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See, it’s never either/or now:
stigmata ampersand.

– Pinegrove

1. Introduction

I recently gained a new layer of appreciation for some mathematical entities and theorems
that were already quite close to my heart, in the form of a more geometric perspective
on them. The emotional results of this are that they seem to me more mysterious and
incredible than ever, and that I want more than ever for everybody to know them. The
practical result is that I have a lighter and more relatable version of the story to tell, which
is the content of today’s talk. The goal is to convey to you my modest understanding
and, at the end, overwhelming bewilderment.

The following notion was introduced by René Thom in the early 1950s [Tho54].

1.1. Definition. Let Y0 and Y1 be two compact smooth manifolds. A cobordism from
Y0 to Y1 consists of a compact smooth manifold B with boundary together with a
diffeomorphism BB » Y0 >Y1.

1.1.1. Examples. (a) A pair of pants may be viewed as a cobordism from Y0 :“ S1 >S1

to Y1 :“ S1.
(b) Given any compact smooth manifolds Y0 and Y1 and a diffeomorphism α : Y0 » Y1,

the cylinder B :“ Y0 ˆ r0, 1s can be viewed as a cobordism from Y0 to Y1 via the
identification

BB » pY0 ˆ t0uq > pY0 ˆ t1uq
α
» Y0 >Y1.

1.1.2. Remark. Cobordism defines an equivalence relation. This is a weaker form of
equivalence than diffeomorphism, by (1.1.1)(b), and certainly a strictly weaker one, as
demonstrated by (1.1.1)(a).

It will be convenient later to use an equivalent formulation of cobordism, which does
not refer to manifolds with boundary. Let me just state it now to avoid a break in the
flow later. For this, and in fact throughout this talk, we will need following the standard
notion.

1.2. Definition. A map of manifolds f : Y X is said to be proper if for any compact
subset Z Ď X, the preimage f´1pZq Ď Y is also compact.

1.3. Definition. A cobordism from Y0 to Y1 consists of a smooth manifold Y (with-
out boundary), a proper map f : Y R for which 0, 1 P R are regular values, and
diffeomorphisms Y0 » f´1p0q and Y1 » f´1p1q.

1.3.1. Remark. As indicated above, this notion of cobordism is equivalent to the one
stated in (1.1):
– To go from (1.3) to (1.1), we take the map f : Y R and set B :“ f´1pr0, 1sq; this is

compact since f is proper, and will have boundary f´1p0q > f´1p1q » Y0 >Y1.
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– To go from (1.1) to (1.3), take the manifold with boundary B and form Y by gluing on
infinite cylinders Y0 ˆ R and Y1 ˆ R to the boundary components Y0 and Y1; it is
then straightforward to produce an appropriate proper map f : Y R.

We can also consider cobordism for manifolds with extra structure. For example, there
is a natural notion of oriented cobordism between oriented manifolds. Another natural
structure one might be interested in is that of a complex manifold. But this—or even an
almost-complex structure, i.e. a complex structure on the tangent bundle—makes sense
only in even dimension, while the notion of cobordism necessarily involves manifolds of
both even and odd dimension simultaneously. Thus, to contemplate cobordism in this
setting, we make the following definition.

1.4. Definition. Let X be a smooth manifold, and let τX denote the tangent bundle on
X. A stable almost-complex structure on X is a complex structure on τX‘Rm (the second
factor denoting the trivial bundle of rank m) for some m P N. A stably almost-complex
manifold is a smooth manifold equipped with a stable almost-complex structure.

Now, there is a natural notion of (stably almost-complex) cobordism between stably
almost-complex manifolds.

1.5. Definition. For k P N, let Ωk denote the set of cobordism classes of stably almost-
complex manifolds of dimension k. The graded object Ω˚ carries the structure of a
graded-commutative ring, with addition given by disjoint union and multiplication given
by cartesian product. This is called the complex cobordism ring.

Thom demonstrated that these types of “cobordism rings” could be studied using
the methods of homotopy theory. For example, he was able to completely compute the
unoriented cobordism ring (i.e. the analogous ring for manifolds with no extra structure),
giving a complete classification of unoriented manifolds up to cobordism.

Quillen later gave a more refined perspective on Thom’s computation, relating it to
a certain notion that first arose in algebraic number theory, that of a formal group law.
There is an analogous perspective on and computation of the complex cobordism ring
Ω˚, which turns out to be significantly more interesting and have powerful consequences
in stable homotopy theory.

The rest of this talk will be devoted to explaining (but not proving) this characteri-
zation of Ω˚, which describes a classification of stably-almost complex manifolds up to
cobordism (as well as certain features of the geometry of such manifolds) in terms of the
algebra of formal group laws.

2. Cohomology theories

One of the main ideas from Thom’s and Quillen’s work is that cobordism rings can be
extended to (and then studied in the framework of) cohomology theories, in the sense of
algebraic topology. I understand that many people will feel the urge to immediately turn
off at this phrase, but please shrug off the impulse! These are cohomology theories with
concrete, geometric descriptions and consequences, and that is the perspective I want to
focus on today.

The purpose of this first section is to recall what a cohomology theory is, as well
as a couple of fundamental examples. To keep things as geometric as I can throughout
this talk, I am going to set up a restricted framework in which we only ever apply our
cohomology theories to manifolds.

