
Probabilistic Volumetric Fusion
for Dense Monocular SLAM

Antoni Rosinol John J. Leonard
Massachusetts Institute of Technology

{arosinol, jleonard, lcarlone}@mit.edu

Luca Carlone

Accepted for publication at WACV 2023, please cite as follows:
A. Rosinol, J. Leonard, L. Carlone

“Probabilistic Volumetric Fusion for Dense Monocular SLAM”,
IEEE/CVF Winter Conf. on Applications of Computer Vision (WACV), 2023.

Abstract

We present a novel method to reconstruct 3D scenes from
images by leveraging deep dense monocular SLAM and fast
uncertainty propagation. The proposed approach is able
to 3D reconstruct scenes densely, accurately, and in real-
time while being robust to extremely noisy depth estimates
coming from dense monocular SLAM. Differently from pre-
vious approaches, that either use ad-hoc depth filters, or
that estimate the depth uncertainty from RGB-D cameras’
sensor models, our probabilistic depth uncertainty derives
directly from the information matrix of the underlying bun-
dle adjustment problem in SLAM. We show that the resulting
depth uncertainty provides an excellent signal to weight the
depth-maps for volumetric fusion. Without our depth uncer-
tainty, the resulting mesh is noisy and with artifacts, while
our approach generates an accurate 3D mesh with signifi-
cantly fewer artifacts. We provide results on the challenging
Euroc dataset, and show that our approach achieves 92%
better accuracy than directly fusing depths from monocular
SLAM, and up to 90% improvements compared to the best
competing approach.

1. Introduction

3D reconstruction from monocular imagery remains one
of the most difficult computer vision problems. Achieving
3D reconstructions in real-time from images alone would
enable many applications in robotics, surveying, and gam-
ing, such as autonomous vehicles, crop monitoring, and
augmented reality.

While many 3D reconstruction solutions are based on
RGB-D or Lidar sensors, scene reconstruction from monoc-
ular imagery provides a more convenient solution. RGB-
D cameras can fail under certain conditions, such as un-
der sunlight, and Lidar remains heavier and more expensive
than a monocular RGB camera. Alternatively, stereo cam-
eras simplify the depth estimation problem to a 1D disparity

search, but rely on accurate calibration of the cameras that
is prone to miscalibration during practical operations. In-
stead, monocular cameras are inexpensive, lightweight, and
represent the simplest sensor configuration to calibrate.

Unfortunately, monocular 3D reconstruction is a chal-
lenging problem due to the lack of explicit measurements
of the geometry of the scene. Nonetheless, great progress
has been recently made towards monocular-based 3D recon-
structions by leveraging deep-learning approaches. Given
that deep-learning currently achieves the best performance
for optical flow [23], and depth [29] estimation, a plethora
of works have tried to use deep-learning modules for
SLAM. For example, using depth estimation networks from
monocular images [22], multiple images, as in multi-view
stereo [10], or using end-to-end neural networks [3]. How-
ever, even with the improvements due to deep-learning, the
resulting reconstructions are prone to errors and artifacts,
since the depth-maps are most of the time noisy and with
outliers.

In this work, we show how we can substantially reduce
the artifacts and inaccuracies in 3D reconstructions from
noisy depth maps estimated when using dense monocular
SLAM. To achieve this, we fuse the depth maps volumet-
rically by weighting each depth measurement by its uncer-
tainty, which we estimate probabilistically. Differently from
previous approaches, we show that using the depth uncer-
tainty derived from the information matrix of the bundle ad-
justment problem in monocular SLAM leads to surprisingly
accurate 3D mesh reconstructions. Our approach achieves
up to 90% improvements in mapping accuracy, while re-
taining most of the scene geometry.

Contributions. We show an approach to volumetrically
fuse dense depth maps weighted by the uncertainties de-
rived from the information matrix in dense SLAM. Our ap-
proach enables the reconstruction of the scene up to a given
maximum level of tolerable uncertainty. We can reconstruct
the scene with superior accuracy compared to competing
approaches, while running in real-time, and only using
monocular images. We achieve state-of-the-art 3D recon-
struction performance in the challenging EuRoC dataset.

ar
X

iv
:2

21
0.

