category. Recall that the op-
posite category Cop then canonically inherits a symmetric monoidal structure. By Propo-
sition 1.4 we obtain a Day convolution symmetric monoidal structure on the presheaf
∞-category PShpCq :“ FunpCop,Spcq, using the cartesian symmetric monoidal structure
on Spc. This symmetric monoidal structure is characterized uniquely by the following
two properties:

(a) the underlying bifunctor f : PShpCq ˆ PShpCq Ñ PShpCq preserves colimits sepa-
rately in each variable;

(b) the yoneda embedding C ãÑ PShpCq can be given a symmetric monoidal structure.

Proof. See [Lur-A, Cor. 4.8.1.12 and Rmk. 4.8.1.13].

In these notes, we will consider Day convolution symmetric monoidal structures for
exactly one example of source category, C “ r1sop:

Notation 1.8. Let r1s denote the poset t0 ď 1u. We equip this with the commutative
monoid structure given by the “logical or” operation; this respects the ordering, hence
endows r1s with the structure of a symmetric monoidal category.

We let x1y :“ r1sop and endow this with the same symmetric monoidal structure.
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Remark 1.9. While there is of course a canonical isomorphism of posets r1s » r1sop,
we will adopt the convention of considering functors out of r1sop “ x1y.

Remark 1.10. We can understand explicitly diagrams of x1y-Day shape:
(a) First of all, the category x1yn is the n-dimensional cube poset (or its opposite); we

shall write its objects as strings q1q2 . . . qn where each qi P x1y. The multitensor
product functor bx1y : x1yn Ñ x1y takes a string q1q2 . . . qn to 1 if and only if some
qi “ 1. It follows that the overcategory x1ynˆx1yx1y{X appearing in Terminology 1.3
can be described as follows:
– In the case X “ 0 P x1y, we have x1ynˆx1y x1y{X » x1yn (via projection) as X is a

final object in x1y. Note that x1yn also has a final object, 00 . . . 0, so that colimits
over this diagram are given simply by evaluation there.

– In the case X “ 1 P x1y, we have x1yn ˆx1y x1y{X » px1ynq˝, where we define
px1ynq˝ :“ x1yn´t00 . . . 0u to be the cube minus its final vertex. Let us note here
that x1yn is the cocone diagram over px1ynq˝, so when we say a diagram of shape
x1yn is a colimit diagram, we mean that the final vertex is the colimit over the
punctured cube.

(b) Let D be an ∞-category admitting finite limits, equipped with the cartesian sym-
metric monoidal structure. Let F1, . . . ,Fn : x1y Ñ D be a set of functors. Now
consider the cubical diagram

F: x1yn pFiq
ÝÝÑ Dn

ś

ÝÑ D

appearing in Terminology 1.3. On objects this sends q1 . . . qn P x1yn to
śn
i“1 Fipqiq.

We observe that the canonical map

Fpq1q2 . . . qnq Ñ Fpq10 . . . 0q ˆFp00...0q Fp0q2 . . . 0q ˆFp00...0q ¨ ¨ ¨ ˆFp00...0q Fp00 . . . qnq

is an equivalence for all q1q2 . . . qn P x1yn; this is easy to see using that (iterated)
pullbacks commute with products.

Notation 1.11. Given an ∞-category D, we let ArpDq :“ Funpx1y,Dq. If D admits
colimits of x1y-Day shape and is equipped with a symmetric monoidal structure whose
underlying bifunctor preserves colimits of x1y-Day shape separately in each variable,
then we regard ArpDq as a symmetric monoidal ∞-category via the Day convolution
structure.

Example 1.12. In Notation 1.11, we may take D “ Spc, equipped with the carte-
sian symmetric monoidal structure. As binary products in Spc preserve colimits sepa-
rately in each variable, we obtain the Day convolution symmetric monoidal structure
on ArpSpcq “ PShpr1sq.