2.1. Notation. Let Mfld denote the category whose objects are smooth manifolds with-
out boundary that admit a finite good open cover (i.e. an open cover tUiu1ďiďn such
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that any intersection Ui1 X ¨ ¨ ¨ X Uik (1 ď k ď n) is diffemorphic to a Euclidean space
Rm) and whose morphisms are smooth maps between such. From now on, whenever I
use the word manifold, I mean an object of this category.

2.2. Definition. A collar-gluing consists of:
– a manifold X;
– two open submanifolds U,V Ď X covering X, i.e. such that X “ UYV;
– a properly1 embedded submanifold Z UXV;
– a diffemorphism Z ˆ R „ U X V, which restricts to the given embedding on

Zˆ t0u Ď ZˆR.
We denote such a gluing by pX; U,V,Zq, leaving the diffeomorphism implicit.

2.2.1. Example. We can take X to be a sphere Sn with n ě 1, the open cover U,V to
be given by two overlapping hemispheres, and Z to be an equatorial Sn´1.

2.3. Definition. A multiplicative cohomology theory on Mfld consists of the following
data:
– values: a functor E˚ from Mfldop to the category of (Z-)graded commutative rings; the

superscript ˚ denotes the grading, so for k P Z, we let Ek denote the k-th graded piece
of E˚.

– boundary maps: for each collar gluing pX; U,V,Zq, a map of graded E˚pptq-modules
B : E˚pZq E˚`1pXq, which is natural with respect to maps of collar-gluings;

subject to the following conditions:
– homotopy invariance: for any manifold X, the projection XˆR X is carried to an

isomorphism E˚pXq „ E˚pXˆRq.
– locality: for each collar-gluing pX; U,V,Zq in Mfld, the sequence

¨ ¨ ¨ EkpXq EkpUq ‘ EkpVq EkpZq B Ek`1pXq ¨ ¨ ¨

is exact.

2.3.1. Remark. I will denote cohomology theories just by their underlying functors E˚,
leaving the boundary maps B implicit. Also, all cohomology theories appearing today
will be multiplicative and on Mfld, so I will mostly omit these modifiers and use just the
phrase cohomology theory to refer to the above notion.

2.3.2. Remark. By the homotopy-invariance axiom and the definition of a collar-gluing,
note that for any collar-gluing pX; U,V,Zq and cohomology theory E˚ we have a canonical
isomorphism E˚pZq » E˚pUXVq. In particular, we could have equivalently stated the
boundary map data and locality axiom above with UXV replacing Z. The sequence may
then look a bit more familiar, as the so-called Mayer-Vietoris sequence.

2.3.3. Notation. If E˚ is a cohomology theory and f : Y X is a smooth map of
manifolds, I will use the notation f› : E˚pXq E˚pYq to denote the induced map E˚pfq.

2.3.4. Remark. The homotopy invariance axiom has the following two equivalent for-
mulations:

(a) If f : Y X is a smooth homotopy equivalence of manifolds, then the induced
map f› : E˚pXq E˚pYq is an isomorphism.

(b) If f, g : X Y are homotopic smooth maps2, then the maps f›, g› : E˚pYq

1This just means that the image of the embedding is a closed subset of the target.
2It’s a fact that if two smooth maps are homotopic through continuous maps, then they are homotopic

through smooth maps.
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E˚pXq are equal.

2.3.5. Remark. Any manifold admits an open cover by Euclidean spaces, which are
contractible, so the homotopy invariance and locality axioms combine to give some kind of
recipe for computing the cohomology of any manifold (given the cohomology of a point).

As a warm-up example, we may use the collar-gluing of the sphere Sn described
in (2.2.1). For any cohomology theory E˚, this allows us to inductively compute that
E˚pSnq » E˚pptqrxs{px2q, where x P EnpSnq.

2.4. I’ll now recall a few examples of cohomology theories on Mfld. I’m not going to
explain in any detail why these are in fact cohomology theories, but I will make some
general comments on this point after stating all of the examples.

2.4.1. Example (de Rham cohomology). Perhaps the first topological cohomology
theory we encounter in our education is de Rham cohomology. For a manifold X, we have
a complex of differential forms,

0 Ω0pXq d Ω1pXq d
¨ ¨ ¨

d ΩdimpXqpXq 0,

and we define the de Rham cohomology H˚dRpXq as the homology of this complex, i.e.

Hk
dRpXq :“ kerpd: ΩkpXq Ωk`1pXqq

impd: Ωk´1pXq ΩkpXqq .

This defines a cohomology theory on Mfld.

2.4.2. Example (ordinary cohomology). Let A be a commutative ring. For any
topological space T, we may form H˚singpT; Aq, its singular cohomology with coefficients
in A. This in particular defines a cohomology theory on Mfld. For manifolds X, this
cohomology theory is naturally isomorphic to H˚shpX; Aq, the sheaf cohomology of the
constant sheaf A on X.

From now on, we’ll just use the notation H˚pX; Aq for either of these things, and refer
to it as ordinary A-cohomology, or just ordinary cohomology in the case A “ Z. In fact,
this cohomology theory is uniquely characterized by its value on a point: H˚ppt; Aq » A,
concentrated in degree 0.3 A special case of this uniqueness is exhibited by the de Rham
theorem, which supplies a canonical isomorphism H˚pX;Rq » H˚dRpXq.

