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§0 Introduction

The goal for today’s talk is to illustrate how the theory of 8-categories can help

you do homotopy theory. I hope to convey two basic points:

(a) The idea that spaces (in the sense of homotopy theory) are “the same as”

8-groupoids, i.e. particular 8-categories, is a very useful one.

(b) Category theory allows you to separate out the formal from the the non-

formal parts of mathematics, but ordinary category theory breaks down in

homotopical situations; 8-category theory gives you the toolkit to remedy

this.

I’m going to try to illustrate via situations that have come up in our lives in the

recent past, both because that seems potentially effective and because that’s what’s

at the front of my mind.

0.1 Convention. In this talk (and probably in the following talks on the theory of

quasicategories), we will only discuss higher categories in which all k-morphisms

are invertible when k ą 1. Thus, by n-category I will always mean pn, 1q-category,

including of course when n “ 8.

0.2 Remark. Starting next week we’ll start working on rigorously understanding (at

least one model of) 8-category theory. However, the idea for today is to suspend

some disbelief, pretend we roughly know what they are, and allow ourselves to

see them in (a bit of) action without getting too worried about details or rigorous

definitions and proofs.

§1 The homotopy hypothesis

The first task is to explain how to view spaces (in the sense of homotopy theory) as

higher categories. So suppose given a topological space X. As a starting point, there

is following construction we’ve all seen:

1.1 Definition. The fundamental groupoid of X is the category πď1pXq whose:

I objects are the points x P X;

I morphisms x y are homotopy classes of paths (rel. end-points) from x to y.

Note that πď1pXq is indeed a groupoid, since paths can be reversed.

1.1.1 Remark. It was crucial here that we took homotopy classes of paths and not just

paths themselves, since composition of paths is only associative up to homotopy.
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Now, the fundamental groupoid πď1pXq deserves its notation because it contains

the information of π0pXq—as its set of isomorphism classes—and π1pX,xq for each

x P X—as the automorphism group of the object x.

A reasonable theory of higher categories should allow us to make similar construc-

tions that retains information about higher homotopy groups as well. An informal

“definition” would be as follows:

1.2 Definition. For 2 ď n ď 8, the fundamental n-groupoid of X is the n-category

πďnpXq whose:

I objects are the points x P X;

I 1-morphisms x y are paths from x to y;

I k-morphisms, for 2 ď k ă n, are inductively defined as homotopies (rel.

end-points) between pk ´ 1q-morphisms;

I n-morphisms, if n ă 8, are homotopy classes (rel. end-points) of homotopies

between pn´ 1q-morphisms.

Again, this is not just an n-category, but an n-groupoid, since paths are reversible.

Now, the relationship between spaces and groupoids is even more intimate than

we’ve discussed so far, due to another familiar construction going in the opposite

direction:

1.3 Given a groupoid G, there is a CW-complex BG, called its classifying space, satisfying

the following properties:

(a) When G has one object, i.e. is the delooping of a group, BG is the usual

classifying space of this group. In general, a groupoid G can be (non-canonically)

identified with a disjoint union of one-object groupoids, and Bp´q will preserve

disjoint unions.

(b) If X is a CW-complex, there is a canonical bijection

rπď1pXq, Gs » rX,BGs,

where on the left-hand side we have homotopy classes of maps of spaces and on

the right-hand side we have isomorphism classes of functors between groupoids.

(c) The counit map ε : πď1pBGq G induced by the adjunction in (b) is an

isomorphism for all G; by (a), this reduces to the usual fact that when G has

one-object, BG is an Eilenberg-Maclane space for the assoicated group.

(d) It follows from (c) that when X is a CW-complex, the unit map η : X

Bπď1pXq induces an isomorphism on fundamental groupoids. This in particular

implies that η is a homotopy equivalence when X is 1-truncated, i.e. has no

homotopy groups above degree 1.