2. Smash products

Proposition 2.1 (Lurie). There exists a unique symmetric monoidal structure on Spc›
with the following properties:

(a) the underlying bifunctor Spc›ˆSpc› Ñ Spc› preserves colimits separately in each
variable;

(b) the unit object is equivalent to the zero-sphere S0 P Spc›.

Terminology 2.2. We refer to the symmetric monoidal structure of Proposition 2.1 as
the smash product symmetric monoidal structure on Spc›. We denote the underlying
bifunctor by pX,Yq ÞÑ X^Y.

The goal of this section is to give another perspective on the smash product symmet-
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ric monoidal structure on Spc›, in terms of the Day convolution symmetric monoidal
structure on ArpSpcq.

Notation 2.3. Given a map of spaces f : U Ñ X, we may form a pushout diagram

X1 ›

X0 cofibpfq.

f

The pushout space cofibpfq is the cofiber of the map f , and is canonically pointed by the
right-hand vertical map. This construction determines a functor cofib: ArpSpcq Ñ Spc›.

The key fact about smash products we will use in §3 is that there is a symmetric
monoidal structure on the functor cofib: ArpSpcq Ñ Spc›. We begin by observing the
following weaker claim:

Lemma 2.4. For f, g P ArpSpcq, there is a natural equivalence

cofibpf f gq » cofibpfq ^ cofibpgq

in Spc›.

Proof. Both sides of the equivalence determine elements of the ∞-category

FunL
pArpSpcq,FunL

pArpSpcq,Spc›qq,

where FunL denotes colimit-preserving functors; it suffices to find an equivalence between
them in this ∞-category. Using the universal property of ArpSpcq “ PShpr1sq as a free
cocompletion, we reduce to finding an equivalence between the restrictions of these
elements along the yoneda embedding to

Funpr1s,Funpr1s,Spc›qq » Funpr1s ˆ r1s,Spc›q.

This is now a simple computation.

While Lemma 2.4 is perhaps the first essential ingredient of a symmetric monoidal
structure on cofib: ArpSpcq Ñ Spc›, rigorously it of course does not provide the whole
structure. However, we can use Lemma 2.4 to obtain the whole structure, and in fact
simultaneously characterize the smash product symmetric monoidal structure on Spc›
in these terms:

Proposition 2.5. (a) The functor cofib: ArpSpcq Ñ Spc› is left adjoint to the fully
faithful functor ι : Spc› ãÑ ArpSpcq that identifies pointed spaces with arrows of
spaces whose source is contractible.

(b) The localization cofib % ι is compatible (in the sense of [Lur-A, Dfn. 2.2.1.6]) with
the Day convolution symmetric structure on ArpSpcq.

(c) The symmetric monoidal structure on Spc› induced from that on ArpSpcq by (b) has
the properties of Proposition 2.1, hence agrees canonically with the smash product
symmetric monoidal structure.

Proof. (a) This is more or less immediate from the definition of the cofiber as a pushout.
(b) By [Lur-A, Ex. 2.2.1.7], the condition to be shown is that if σ : f Ñ g is a morphism

in ArpSpcq such that cofibpσq : cofibpfq Ñ cofibpgq is an equivalence in Spc›, then
for any h P ArpSpcq the morphism hf f Ñ hf g also becomes an equivalence after
applying cofib. This follows from Lemma 2.4.

(c) Recall that the induced symmetric monoidal structure has the following properties:
the underlying bifunctor on Spc› is given by

pX,Yq ÞÑ cofibpιpXq f ιpYqq,
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and the unit is given by applying cofib to the unit in ArpSpcq, which we know is the
image of the unit 0 P r1s under yoneda. Condition (a) of Proposition 2.1 then holds
since the same property holds for the Day convolution product on ArpSpcq and cofib
is a left adjoint, hence preserves colimits. And condition (b) of Proposition 2.1 holds
by an easy computation.

Corollary 2.6. There is a canonical symmetric monoidal structure on the functor
cofib: ArpSpcq Ñ Spc›, where the source is equipped with the Day convolution symmet-
ric monoidal structure and the target the smash product symmetric monoidal structure.