2.4.3. Example (K-theory). Given a manifold X, we may consider the set VectpXq of
isomorphism classes of complex vector bundles on X. Direct sum and tensor product of
vector bundles gives VectpXq the structure of a commutative semiring. Formally adjoining
additive inverses gives us a commutative ring VectpXq`, the additive group completion
(sometimes called the Grothendieck group or ring) of VectpXq.

There is a cohomology theory K˚ on Mfld, called (topological, complex) K-theory,
satisfying the following properties:

(a) For X P Mfld, we have K0pXq » VectpXq`. (NB: our implicit finiteness hypothesis
on all manifolds (2.1) is necessary for this statement to be true.)

(b) The theory is 2-periodic: for any manifold X, we have a canonical isomorphism of
graded abelian groups K˚pXq » K˚`2pXq.

(c) The K-theory of a point is given by K˚pptq » Zrβ˘1s, where β P K2pptq. (Note
that this is consistent with the previous two properties.)

2.4.4. Remark. Why do de Rham cohomology, constant-coefficient sheaf cohomology,
and K-theory actually determine cohomology theories as defined in (2.3)? There are two
key points:

3Warning: it is not true in general that a cohomology theory is uniquely characterized by its value on
a point.
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(a) Locality: All of these theories arise from locally specified geometric data on manifolds:
differential forms, sections of sheaves, and vector bundles. This is what underlies the
definition of boundary maps satisfying the locality axiom of (2.3) in these examples.

(b) Homotopy invariance: We have fundamental results telling us that these construc-
tions are indeed homotopy-invariant, e.g. Hk

dRpRq » 0 for k ‰ 0, and VectpXq »
VectpXˆRq.

3. Fundamental classes and orientations

The example cohomology theories given in (2.4) by definition record certain types of
geometric data on manifolds. But there is another sense in which they hold geometric
information, namely through the theory of fundamental classes. The idea is that, in any
of these theories E˚ and for any manifold X, there are cohomology classes rYs P E˚pXq
“representing” certain compact submanifolds Y X, or more generally certain proper
maps f : Y X. Moreover, the algebra of the cohomology theory (e.g. the formation
of products of such classes) encodes geometry of these objects (e.g. their intersection
theory).

3.1. Example. Let me briefly recall how the most basic version of fundamental classes
works in de Rham cohomology. Let X be a compact oriented manifold of dimension n, and
let Y X be a compact oriented submanifold of dimension m ď n. There are integration
maps

ş

X : Hn
dRpXq R and

ş

Y : Hm
dRpYq R. The fundamental class rYs P Hn´m

dR pXq
is uniquely characterized by the property that

ş

X ω ^ rYs “
ş

Y ω|Y for all ω P Hm
dRpXq.

3.1.1. Remark. In the special case Y “ X, it’s clear from the above characterization
that rXs “ 1 P H0

dRpXq, i.e. the unit in the graded-commutative ring H˚dRpXq. In
the general case, we may think of rYs as a “pushforward” of 1 P H˚dRpYq along the
inclusion f : Y X to a class in H˚dRpXq. Indeed, we may define a pushforward map
f› : H˚dRpYq H˚`n´mdR pXq by a straightforward generalization of the above formula for
the fundamental class, namely

ş

X ω ^ f›pηq “
ş

Y f
›pωq ^ η,

which indeed specializes to give rYs “ f›p1q.
Such pushforwards exist not just for embeddings of closed submanifolds, but for any

proper map (with an appropriate notion of orientation). Another typical example is the
case that f : Y X is a smooth fiber bundle with compact fibers. If the fibers are
oriented, and say of dimension k, then “integration along fibers” defines a pushforward
map f› : H˚dRpYq H˚´kdR pXq.

As I mentioned at the beginning of this section, a similar formalism of fundamental
classes and pushforwards also exists in other cohomology theories, e.g. K-theory. I next
want to make a precise axiomatic definition of this kind of formalism. This will require a
couple of preliminary definitions.

3.2. Definition. We say a map f : Y X in Mfld has codimension k for k P Z if for
any point y P Y we have

dimpY, yq “ dimpX, fpyqq ´ k
(the notation here refers to the dimension of a manifold at a given point; we have not
required our manifolds to be equidimensional). Note that k is allowed to be negative here.

For the next definition, note the importance of orientations in the discussion (3.1) of
fundamental classes and pushforwards in de Rham cohomology. For today’s story, we need
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a stricter notion of orientation, one that for instance is sufficient to define fundamental
classes also in K-theory (the usual notion of orientation is not sufficient in this case).

3.3. Definition. Let f : Y X be a map in Mfld. An unstable complex-orientation of
f is a factorization

Y XˆRN

X

i

f
π1

of f in which i is a closed embedding whose normal bundle νi is equipped with a complex
structure. There is an evident notion of two unstable complex-orientations of f being
stably equivalent. A complex-orientation of f is a stable equivalence class of unstable
complex-orientations. A complex-oriented map in Mfld means a map equipped with a
complex-orientation.

3.3.1. Remark. One can make similar definitions with other kinds of bundle structures
required on the normal bundle νi, e.g. an orientation in the usual sense.