It follows from (1.3)(d) that, from the point of view of homotopy theory, 1-

truncated spaces are really “the same as” (1-)groupoids. Of course it is also trivially

true that 0-truncated spaces are “the same as” 0-groupoids, i.e. sets. The homotopy

hypothesis is an extrapolation of this principle to higher n:

1.4 Philosophy. For 0 ď n ď 8, the fundamental n-groupoid construction induces an

equivalence between the homotopy theory of n-truncated spaces and the homotopy
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theory of n-groupoids. In particular, the homotopy theory of all spaces is equivalent

to the homotopy theory of 8-groupoids!

1.4.1 Remark. This is only a philosophy, or a hypothesis, because the statement depends

on giving a definition of n-groupoids. In fact, many theories of higher categories,

including quasicategory theory, build this hypothesis into the foundations, so that

the statement becomes somewhat of a tautology.

1.4.2 Remark. This philosophy also implies that spaces, when considered as purely

homotopy theoretic objects, may be thought of as of an essentially combinatorial

nature, consisting of a collection of points, paths, homotopies, and so on. Topological

spaces are one way of presenting such objects, but can be a somewhat misleading

presentation as topological spaces are really designed to encode more geometric data,

like manifolds and sheaves. The presentation by simplicial sets, fundamental to quasi-

category theory, is perhaps a closer approximation to this combinatorial/categorical

perspective.

1.4.3 Remark. However 8-categories are defined, they should realize the intuition that

they are “categories weakly enriched over 8-groupoids”. Thus the philosophy of the

homotopy hypothesis tells us that 8-categories can equivalently be thought of as

categories weakly enriched over spaces. I.e. an 8-category has a collection of objects,

and between any two objects is a space of maps. These mapping spaces should be

thought of “combinatorially”, as in (1.4.2); i.e. they carry the information of their

points (the maps), their paths (homotopies between maps), and homotopies and

higher homotopies (homotopies between homotopies between maps, and so on).

In the case of the 8-groupoid/space X, the objects are the points of X and the

mapping spaces are the path spaces of X. The other basic example is the 8-category

Spaces, whose objects are spaces; we know of course that there is a natural notion

of a space of maps between any two spaces. Note also that any 1-category, e.g. the

category Sets of sets, may be considered as an 8-category, where the mapping spaces

are discrete.

1.5 Convention. For the remainder of the talk, the word space will refer to the abstract

combinatorial notion of 8-groupoid; when I want to refer to the traditional notion I

will use the full phrase topological space. The goal in the next section is to see how

this categorical perspective can elucidate certain concepts in homotopy theory.

§2 Fibrations and local systems

I first want to discuss how viewing spaces as 8-groupoids leads to a nice perspective

on the theory of fibrations, a generalization of the classical theory of covering spaces.

The basic idea is that we may now ponder functors from a space to other 8-

categories. There’s some terminology for this.

2.1 Notation. In this section we will work with a fixed space X.

2.2 Definition. Let C be an 8-category. A functor (of 8-categories) X C is called

a C-valued local system on X. These organize into another 8-category, denoted

LocXpCq.
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2.2.1 Remark. Let’s unpack what exactly this notion of local system consists of. A

functor L : X C is the following data:

I To a point x P X we assign an object Lpxq P C.

I To a path p : x y we assign an equivalence Lppq : Lpxq „ Lpyq.

I To a two-simplex σ :

y

x z

qp

r

we assign a homotopy of equivalences Lpσq : Lprq » LpqqLppq.

I To higher simplices we assign higher coherence data.

2.2.2 Remark. Suppose C is a 1-category. Then the two-simplices and higher coherences

mentioned in (2.2.1) collapse into equalities. More precisely, any functor L : X C

factors canonically through the 1-truncation X τď1pXq obtained by modding

out homotopies of paths; of course, this truncation is just another name for the

fundamental groupoid construction πď1pXq discussed in §1!

Thus, in this case a C-valued local system on X amounts to an ordinary functor

of 1-categories πď1pXq C, which is the usual notion of local system on a space.