The results Proposition 2.5 and Corollary 2.6 are about the ∞-category of spaces,
but we may bootstrap to a more general result using the theory of tensor products of
presentable ∞-categories:

Proposition 2.7. Let X P PrL be a presentable ∞-category. Let X› denote the category
of pointed objects in X, i.e. the undercategory of a final object ›X P X. Let p´q` : XÑ X›
denote a left adjoint to the forgetful functor.

Suppose that the cartesian symmetric monoidal structure on X is a presentable
one, i.e. binary products in X preserve colimits separately in each variable (this holds
for example when X is an ∞-topos). Then there exists a unique symmetric monoidal
structure on X› with the following properties:

(a) the underlying bifunctor X› ˆ X› Ñ X› preserves colimits separately in each
variable;

(b) the functor p´q` : XÑ X› can be given a symmetric monoidal structure.

Proof. We first prove existence. By [Lur-A, Ex. 4.8.1.21], there is a canonical equivalence
X› » Xb Spc›, where b denotes the tensor product in PrL. Note that our hypothesis
implies that X has the structure of a commutative algebra object in PrL, and smash
product gives Spc› such a structure as well, so we canonically obtain such a structure on
their tensor product X›. This is precisely a symmetric monoidal structure on X› satisfy-
ing (a). To see that it also satisfies (b), we note that there is also a canonical equivalence
X » Xb Spc (as commutative algebra objects in PrL), and the map p´q` : X Ñ X› is
equivalent to the map obtained by applying the functor Xb´ : CAlgpPrL

q Ñ CAlgpPrL
q

to the map p´q` : Spc Ñ Spc› (which is a map of commutative algebra obejcts as it is
the unit map for the commutative algebra structure on Spc› in PrL).

We now prove uniqueness. Let Y denote the ∞-category X› equipped with a sym-
metric monoidal structure satisfying (a, b). As Y is pointed, there is a canonical map
Spc› Ñ Y in CAlgpPrL

q. Assumption (b) gives a map X Ñ Y in CAlgpPrL
q. As tensor

product becomes coproduct for commutative algebras, we therefore obtain a canonical
map Φ: X b Spc› Ñ Y in CAlgpPrL

q. But on underlying ∞-categories this map gives
the equivalence Xb Spc› » X›, so Φ is an equivalence.

Notation 2.8. We refer to the symmetric monoidal structure of Proposition 2.7 also
as the smash product symmetric monoidal structure on X›, and denote the underlying
bifunctor by pX,Yq ÞÑ X^Y.

Example 2.9. Let C be a small ∞-category and consider the case where X “ PShpCq
in Proposition 2.7. Then there is a canonical equivalence X› » PShpC; Spc›q, and the
smash product symmetric monoidal structure on X› is obtained pointwise from that on
Spc›.

Proposition 2.10. Let X P PrL be as in Proposition 2.7. Then the statements of Propo-
sition 2.5 and Corollary 2.6 go through with Spc replaced by X.

Proof. Roughly speaking, we simply apply Xb´ in PrL. Details omitted.
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3. The J-homomorphism

In this section, we apply the formalities of §§1 and 2 to prove Proposition 0.2. We will do
this by breaking down the construction rV P Vecemb

pXqs ÞÑ rSV P H›pXqs into several
steps.

Notation 3.1. We work over a fixed scheme X P Sch throughout this section. Let SmX
denote the category of finitely-presented smooth X-schemes. Let Smemb

X denote the wide
subcategory of SmX where morphisms are the (zariski-)open embeddings.

We equip SmX with the nisnevich topology, and let ShvnispSmXq denote the ∞-
category of sheaves of spaces on this site. The ∞-category of motivic spaces over X is
defined to be the full subcategory HpXq ãÑ ShvnispSmXq spanned by the A1-invariant
sheaves, i.e. those F P ShvnispSmXq such that for all Y P SmX, the map FpYq Ñ
FpY ˆ A1q induced by projection is an equivalence. The inclusion of this subcategory
admits a left adjoint that we will denote Lmot : ShvnispSmXq Ñ HpXq.