3.3.2. Remark. If you are comfortable with stable vector bundles and structures on
such, then a complex-orientation on f : Y X is equivalent to a complex structure on
the stable normal bundle of f , defined to be the stable vector bundle νf :“ τY ´ f

›pτXq
on Y, where τX, τY denote the respective (stable) tangent bundles.

3.3.3. Examples. In the following cases, f admits a canonical complex-orientation:
(a) f is a closed embedding of (almost-)complex manifolds;
(b) f is a fiber bundle whose fibers are (almost-)complex manifolds.

3.3.4. Remark. (a) Given two complex-oriented maps f : Y X and g : Z Y, there
is a canonical composite complex-orientation on the composite map fg : Z X.

(b) Given a pullback diagram in Mfld

Y1 Y

X1 X

q

g f

p

with f transverse to p and f complex-oriented, there is a canonical pulled-back
complex-orientation on g.

We may now state the definition of a cohomology theory with pushforwards in the
complex-oriented setting (due to Quillen [Qui71]).

3.4. Definition. A complex-oriented cohomology theory on Mfld is a multiplicative
cohomology theory E˚ on Mfld equipped with the following extra data:
– for each proper complex-oriented map f : Y X in Mfld of codimension k, a map of

E˚pXq-modules f› : E˚pYq E˚`kpXq of E˚pXq-modules4 (note that this map can
depend on the complex-orientation on f);

subject to the following conditions:
– given a collar gluing pX; U,V,Zq, if we equip the embedding i : Z X (which is proper

of codimension 1) with the complex-orientation coming from the given trivialization of
its normal bundle, then i› “ B : E˚pZq E˚`1pXq;

– for any identity map idX : X X equipped with its canonical complex-orientation, we
have pidXq› “ idE˚pXq : E˚pXq E˚pXq.

4Here E˚pYq is viewed as an E˚pXq-module via the ring map f› : E˚pXq E˚pYq.
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– for two proper complex-oriented maps f : Y X and g : Z Y of codimensions k
and l respectively, if we equip fg : Z X with the composite complex-orientation,
then f›g› “ pfgq› : E˚pZq E˚`k`lpXq;

– for any pullback diagram in Mfld

Y ˆX Z Z

Y X.

q

p g

f

with f transverse to g and g proper and complex-oriented of codimension k, if we equip
p with the pulled-back complex-orientation, then f›g› “ p›q

› : E˚pZq E˚`kpYq.
As indicated in (3.1.1), a theory of pushforwards gives rise to a theory of fundamental

classes:

3.4.1. Definition. Let E˚ be a complex-oriented cohomology theory. Let f : Y X
be a proper complex-oriented map of codimension k. We define rYs :“ f›p1q P EkpXq,
where 1 P E0pYq denotes the unit of the graded commutative ring E˚pYq. We call rYs the
fundamental class of Y. (The notation and terminology are sloppy: the manifold X and
map f are meant to be understood from context.)

The following two results illustrate how the above axiomatics encode naturally desirable
features for a theory of fundamental classes.

3.4.2. Proposition. Let f : Y X and g : Z X be proper complex-oriented maps of
codimensions k and l respectively, and suppose f and g are transverse. Let h : YˆXZ X
denote the fiber product in Mfld. Then in any complex-oriented cohomology theory E˚,
we have rY ˆX Zs “ rYsrZs P Ek`lpXq.

Proof. Consider the pullback diagram

Y ˆX Z Z

Y X.

q

p g

f

In any complex-oriented cohomology theory E˚, we by definition have f›g› “ p›q
›, and

hence
f›f

›g› “ f›p›q
› “ h›q

›.

Applying this to 1 P E˚pZq, we obtain

f›f
›rZs “ rY ˆX Zs.

Finally, f› being E˚pXq-linear implies that f›f›rZs “ rYsrZs, and thus the claim is
proven.

3.4.3. Proposition. Let f, f 1 : Y X be proper complex-oriented maps of codimension
k. Suppose f and f 1 are homotopic. Then in any complex-oriented cohomology theory
E˚ we have f› “ f 1› : E˚pYq E˚`kpXq. In particular, the fundamental class rYs only
depends on the homotopy class of the map f .

I’ll postpone the proof of (3.4.3) to the next section, where we’ll actually prove
something slightly more general.

3.4.4. Remark. Let E˚ be a complex-oriented cohomology theory. For n ě 1, let
in : CPn´1 CPn denote the inclusion of a hyperplane (the choice of hyperplane does
not matter up to homotopy). Define tn :“ rCPn´1

s P E2pCPnq. These classes satisfy the
following properties:
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(a) Since CP1 is homotopy equivalent to S2, we have by (2.3.5) that E2pCP1
q »

E2pS2q » E0pptq. Under this isomorphism, the class t1 P E2pCP1
q is sent to the

unit 1 P E0pptq.
(b) We have i›n`1ptn`1q “ tn.

Remarkably, it turns out that conversely the entire structure of a complex-orientation on
a cohomology theory E˚ can be extended uniquely from the data of classes tn P E2pCPnq

for n ě 1 satisfying the above two properties.

3.4.5. Examples. Both ordinary cohomology H˚p´;Zq and K-theory K˚ admit complex-
orientations. This can be seen in terms of the characterization of complex-orientations given
in (3.4.4). For example, in K-theory, the class tn P K2pCPnq » K0pCPnq » VectpCPnq`
is given by the tautological line bundle Op1q on CPn.