Now recall that the classical story of covering spaces can be written in terms of

functors out of the fundamental groupoid:

2.3 Theorem. Let X be a nice (but not necessarily connected) topological space1.

The category CovX of nice (but not necessarily connected) covering spaces of X is

equivalent to the category LocXpSetsq of functors πď1pXq Sets.

2.3.1 Remark. Let’s recall the construction of the functor CovX LocXpSetsq. Suppose

given a covering f : E X. The associated functor F : πď1pXq Sets is defined

as follows:

I given a point x P X we define F pxq :“ Ex :“ f´1pxq.

I given a path p : x y in X, for each point ex P Ex there is a unique lift

p1 : ex ey in E of p, for some ey P Ey that is in fact independent of the

homotopy class of p (rel. end-points); the association ex ey defines the

necessary map F ppq : F pxq F pyq.

Thus this equivalence of categories makes precise the idea that covering spaces

and local systems of sets are two equivalent ways to formalize the notion of a “family

of sets parametrized by X”.

We can use the 8-categorical notion of local system defined above to recast and

extend this story.

2.4 Definition. A space over X (or fibration over X) is simply a map of spaces E X.

The 8-category of spaces over X is denoted Spaces{X .

1Note that I am using a weird script font here to indicate that we are talking about actual

topological spaces, and not 8-groupoids like our fixed non-script X.
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Given a map E X and a point x P X, we have a notion of fiber Ex, defined

via the pullback diagram

Ex E

txu X

in the 8-category Spaces; note that the only notion of “pullback” in an 8-category

is that of a “homotopy pullback”, so one should really think of Ex as the “homotopy

fiber” of E over x P X.

A map of spaces E X is called a covering space over X if for each x P X the

fiber Ex is a discrete space. The full sub-8-category of Spaces{X on the covering

spaces will be denoted CovX .

2.5 Theorem. There is an equivalence of 8-categories

Spaces{X » LocXpSpacesq.

To go from left to right we associate a map E X to the functor x Ex; to go

from right to left we form the pullback of 8-categories

E Spaces‹

X Spaces,

where Spaces‹ denotes the 8-category of pointed spaces2. This equivalence restricts

to an equivalence of 1-categories

CovX » LocXpSetsq.

2.5.1 Remark. As in (2.3.1), the second half of this theorem tells us that covering spaces

and local systems of sets on X are two equivalent ways to formalize the notion of

a “family of sets parametrized by X”. The (stronger) first half of the theorem then

says more generally that spaces/fibrations over X and local systems of spaces on X

are two equivalent ways to formalize the notion of a “family of spaces parametrized

by X”.

§3 Classifying spaces

The next observation is that the classifying space construction is quite transparent

from the categorical perspective.

3.1 Given a discrete group G, we saw in §1 that the classifying space BG could be

thought of simply as the 1-groupoid consisting of one object with automorphism

group G.

We can extend this perspective to an arbitrary topological group G once we allow

ourselves to enter the world of higher categories. Namely, we can form a completely

analogous category enriched in spaces, i.e. 8-category, BG, consisting of one object

2The functor Spaces‹ Spaces is given by forgetting the basepoint. Note that the fiber of

this functor over a space F can canonically be identified with F itself.
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‹ whose space of automorphisms is the group G. Since all morphisms in this category

BG are invertible, it is an 8-groupoid, which is precisely the classifying space of G.

3.1.1 Remark. If we’re really trying to be categorically or homotopically pure, we should

be unsatisfied right now, as we just invoked the notion of topological group. Indeed

there is an intrinsic 8-categorical notion of an 8-group G, and we may form the

classifying space BG for these objects as well, which should be thought of in the

same way as above.