We denote the composite of Lmot with the sheafified yoneda embedding SmX Ñ

ShvnispSmXq by Y ÞÑ |Y|.

Notation 3.2. Let V Ñ X be a vector bundle. Let V˝ P SmX denote the complement
of the zero-section. We of course have a canonical open embedding V˝ ãÑ V, and the
“sphere” SV P H›pXq is defined to be the cofiber of the induced map |V˝| Ñ |V| in HpXq.

Proposition 3.3. The category Smemb
X admits colimits of x1y-Day shape, and binary

products in Smemb
X preserve colimits of x1y-Day shape separately in each variable. Thus,

the cartesian symmetric monoidal structure on Smemb
X determines a Day convolution

symmetric monoidal structure on ArpSmemb
X q.

Proof. By Remark 1.10, it suffices to show that we may construct colimits of diagrams
F˝ : px1ynq˝ Ñ Smemb

X that extend to diagrams F: x1yn Ñ Smemb
X satisfying the pull-

back property of Remark 1.10(b), and that these colimits are preserved in each vari-
able of binary products. These colimits may be constructed by gluing the schemes
Fp10 . . . 0q,Fp01 . . . 0q, . . . ,Fp00 . . . 1q along the open subschemes specified by the next
layer of the cube; the pullback property ensures the necessary cocycle/compatibility con-
ditions for gluing are satisfied. The statement about binary products is straightforward
to see from this construction. Details omitted.

Proposition 3.4. There is a canonical symmetric monoidal functor

ι˝ : Vecemb
pXq Ñ ArpSmemb

X q

extending the construction V ÞÑ pV˝ ãÑ Vq described in Notation 3.2. Here the source
is equipped with the direct sum (i.e. cartesian) symmetric monoidal structure and the
target the Day convolution symmetric monoidal structure of Proposition 3.3.

Proof. Functoriality is evident, and it is easy to see that the unit gets sent to the unit
and that there is a natural isomorphism ι˝pV ‘Wq » ι˝pVq f ι˝pWq. The rest of the
symmetric monoidal structure can be exhibited by hand as these are ordinary categories.
Details omitted.

Lemma 3.5. Let X be an ∞-category admitting colimits and finite limits. Suppose
given a cubical diagram F: x1yn Ñ X satisfying the pullback property of Remark 1.10(b).
Then F is a colimit diagram if and only if the Čech nerve of the map

Fp10...0q > Fp01...0q > ¨ ¨ ¨ > Fp00...1q Ñ Fp00...0q

is a colimit diagram (i.e. simplicial resolution of the target).

Proof. We apply Proposition A.2 to the map of simplicial sets

x1yn´1 > ¨ ¨ ¨ > x1yn´1 Ñ px1ynq˝
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given by the n faces of the punctured cube. This rewrites the cubical colimit as a
geometric realization of a simplicial object. We identify this simplicial object with the
Čech nerve using two facts: that colimits over cubes x1yk are given by evaluation at the
final object; and our hypothesis that F satisfies the pullback property.

Proposition 3.6. The (restricted, sheafified) yoneda embedding

y : Smemb
X Ñ ShvnispSmXq

preserves colimits of x1y-Day shape. As it also preserves finite products, there is a
canonical symmetric monoidal structure on the induced functor on arrow categories

Arpyq : ArpSmemb
X q Ñ ArpShvnispSmXqq,

where the target too is equipped with the Day convolution symmetric monoidal structure
induced by the cartesian symmetric monoidal structure on ShvnispSmXq.1

Proof. Similar to Proposition 3.3, it suffices to consider colimit diagrams F: x1yn Ñ
Smemb

X satisfying the pullback property of Remark 1.10(b). By the construction of col-
imits in the proof of Proposition 3.3, the schemes Fp10 . . . 0q,Fp01 . . . 0q, . . . ,Fp00 . . . 1q
form an open cover of the colimit Fp00 . . . 0q. By [Lur-T, Prop. 6.3.2.20], it follows that
the induced map

ypFp10...0qq > ypFp01...0qq > ¨ ¨ ¨ > ypFp00...1qq Ñ ypFp00...0qq

is an effective epimorphism in the ∞-topos ShvnispSmXq, which by definition (see [Lur-
T, below Cor. 6.2.3.5]) means that the Čech nerve of this map is a simplicial resolution.
Finally, since y preserves finite limits, Lemma 3.5 now implies that the composite y ˝
F: x1yn Ñ ShvnispSmXq is also a colimit diagram, as desired.