I’ll finish this section by describing an example of how a basic situation in projective
geometry is encoded in the algebra of fundamental classes. We will need the following
fundamental computation (which will also play an important role later on).

3.5. Proposition. Let E˚ be a complex-oriented cohomology theory. Then for all n P N,

E˚pCPnq » E˚pptqrtns{ptn`1
n q.

Here tn :“ rCPn´1
s as in (3.4.4), and more generally we have tkn “ rCP

n´k
s for 0 ď k ď n.

Proof. We proceed inductively, the case n “ 0 being tautological. For n ě 1, consider the
inclusion of a hyperplane i : CPn´1 CPn. Let U Ď CPn denote a tubular neighborhood
of this submanifold, diffeomorphic to its normal bundle νi and hence homotopy equivalent
to CPn´1. Letting V Ď CPn denote the affine space complementary to i, we have an
open cover CPn “ UYV.

The intersection UXV is diffeomorphic to the complement of the zero-section in νi,
which in turn is diffeomorphic to the product of the sphere bundle Spνiq νi and R. In
other words, we have a collar gluing pCPn; U,V,Spνiqq.

We now use the fact that the bundle νi is isomorphic to the tautological bundle Op1q on
CPn´1, whose sphere bundle is given by the canonical projection S2n´1 CPn´1 (which
indeed is an S1-fiber bundle). So we conclude that we have a collar gluing pCPn; U; V; Zq
in which U is equivalent to CPn´1, V is contractible, and Z is equivalent to S2n´1.

From this we obtain the Mayer-Vietoris sequence

¨ ¨ ¨ EkpCPnq EkpCPn´1
q ‘ Ekpptq EkpS2n´1q ¨ ¨ ¨ ,

which then gives a long exact sequence

¨ ¨ ¨ EkpCPnq EkpCPn´1
q rEkpS2n´1q ¨ ¨ ¨

where rE˚pXq denotes reduced cohomology, i.e. the cokernel of the map E˚pptq E˚pXq
induced by the projection X pt.

Now, we know that i›ptnq “ tn´1, so the inductive hypothesis implies that the map
i› : E˚pCPnq E˚pCPn´1

q is surjective. Thus the previous long exact sequence breaks
up into short exact sequences

0 rEk´1pS2n´1q EkpCPnq EkpCPn´1
q 0.

By (2.3.5) we know that rEk´1pS2n´1q » Ek´2npptq. So in total we see that we have a
short-exact sequence of E˚pptq-modules

0 E˚´2npptq E˚pCPnq E˚pCPn´1
q 0.

To finish, it suffices to show that the image of the unit 1 P E0pptq under the above map
E˚´2npptq E˚pCPnq is tnn P E2npCPnq. Chasing back through how we arrived at that
map, we see that the image of 1 is the image of the generator x P E2n´1pS2n´1q under
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the map B : E˚pS2n´1q E˚`1pCPnq. But now in the complex-oriented setting we have
that B is given by pushforward along the embedding. Using this same fact, one can check
that x “ rpts P E2n´1pS2n´1q. It follows that its image is rpts “ rCP0

s “ tnn P E2npCPnq,
as desired.

3.6. Examples. Let Z CPn be a complex hypersurface of degree d. This is a closed
embedding of complex manifolds, hence is canonically complex-oriented (3.3.3), so we get
a fundamental class rZs P E2pCPnq for any complex-oriented cohomology theory E˚. For
example, I can say what happens in ordinary cohomology and in K-theory:

– Ordinary cohomology: By (3.5), we have H2pCPn;Zq » Z ¨ rCPn´1
s. One finds that

rZs “ d ¨ rCPn´1
s.

– K-theory: Recall that K-theory is 2-periodic. So we can view rZs, as well as the
classes tkn “ rCPn´ks, all as degree-0 classes in K0pCPnq. With this modified
notation, (3.5) tells us that K0pCPn;Zq »

Àn
k“0 Z ¨ rCP

n´k
s. One finds that

rZs “ d ¨ rCPn´1
s ´

`

d
2
˘

¨ rCPn´2
s `

`

d
3
˘

¨ rCPn´3
s ´ ¨ ¨ ¨ .

Now let Z1 CPn be another hypersurface, of degree e and intersecting Z transversely.
Then by (3.4.2) we have the formula rZX Z1s “ rZsrZ1s, so from the above we can also
compute the fundamental class rZX Z1s in ordinary cohomology and K-theory:

– Ordinary cohomology: We have rZX Z1s “ de ¨ rCPn´2
s.

– K-theory: We have rZX Z1s “ de ¨ rCPn´2
s ´ 1

2depd` e´ 2q ¨ rCPn´3
s ` ¨ ¨ ¨ .

Observe that, when n ě 3, one can extract the individual degrees d, e from the coefficients
in the K-theory fundamental class of the intersection, while one only sees their product
de in ordinary cohomology.5

4. Cobordism

Various questions naturally arise from the above discussion of fundamental classes in
complex-oriented cohomology theories. For example:

4.1. Questions. (a) Given a complex-oriented cohomology theory E˚ and a class t P
E˚pXq for some manifold X, can one find a proper complex-oriented map f : Y X
such that t “ rYs?

(b) Can one characterize the sorts of formulae that appear for the fundamental classes of
complete intersections in projective space in a general complex-oriented cohomology
theory E˚?