The canonical example of an 8-group is the loop space ΩxX of a pointed space

pX,xq, and indeed these notions are equivalent. Namely, we have an equivalence of

8-categories

tpointed connected spacesu t8-groupsu .
Ω

B

I want to also mention the notions of commutativity that an 8-group might be

equipped with. For 1 ď k ď 8 there is a notion of a k-abelian 8-group3, recovering

the above notion of8-group when k “ 1. Again, the canonical example of a k-abelian

8-group is a k-fold loop space, and all k-abelian 8-groups may be delooped k times,

giving rise to an equivalence

3.1.1.1 tpointed pk ´ 1q-connected spacesu tk-abelian 8-groupsu .
Ωk

Bk

3.2 Let G be a discrete group. One natural manner in which the one-object groupoid

BG arises is when we realize G as an automorphism group. Namely, suppose C

is a 1-category and F P C is an object such that AutF pCq » G. Then we may

consider the subgroupoid D of C consisting of all objects isomorphic to F and the

isomorphisms between them, and we will have an equivalence of groupoids D » BG.

The same reasoning goes through in 8-category theory. That is, if C is now

an 8-category and F P C, then the space of automorphisms G :“ AutCpF q has

the structure of an 8-group, and the sub-8-groupoid D of C consisting of objects

equivalent to F and equivalences between them is equivalent to the8-groupoid/space

BG.

3.2.1 Example. Let’s consider the case C “ Spaces, so F is any space, G :“ AutpF q is

the space of self-equivalences4 of F , and D » BG is the sub-8-groupoid of Spaces

on spaces equivalent to F .

Now fix a space X. Immediately from the constructions defining the equivalence

Spaces{X » LocXpSpacesq in (2.5) we see that it restricts to an equivalence between:

I the 8-category whose objects are maps E X with fibers all equivalent to

F , i.e. “fibrations over X with fiber F”, and whose morphisms are maps over

X inducing equivalences on all fibers;

I the 8-groupoid/space of maps X B AutpF q.

We thus recover immediately from (2.5) the homotopical analogue of the classifi-

cation of fiber bundles with fixed fiber. Note how lovely it is that we can immediately

switch between thinking of D » B AutpF q as a space or as a subcategory of the

8-category Spaces.

3This is nonstandard/made-up terminology; I’m referring to (grouplike) Ek-spaces.
4Not self-homeomorphisms of a topological space!
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3.2.2 Remark. Suppose given fibration E X with fiber F . We have just observed

(3.2.1) that this is classified by a map X B AutpF q. Let us recall one interpretation

of this classifying map. For every x P X we obtain a map of 8-groups

ΩxX Ω B AutpF q » AutpF q;

this is precisely the monodromy action of loops at x on the fiber Ex » F .

3.3 I next want to use this categorical perspective on classifying spaces to compute some

mapping spaces between Eilenberg-Maclane spaces.

3.3.1 Remark. For n ě 0 and G a discrete group, assumed abelian when n ě 2, the

Eilenberg-Maclane space KpG,nq can be expressed as BnG, the n-fold iterate of the

classifying space construction, i.e. the n-fold delooping, of G. Note that this is a

canonically pointed space.

This can be interpreted categorically as follows: KpG,nq is the n-groupoid with

one object ‹0, one k-morphism ‹k “ id‹k´1
for 1 ď k ă n, and Autp‹n´1q » G.

3.3.2 Proposition. Let n ě 2. Let G,G1 be discrete abelian groups. Then the space of

unpointed maps MappKpG1, nq,KpG,nqq is equivalent to HompG1, Gq ˆKpG, 2q.

Proof. Let Map‹pKpG
1, nq,KpG,nqq denote the space of pointed maps. We have a

fiber sequence

Map‹pKpG
1, nq,KpG,nqq MappKpG1, nq,KpG,nqq KpG,nq

where the first map forgets the pointedness and the second map is evaluation at the

basepoint of KpG1nq. By the equivalence (3.1.1.1),

Map‹pKpG
1, nq,KpG,nqq » HompG1, Gq,

so by (3.2.1) this sequence is classified by a map

θ : KpG,nq B AutpHompG1, Gqq.

Now HompG1, Gq is a discrete space, implying AutpHompG1, Gqq is as well, and

hence its delooping B AutpHompG1, Gqq is 1-truncated. On the other hand KpG,nq

is 1-connected as n ě 2, so θ must be nullhomotopic. Thus the fiber sequence splits,

giving the claim. �

3.3.3 Remark. The statement and argument for the case n “ 1 (and G,G1 possibly

nonabelian) omitted from (3.3.2) is just slightly more subtle. Alternatively, one can

make an explicit analysis using 1-groupoids!