01
27

6v
2 

 [
cs

.C
V

] 
 1

6 
O

ct
 2

02
2



Figure 1. (Left) Raw 3D point-cloud generated from dense monocular SLAM by back-projecting the inverse depth-maps, without filtering
or post-processing. (Right) Estimated 3D mesh after uncertainty-aware volumetric fusion of the depth-maps. Despite large amounts of
noise in the depth-maps, the reconstructed 3D mesh using our proposed approach is accurate and complete. EuRoC V2 01 dataset.

2. Related Work

We review the literature on two different lines of work:
dense SLAM and depth fusion.

2.1. Dense SLAM

The main challenges to achieve dense SLAM are (i) the
computational complexity due to the shear amount of depth
variables to be estimated, and (ii) dealing with ambiguous
or missing information to estimate the depth of the scene,
such as textureless surfaces or aliased images.

Historically, the first problem has been bypassed by
decoupling the pose and depth estimation. For exam-
ple, DTAM [12] achieves dense SLAM by using the same
paradigm as the sparse PTAM [9], which tracked the camera
pose first and then the depth, in a de-coupled fashion. The
second problem is also typically avoided by using RGB-D
or Lidar sensors, that provide explicit depth measurements,
or stereo cameras that simplify depth estimation.

Nevertheless, recent research on dense SLAM has
achieved impressive results in these two fronts. To reduce
the number of depth variables, CodeSLAM [3] optimizes
instead the latent variables of an auto-encoder that infers
depth maps from images. By optimizing these latent vari-
ables, the dimensionality of the problem is significantly
reduced, while the resulting depth maps remain dense.
Tandem [10] is able to reconstruct 3D scenes with only
monocular images by using a pre-trained MVSNet-style
neural-network on monocular depth estimation, and then
decoupling the pose/depth problem by performing frame-
to-model photometric tracking. Droid-SLAM [24] shows
that by adapting a state-of-the-art dense optical flow esti-
mation architecture [23] to the problem of visual odome-
try, it is possible to achieve competitive results in a vari-

ety of challenging datasets (such as the Euroc [4] and Tar-
tanAir [25] datasets), even though it requires global bundle-
adjustment to outperform model-based approaches. Droid-
SLAM avoids the dimensionality problem by using down-
sampled depth maps that are subsequently upsampled using
a learned upsampling operator. Finally, there are a myriad
of works that avoid the dimensionality and ambiguity prob-
lems stated above that have nevertheless recently achieved
improved performance. For example, iMap [21] and Nice-
SLAM [31] can build accurate 3D reconstructions by both
de-coupling pose and depth estimates and using RGB-D im-
ages, and achieve photometrically accurate reconstructions
by using neural radiance fields [11]. Given these works,
we can expect future learned dense SLAM to become more
accurate and robust.

Unfortunately, we are not yet able to achieve pixel-
perfect depth maps from casual image collections, and fus-
ing these depth maps directly into a volumetric represen-
tation often leads to artifacts and inaccuracies. Our work
leverages Droid-SLAM [24] to estimate extremely dense
(but very noisy) depth maps per keyframe (see left point-
cloud in Fig. 1), that we successfully fuse into a volumetric
representation by weighting the depths by their uncertainty,
estimated as marginal covariances.

2.2. Depth Fusion

The vast majority of 3D reconstruction algorithms are
based on fusing depth maps provided from a depth-sensor
into a volumetric map [13, 15, 17]. Most of the literature
using volumetric representations have therefore focused on
studying ways to obtain better depth maps, such as with
post-processing techniques, or on the weighting function to
be used when fusing the depths [5, 13, 14, 28]. Most of the
literature, by assuming that the depth maps come from a



sensor, have focused on sensor modelling. Alternatively,
when using deep-learning, a similar approach is to make
a neural network learn the weights instead. For example,
RoutedFusion [26] and NeuralFusion [27] learn to de-noise
volumetric reconstructions from RGB-D scans.

In our case, since the depth maps are estimated through
dense bundle adjustment, we propose to directly fuse the
depth maps using the marginal covariances of the estimated
depths. This is computationally difficult to do since, in
dense SLAM, the number of depths per keyframe can be
as high as the total number of pixels in the frame (≈ 105).
We show below how we can achieve this by leveraging the
block-sparse structure of the information matrix.