When one has some general class of objects, like complex-oriented cohomology theories,
many times a useful strategy for understanding these objects is to produce a universal
example in this class and to just study that one particular object. It turns out that this
strategy is indeed viable and fruitful in the current scenario, and leads us directly to
today’s protagonist: complex cobordism.

The perspective I want to emphasize here is that complex cobordism is a cohomology
theory on Mfld characterized by having essentially tautological fundamental classes for
proper complex-oriented maps. That is, we will design complex cobordism as a cohomology
theory Ω˚ so that classes in Ω˚pXq are by definition represented by such maps Y X. Its
universality will then be a result of all complex-oriented cohomology theories E˚ having
their own interpretations of these classes, namely as their own fundamental classes.

5If you’re interested in learning more about K-theory from this kind of perspective, I recommend
looking at [Dug14].
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4.2. Remark. A näıve first guess is to define ΩkpXq to be the set of isomorphism classes
of proper complex-oriented maps Y X of codimension k, and for a map p : X1 X to
define p› : ΩkpXq ΩkpX1q by pullback, Y YˆX X1. We note two related issues with
this guess:

– If we want the pullback to remain a manifold, we will in general need to perturb
the situation to a transverse one, and then we need to worry about dependence on
the choice of perturbation.

– A cohomology theory needs to be homotopy-invariant. For example, all inclusions
X „ Xˆttu XˆR must induce the same map on pullback (note this is related
to the well-definedness concern in the previous point).

These issues bring us immediately back to the notion of cobordism, in a slightly
generalized form:

4.3. Definition. Let X P Mfld and let f0 : Y0 X and f1 : Y1 X be two proper
complex-oriented maps. A cobordism from f0 to f1 is a proper complex-oriented map
f : Y XˆR transverse to the embeddings Xˆ t0u XˆR and Xˆ t1u XˆR

together with diffeomorphisms f´1pXˆt0uq » Y0 and f´1pXˆt1uq » Y1 respecting the
maps to X and complex-orientations. Diagramatically this looks as follows:

Y0 Y Y1

Xˆ t0u XˆR Xˆ t1u

f0 f f1

where the two squares are cartesian.

4.3.1. Remark. Again, this notion of cobordism defines an equivalence relation.

The concerns of (4.2) can now be articulated precisely in the form of the following
result:

4.4. Proposition. Let E˚ be a complex-oriented cohomology theory. Let f0 : Y0 X
and f1 : Y1 X are proper complex-oriented maps of manifolds. If there is a cobordism
from f0 to f1, then rY0s “ rY1s P E˚pXq.

Proof. Let f : Y XˆR be a cobordism from f0 to f1. For t P R form the pullback
square

Yt Y

Xˆ ttu XˆR.

ft

jt

f

it

Assuming f is transverse to the inclusion it (it is by hypothesis for t P t0, 1u), in the
cohomology theory E˚ we have

rYts “ pftq›p1q “ pftq›pjtq›p1q “ pitq›f›p1q.

It follows from homotopy-invariance that the map pitq› : E˚pXˆRq E˚pXq is indepen-
dent of t (it is necessarily the inverse to the isomorphism E˚pXq „ E˚pXˆRq induced
by projection), and hence rYts is independent of t.

This leads us to the following definition of complex cobordism as a cohomology theory.

4.5. Definition. For X P Mfld and k P Z, let ΩkpXq denote the set of cobordism classes
of proper complex-oriented maps Y X of codimension k.

4.5.1. Remark. Recalling the notation from (1.5), we have Ω˚pptq » Ω´˚.
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4.5.2. Construction. Let me just sketch how to construct some of the structure of a
complex-oriented cohomology theory on the above assignment X Ω˚pXq:
– We need a graded commutative ring structure on Ω˚pXq. The sum of two cobordism

classes of proper complex-oriented maps f : Y X and f 1 : Y1 X is given by the
cobordism class of the disjoint union Y >Y1 X. To form the product of two such
cobordism classes, we may assume f and f 1 are transverse (we can always homotope
one of them to assure this is true, and this does not affect its cobordism class), and
then we form the fiber product Y ˆX Y1 X, whose cobordism class is well-defined.

– Given a map p : X1 X, we must define a pullback map p› : Ω˚pXq Ω˚pX1q. This
is similar to the formation of products just discussed: we may represent an element
of Ω˚pXq by a proper complex-oriented map f : Y X that is transverse to p, and
the pullback is defined to be the fiber product Y ˆX X1 X1, which has well-defined
cobordism class.

– Given a proper complex-oriented map f : Y X, we must define a pushforward map
f› : Ω˚pYq Ω˚pXq. This is easy: for an element of Ω˚pYq represented by a proper
complex-oriented map g : Z Y, its pushforward is defined to be the cobordism class
of the composite fg : Z X.

– The homotopy-invariance axiom is essentially designed to hold via the definition of
cobordism, which implies that the pullback map induced by the inclusion it : X »

Xˆ ttu XˆR is independent of t P R.
– The locality/exactness axiom requires perhaps the most thought; allow me to skip over

this.

I’ll end this section by stating precisely the result that complex cobordism is the
universal complex-oriented cohomology theory.