§4 Postnikov towers and principal bundles

Finally, I’d like to give an interpretation of the classification of prinicipal bundles in

the spirit of the classification of fibrations from §2 and of fiber bundles from §3.

4.1 As we’re doing everything homotopically, the discussion of principal bundles below

will apply equally to the theory of “prinicipal Kpπ, nq fibrations”. The primary

motivation for this notion is the theory of Postnikov towers, so let’s first discuss this

from the 8-categorical perspective. The nice thing is that things become completely

canonical.
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4.1.1 Notation. Let n ě 0. We will denote by Spacesďn the full sub-8-category of Spaces

spanned by the n-truncated spaces. According to the homotopy hypothesis (1.4) we

may think of Spacesďn as the 8-category of n-groupoids.

4.1.2 Proposition. The inclusion in : Spacesďn Spaces admits a left adjoint

τďn : Spaces Spacesďn.

Idea of a proof. One may show formally that in preserves (homotopy) limits and

filtered (homotopy) colimits, i.e. that n-truncated spaces are stable under these

operations, and then this will follow from a suitable adjoint functor theorem for

8-categories. �

4.1.3 Remark. The functor τďn supplied by (4.1.2) is referred to as the n-truncation

functor. When n “ 0 this is the connected components functor, and when n “ 1 it is

the fundamental groupoid functor, as considered in (2.2.2). More generally, for any

space X, the unit map X τďnpXq induces an isomorphism on πk for 0 ď k ď n,

and conversely τďnpXq is uniquely characterized by this property.

Note that from the universal property arising from the adjunction we automatically

obtain the tower

...

τď2pXq

τď1pXq

X τď0pXq,

and by the usual analysis using the long exact sequence of homotopy groups we see

that the fiber of the map τďnpXq τďn´1pXq is equivalent to KpπnpXq, nq.

We now move on to the 8-categorical theory of prinicipal bundles. As we will be

continuing with our informal discussion, seeking only to establish intuition, let me

note that more details can be found in [NSS15].

4.2 Definition. Let G be an 8-group. A prinicpal G-bundle over a space X is a map

of spaces p : E X together with an action of G on E such that p exhibits X as

the (homotopy) quotient of this action. (We will usually abuse notation and omit

explicit mention of the action.)

4.2.1 Notation. There is a space/8-groupoid BunGpXq of prinicipal G-bundles over X.

4.2.2 Remark. Note that in this framework we say nothing about the action of G being

free or locally trivial on a prinicpal bundle. In fact, a moment’s reflection reveals

that the usual notions of free actions and locally trivial maps in the category of

topological spaces are not even available 8-categorically.

Worries about freeness are swept away by the use of the homotopy/8-categorical

quotient in place of the strict quotient. The correct homotopical notion of locally

trivial is that there be a map of spaces X 1 X which is surjective on connected
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components such that the pullback p1 : E1 :“ E ˆX X 1 X 1 is equivalent to the

trivial bundle GˆX 1 X 1; it turns out that the condition is always satisfied (one

can take X 1 to be E itself), and hence does not need to be explicitly assumed.

4.2.3 Example. Suppose we take E “ ‹ with the only possible, i.e. trivial, G-action.

Then the quotient X “ ‹ � G recovers the classifying space BG. That is, in the

equivalence

tpointed connected spacesu t8-groupsu
Ω

B

discussed in (3.1.1), the functor B can be expressed as the functor G ‹ �G.

Note that the fact ΩBG » G tells us that we have a pullback square

G ‹

‹ BG.

This gives an example of the local triviality described in (4.2.2), and tells us that

the fibers of the principal G-bundle ‹ BG are equivalent to G.

4.3 We are of course expecting the previous example (4.2.3) to be the “universal” example

of a prinicipal G-bundle for any 8-group G. This is established by the following

two facts; their proofs, which essentially amount to understanding how quotienting

spaces by 8-group-actions works, are omitted.