We can now deduce the main result:

Proof of Proposition 0.2. We take our functor to be the composite

Vecemb
pXq ι˝

ÝÑ ArpSmemb
X q

Arpyq
ÝÝÝÑ ArpShvnispSmXqq

ArpLmotq
ÝÝÝÝÝÑ ArpHpXqq cofib

ÝÝÝÑ H›pXq,

which on objects sends V ÞÑ cofibp|V˝| Ñ |V|q “ SV. It’s a fact that Lmot preserves finite
products (see for example [Hoy18, Prop. 3.15]), and it’s a left adjoint so it preserves colim-
its, whence ArpLmotq has a canonical symmetric monoidal structure by Remark 1.6. We
have a symmetric monoidal structure on ι˝ by Proposition 3.4, one on Arpyq by Propo-
sition 3.6, and one on cofib by Proposition 2.10. We thus have a symmetric monoidal
structure on the composite, as desired.

A. Decomposing colimits

In [Lur-T, §4.2.3] there is a very general result on rewriting colimits of diagrams in
∞-categories in terms of colimits of simpler diagrams. Here we isolate one case of this,
which is used above in proving Lemma 3.5.

Notation A.1. In this section, let X be a cocomplete ∞-category, let K be a simplicial
set, and let f : K Ñ X be a diagram.

Given a map of simplicial sets p : L Ñ K, we may consider the colimit of the restricted
diagram colimLpf ˝ pq P X. This extends to a functor

colimpf ˝ ´q : sSet{K Ñ X.

1Note that binary products in ShvnispSmXq preserve all colimits separately in each variable, as it
is an ∞-topos.
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Proposition A.2. Let L1, . . . ,Ln be simplicial subsets of K, and suppose that the in-
duced map L :“

š

Li Ñ K is surjective. Let LˆK‚ : ∆` Ñ sSet{K denote the augmented
simplicial object given by the Čech nerve of the map L Ñ K. Then the composite dia-
gram

∆op
`

LˆK‚

ÝÝÝÑ sSet{K
colimpf˝´q
ÝÝÝÝÝÝÝÑ X

is a colimit diagram. Or, more informally, the colimit of f : K Ñ X is canonically equiva-
lent to the geometric realization of the colimits of the restrictions f : LˆK ¨ ¨ ¨ˆK L Ñ X.

Proof. We may restrict to the semisimplicial category ∆op
inj since the inclusion ∆op

inj Ñ

∆op is cofinal. We now claim that [Lur-T, Cor. 4.2.3.10] applies in this situation. So
that we may use the notation set there, let us set I :“ ∆op

inj. We need to check that the
conditions (1) and (2) of [Lur-T, Prop. 4.2.3.8] hold.

Suppose σ P K˚ is a degenerate simplex. Since each LˆK ¨ ¨ ¨ˆK L is a disjoint union
of simplicial subsets of K, we have that I1σ “ Iσ. Thus condition (2) holds.

Suppose σ P K˚ is a nondegenerate simplex. We claim that the category Iσ is a
cofiltered poset, hence acyclic so that condition (1) holds. This follows straightforwardly
from the decomposition

LˆK ¨ ¨ ¨ ˆK L »
ž

1ďi1,...,ikďn
Li1 X ¨ ¨ ¨ X Lik ,

by which the objects of Iσ may be identified with sequences 1 ď i1, . . . , ik ď n such that
σ P Lij for all 1 ď j ď k.
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