4.6. Proposition. Let E˚ be a complex-oriented cohomology theory on Mfld. Then
there exists a unique map of complex-oriented cohomology theories Ω˚ E˚.

Proof sketch. I haven’t actually defined what a map of complex-oriented cohomology
theories is, but you can surely reconstruct the definition for yourself. In any case, it must
send fundamental classes to fundamental classes, and this immediately tells us how to
define the desired map Ω˚ E˚: we send an element of Ω˚pXq represented by a proper
complex-oriented map f : Y X to the fundamental class rYs P E˚pXq. Note that (4.4)
shows that this is well-defined.

5. Characteristic classes and formal group laws

I will now finally get to explaining the main theorem, relating complex cobordism with the
theory of formal group laws. This relationship is mediated by the theory of characteristic
classes of vector bundles.

5.1. Construction. Let E˚ be a complex-oriented cohomology theory. Let X P Mfld
and let p : L X be a complex line bundle. Let s : X E denote the zero-section. The
first Chern class (of L in E˚-cohomology) is defined to be

c1pLq :“ s›s›p1q P E2pXq.

5.1.1. Remark. Note that any two sections of a vector bundle are homotopic (by a
straight-line homotopy), so we may replace either or both appearances of s in this formula
by any other section. For example, choose a section s1 : X L that is transverse to s. If
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we let i : Z X denote the vanishing locus of s1, then we have a pullback square

Z X

X L

i

i s1

s

from which we get

c1pLq “ s›s1›p1q “ s›s1›p1q “ i›i
›p1q “ rZs,

so that the first Chern class is identified with the fundamental class of Z, the vanishing
locus of any such section s1.

5.1.2. Example. Suppose L is a trivial line bundle. Then we may choose a non-vanishing
section s1 : X L, so that in (5.1.1) we have Z “ H, and hence c1pLq “ rHs “ 0.

5.1.3. Example. Let n P N and consider the tautological bundle Op1q on CPn. A
section of Op1q is given by a homogenous linear polynomial, and thus the vanishing
locus of a nonzero section is a hyperplane in CPn. It thus follows from (5.1.1) that
c1pOp1qq “ rCPn´1

s “ tn. Two remarks on this example:
(a) Comparing with (5.1.2), we see that the first Chern class has the ability to demon-

strate non-triviality of line bundles.
(b) This is the universal example: for any complex line bundle L X, there is a map

f : X CPn for some n P N such that L » f›Op1q, and it is straightforward to
check that the first Chern class constructed above is natural in the sense that we
then have c1pLq “ f›pc1pOp1qqq “ f›ptnq.

5.1.4. Question. What is c1pOpdqq for d ą 1? Recall that Opdq is the complex line
bundle on CPn whose sections are given by homogenous polynomials of degree d. Thus,
analogous to (5.1.3), it follows from (5.1.1) that this question is equivalent to asking:
what is the fundamental class of a degree-d hypersurface in CPn?

In (3.6), I stated what the answer to (5.1.4) looks like in ordinary cohomology and
in K-theory, and we saw that there was different behavior in these two cases. So, if you
believe me, there must be something nontrivial here to be understood. Let’s pursue the
question.

5.2. We continue working with a given complex-oriented cohomology theory E˚. Now,
note that Opdq » Op1qbd, so we might hope to be able to use our understanding of Op1q
from (5.1.3) to get at Opdq. We are led to ask the following finer question:

5.2.1. Question. Given two complex lines bundles L,L1 on X P Mfld, can one compute
c1pLb L1q in terms of c1pLq and c1pL1q?

To address this question, we will again use the strategy of contemplating the universal
example. Consider the product CPn ˆ CPn for n P N. Let π1, π2 : CPn ˆ CPn CPn

be the two projections. These give us two line bundles π›1Op1q, π›2Op1q on CPn ˆ CPn,
and we may form the tensor product π›1Op1q b π›2Op1q.

This is the “universal example of a tensor product of two line bundles”, in the
following sense: given two line bundles L,L1 on X P Mfld, there are some n P N and maps
f, f 1 : X CPn such that L » f›Op1q and L1 » pf 1q›Op1q. The product of these two
maps gives a map f :“ pf, f 1q : X CPn ˆ CPn, and we have

Lb L1 » f›pπ›1Op1q b π›2Op1qq.

In light of this, and the naturality of the Chern class, to answer our question (5.2.1)
it essentially suffices to understand how to express c1pπ

›
1Op1q b π›2Op1qq in terms of
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c1pπ
›
1Op1qq and c1pπ

›
2Op1qq on CPn ˆ CPn (for all n P N). The first step towards un-

derstanding this is to know what E˚pCPn ˆ CPnq looks like. In this complex-oriented
situation we have a Kunneth formula:

5.2.2. Proposition. For all n P N, the two projections π1, π2 : CPn ˆ CPn CPn

induce an isomorphism

E˚pCPnq bE˚pptq E˚pCPnq „ E˚pCPn ˆ CPnq.

From this and (3.5), we deduce that we have an isomorphism

E˚pptqrun, vns{pun`1
n , vn`1

n q
„ E˚pCPn ˆ CPnq,

under which un “ π›1ptnq and vn “ π›2ptnq.

Proof. Omitted.