4.3.1 Lemma. Let p : E X be a prinicipal G-bundle. Let f : X 1 X be any map

of spaces. Then the pullback f 1 : E1 :“ E ˆX X 1 X 1 also canonically has the

structure of a principal G-bundle.

4.3.2 Lemma. Let E be a space equipped with an action of G, and p : E X the

quotient. The canonical map E ‹ is automatically G-equivariant, and hence

determines a commutative diagram

E ‹

X BG;

in fact this is a pullback square.

4.3.3 Proposition. The space BG is the “classifying space for principal G-bundles”.

That is, for any space X, pulling back the bundle ‹ BG along maps X BG

determines an equivalence

MappX,BGq » BunGpXq.

Proof. This follows immediately from (4.3.1) and (4.3.2). �

4.3.4 Remark. In (4.2.3) we saw that the fibers of the principal G-bundle ‹ BG are

equivalent to G. We now know by (4.3.3) that all principal G-bundles are pulled

back from this universal example, so we conclude that all principal G-bundles have

fibers equivalent to G (as one would hope).

Let FibGpXq denote the space of maps E X with fibers all equivalent to G.

The above observation tells us we have a map BunGpXq FibGpXq.
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In (3.2.1) we observed that “fibrations with fiber G” are classified by maps

X B AutpGq (here the 8-group structure on G is ignored). Observe that there is

a canonical map BG B AutpGq, determined by the map of8-groups G AutpGq

given by the permutation action of G on itself. Unravelling what we have said, we

obtain a commutative square

MappX,BGq BunGpXq

MappX,B AutpGqq FibGpXq.

„

„

Using (3.2.2), we can interpret this as follows: a principal G-bundle is precisely a

fibration E X with fibers G such that for every x P X the monodromy action of

ΩxX on the fiber Ex » G is given by multiplication in G.

4.4 To end, we apply this general theory of principal bundles to Postnikov towers

(constructed in (4.1.3)). Let X be a connected space, and consider the piece of its

Postnikov tower

KpπnpXq, nq τďnpXq τďn´1pXq

at stage n ě 2. Noting that KpπnpXq, nq is an (8-abelian) 8-group, we may ask:

when can we give this fiber sequence the structure of a principal KpπnpXq, nq-bundle?

By (3.2.1) and (3.3.2) the fiber sequence is classified by a map

θ : τďn´1pXq B AutpKpπnpXq, nqq

» B pAutpπnpXqq ˆKpπnpXq, nqq

» B AutpπnpXqq ˆ B KpπnpXq, nq,

i.e. by a pair of maps

α : τďn´1pXq B AutpπnpXqq, β : τďn´1pXq B KpπnpXq, nq.

By (4.3.4), to get a principal bundle we’d like to factor the classifying map θ through

the canonical map

B KpπnpXq, nq B AutpKpπnpXq, nqq,

which we see in this situation amounts to giving a nullhomotopy of the map α. As

AutpπnpXqq is discrete, B AutpπnpXqq is 1-connected, and hence α factors through

a map

α1 : τď1pXq B AutpπnpXqq

As X is assumed connected, α1 is equivalent to a group homomorphism π1pXq

AutpπnpXqq, which I claim (but have not checked) is the usual action of the funda-

mental group of X on its higher homotopy groups. Thus the desired nullhomotopy

exists for all n ě 2 if and only if X is simple, i.e. π1pXq acts trivially on the higher

homotopy groups.

Retracing our steps, we see that when this action is in fact trivial, τďnpXq

τďn´1pXq is a principal KpπnpXq, nq-bundle classified by the map

β : τďn´1pXq B KpπnpXq, nq.

Finally, noting that B KpπnpXq, nq » KpπnpXq, n´ 1q, and recalling that Eilenberg-

Maclane spaces represent ordinary cohomology, we see that in this situation this
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principal bundle is classified by an element of Hn´1pτďn´1pXq;πnpXqq, often referred

to as a k-invariant of this Postnikov tower.
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