An immediate consequence of (5.2.2) is that on CPn ˆ CPn we have

c1pπ
›
1Op1q b π›2Op1qq “ fnpun, vnq

where fn is a polynomial of degree n with coefficients in E˚pptq. It’s moreover straight-
forward to see that the polynomials fn are compatible as n varies, in the the sense that
the degree-n truncation of fn`1 is fn. By the reasoning following (5.2.1), we deduce the
following.

5.2.3. Corollary. There is a canonical power series in two variables fE P E˚pptqJu, vK
such that for any two line bundles L,L1 on a manifold X, we have

c1pLb L1q “ fEpc1pLq, c2pL1qq P E˚pXq.

5.2.4. Remark. The fact that tensor product of line bundles is an associative and
commutative operation with unit given by the trivial line bundle immediately implies
that the power series fE of (5.2.3) enjoys the following properties:

(a) fEp0, vq “ v;
(b) fEpu, vq “ fEpv, uq;
(c) fEpu, fEpv, wqq “ fEpfEpu, vq, wq.

We embark on a quick algebraic digression motivated by this last result.

5.3. Definition. Let R be a commutative ring. A power series f P RJu, vK satisfying the
properties (a–c) of (5.2.4) is called a formal group law over the ring R.

5.3.1. Examples. Remarkably, one obtains the two simplest examples of formal group
laws in the examples of ordinary cohomology and K-theory:

(a) When E˚ is taken to be ordinary cohomology, we obtain the additive formal group
law: fEpu, vq “ u` v.

(b) When E˚ is taken to be K-theory, we obtain the multiplicative formal group law:
fEpu, vq “ u ` v ` uv “ p1 ` uqp1 ` vq ´ 1 (here we are being abusive with the
grading just as we were in (3.6)).

These computations (which are not very difficult) are how one makes the computations
of fundamental classes of hypersurfaces described in (3.6), using the logic that motivated
the question (5.2.1).

5.3.2. Remark. Let R be a commutative ring and f P RJu, vK a formal group law. Given
a map of commutative rings φ : R S, we get an induced map φ : RJu, vK SJu, vK,
and it is easy to see that φpfq P SJu, vK is a formal group law over S.

We return yet again to the theme of universal examples:
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5.4. Construction. The Lazard ring L is defined to be the quotient of the ring Zrtaijui,jPNs
by the smallest ideal of this ring such that in the quotient the power series

funiv :“
ÿ

i,jPN

aiju
ivj

is a formal group law. (The ideal is generated by the relations a00 “ a01 “ 0 (unital-
ity), aij “ aji (commutativity), and a more complicated set of relations encoding the
associativity condition).

It is then clear that the formal group law funiv over L is universal, in the sense
that given a formal group law over a ring R there exists a unique ring homomorphism
φ : L R such that f “ φpfunivq.

From our construction, the Lazard ring looks quite unwieldy and inaccessible. The
following result (which is not easy) gives us a better idea of what it’s like.

5.4.1. Theorem (Lazard). The ring L is isomorphic to a polynomial ring on countably
many generators Zrx1, x2, . . .s.

We shall now finish the story by bringing cohomology theories back on stage. Our
discussion in (5.2) can now be rephrased as follows: given a complex-oriented cohomology
theory E˚, there is a formal group law fE over E˚pptq describing the Chern class of a
tensor product of line bundles, classified by a ring homomorphism φE : L E˚pptq.

Thus, if our aim is to best understand the possible behavior of Chern classes under
tensor product, we should ask: is there any restriction on the kinds of formal group law
that can appear as fE? Since we have a universal complex-oriented cohomology theory,
namely complex cobordism Ω˚, answering this question amounts to understanding the
formal group law fΩ. This brings us to the following deep result.

5.5. Theorem (Quillen). The map φΩ : L Ω˚pptq » Ω´˚ is an isomorphism. In
other words, the formal group law fΩ is the universal one.

The above is the punchline of the talk. Let me end by summarizing why I think this
result is so amazing:
– At a high level, Quillen’s theorem (5.5) connects the classification of complex manifolds

(incarnated as the complex cobordism ring Ω˚) with a universal object in algebra.
– Combining this with the Lazard’s (purely algebraic) theorem (5.4.1) tells us that the

complex cobordism ring Ω˚ is a polynomial ring! (Though we do not currently know
explicit generators from the manifold point of view.)

– I pointed out above that determining the formal group law associated to ordinary
cohomology and K-theory allowed us to compute the fundamental classes of projective
hypersurfaces and complete intersections in these cohomology theories. The same logic
can of course be applied in complex cobordism, and we deduce that there must be
some completely insane formula arising from the universal formal group law for the
cobordism class of hypersurfaces and complete intersections in terms of the (unknown)
generators of Ω˚ and the hyperplane classes rCPns. I find this bewildering (this is the
“new layer of appreciation” I mentioned in the introduction).

– This theory supplies a strategy for constructing new cohomology theories: given a formal
group law over a ring R we obtain a classifying ring homomorphism Ω˚pptq » L R,
and we can consider the functor

E˚pXq :“ Ω˚pXq bΩ˚pptq R.

It turns out that this functor remains a cohomology theory (i.e. the requisite exactness
axioms are satisfied) under mild algebraic assumptions on the formal group law. These
ideas are the beginning of an fertile connection between the theory of cohomology
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theories and the theory of formal group laws, which has ended up being a powerful
approach to understanding stable homotopy theory.
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