3. Methodology
The main idea of our method is to fuse extremely dense

but noisy depth-maps weighted by their probabilistic uncer-
tainty into a volumetric map, and then extract a 3D mesh
that has a given maximum uncertainty bound. Towards this
goal, we leverage Droid-SLAM’s formulation to produce
pose estimates and dense depth-maps, and extend it to gen-
erate dense uncertainty-maps.

We will first show how we compute depth uncertain-
ties from the information matrix of the underlying bundle
adjustment problem efficiently. Then, we present our fu-
sion strategy to produce a probabilistically sound volumet-
ric map. Finally, we show how we extract a mesh from the
volume at a given maximum uncertainty bound.

3.1. Dense Monocular SLAM

At its core, classical vision-based inverse-depth indirect
SLAM solves a bundle adjustment (BA) problem where the
3D geometry is parametrized as a set of (inverse) depths
per keyframe. This parametrization of the structure leads to
an extremely efficient way of solving the dense BA prob-
lem, which can be decomposed into the familiar arrow-like
block-sparse matrix with cameras and depths in sequence:

Hx = b, i.e.
[

C E
ET P

] [
∆ξ
∆d

]
=

[
v
w

]
, (1)

where H is the Hessian matrix, C is the block camera
matrix, and P is the diagonal matrix corresponding to the
points (one inverse depth per pixel per keyframe). We rep-
resent by ∆ξ the delta updates on the lie algebra of the cam-
era poses in SE(3), while ∆d is the delta update to the
per-pixel inverse depths.

To solve the BA problem, the Schur complement of the
Hessian H with respect to P (denoted as H/P ) is first cal-
culated to eliminate the inverse depth variables:

(H/P )∆ξ =
[
C − EP−1ET

]
∆ξ =

(
v − EP−1w

)
.
(2)

The Schur complement can be quickly computed given that
P−1 consists on an element-wise inversion of each diagonal
element that can be performed in parallel, since P is a large
but diagonal matrix.

The resulting matrix (H/P ) is known as the reduced
camera matrix. The system of equations in Eq. (2) only de-
pends on the keyframe poses. Hence, we first solve for the
poses using the Cholesky decomposition of (H/P ) = LLT

using front and then back-substitution. The resulting pose
solutions ∆ξ are then used to solve back for the inverse
depth maps ∆d, as follows:

∆d = P−1
(
w − ET∆ξ

)
. (3)

Nevertheless, to make inference fast enough for real-
time SLAM, the inverse depth-maps are estimated at a
lower 1/8th resolution than the original images, in our case
of 69 × 44 pixels (Euroc dataset’s original resolution is
752× 480 which we first downsample to 512× 384). Once
this low resolution depth map of is solved for, a learned
upsampling operation (shown first in [23] for optical flow
estimation, and used as well in Droid-SLAM) recovers the
full resolution depth map. This allows us to effectively re-
construct dense depth maps of the same resolution as the
input images.

Solving the same BA problem with high resolution depth
maps is prohibitively expensive for real-time SLAM, the
computation of depth-uncertainties further exacerbates the
problem. We believe this is the reason why other authors
have not used depth uncertainties derived from BA for real-
time volumetric 3D reconstruction: using full-depth BA is
prohibitively expensive, and using sparse-depth BA leads to
way too sparse depth-maps for volumetric reconstruction.
The alternative has always been to use sparse BA for pose
estimation and a first guess of the geometry, followed by
a densification step unrelated to the information matrix in
sparse BA [20]. That is why other authors have proposed to
use alternative 3D representations for dense SLAM, such as
latent vectors in CodeSLAM [3]. Our approach can also be
applied to CodeSLAM.

3.2. Inverse Depth Uncertainty Estimation

Given the sparsity pattern of the Hessian, we can extract
the required marginal covariances for the per-pixel depth
variables efficiently. The marginal covariances of the in-
verse depth-maps Σd are given by:

Σd = P−1 + P−1ETΣTEP
−1

ΣT = (H/P )−1,
(4)

where ΣT is the marginal covariance of the poses. Unfor-
tunately, a full inversion of H/P can be costly to compute.
Nevertheless, since we already solved the original BA prob-
lem by factorizing H/P into its Cholesky factors, we can



re-use them in the following way, similarly to [8]:

Σd = P−1 + P−1ETΣTEP
−1

= P−1 + P−1ET (LLT )−1EP−1

= P−1 + P−TETL−TL−1EP−1

= P−1 + FTF,

(5)

where F = L−1EP−1. Hence, we only need to invert the
lower triangular Cholesky factorL, which is a fast operation
to compute by substitution. Therefore, we can compute all
inverse matrices efficiently: the inverse of P is given by the
element-wise inversion of each diagonal entry, and we avoid
a full inversion of (H/P ) by inverting instead its Cholesky
factor. It then suffices to multiply and add matrices together:

[Σd]i = σ2
di = P−1

i + {FTF}i = P−1
i +

∑
k

F 2
ki, (6)

where di is one of the per-pixel inverse depths. Since most
of the operations can be computed in parallel, we leverage
the massive parallelism of GPUs.

3.3. Depth Upsampling & Uncertainty Propagation

Finally, since we want to have a depth-map of the same
resolution than the original images, we upsample the low-
resolution depth-maps using the convex upsampling opera-
tor defined in Raft [23] and also used in Droid [24]. This
upsampling operation calculates a depth estimate for each
pixel in the high-resolution depth-map by taking the convex
combination of the neighboring depth values in the low-
resolution depth-map. The resulting depth estimates are
given for each pixel by:

d =

8∑
i=0

widi, (7)

where thewi are learned weights (more details can be found
in Raft [23]), and di is the inverse depth of a pixel in the
low-resolution inverse depth-map surrounding the pixel for
which we are computing the depth (a 3× 3 window is used
to sample neighboring depth values).

Assuming independence between inverse depth esti-
mates, the resulting inverse depth variance is given by:

σ2
d =

8∑
i=0

w2
i σ

2
di , (8)

where wi are the same weights used for the inverse depth
upsampling in Eq. (7), and σ2

di
is the variance of the inverse

depth of a pixel in the lower resolution inverse depth-map
surrounding the pixel to be calculated. We upsample the
inverse depths and uncertainties by a factor of 8, going from
a 69× 44 resolution to a 512× 384 resolution.

So far we have been working with inverse depths, the last
step is to convert them to actual depth and depth-variances.
We can easily compute the depth variance by using nonlin-
ear uncertainty propagation:

z = 1/d, σz = σd/d
2, (9)

where z is the resulting depth, and d is the inverse depth.

3.4. Uncertainty-aware Volumetric Mapping

Given the dense depth-maps available for each keyframe,
it is possible to build a dense 3D mesh of the scene. Unfor-
tunately, the depth-maps are extremely noisy due to their
density, since even textureless regions are given a depth
value. Volumetrically fusing these depth-maps reduces the
noise, but the reconstruction remains inaccurate and cor-
rupted by artifacts (see ‘Baseline’ in Fig. 4, which was com-
puted by fusing the pointcloud shown in Fig. 1).

While it is possible to manually set filters on the depth-
maps (see PCL’s documentation for examples of possible
depth filters [19]) and Droid implements one ad-hoc depth
filter (see Droid in Fig. 4), we propose to use instead the
estimated depth maps’ uncertainties, which provide a robust
and mathematically sound way to reconstruct the scene.

Volumetric fusion is grounded on a probabilistic model
[7], whereby each depth measurement is assumed to be in-
dependent and Gaussian distributed. Under this formula-
tion, the signed distance function (SDF) φ, which we try to
estimate, maximizes the following likelihood:

φ? = argmax
φ

p (z, σz | φ) , (10)

p (z, σz | φ) ∝
∏
i

exp

(
−1

2
‖φ− zi‖2σ2

zi

)
. (11)

Taking the negative log leads to a weighted least-squares
problem:

φ? = argmin
φ

1

2

∑
i

(φ− zi)2

σzi
, (12)

the solution of which is obtained by setting the gradient to
zero and solving for φ, leading to a weighted average over
all the depth measurements:

φ =

∑
i zi/σzi∑
i 1/σzi

=

∑
i wizi∑
i wi

, (13)

with the weights wi defined as wi = σ−1
zi .

In practice, the weighted average is computed incremen-
tally for every new depth-map, by updating the voxels in
the volume with a running average, leading to the familiar
volumetric reconstruction equations:

φi+1 =
Wiφi + wizi
Wi + wi

, Wi+1 = Wi + wi, (14)



Figure 2. 3D mesh reconstructions for a given maximum admissible mesh uncertainty Σdi logarithmically decreasing from an infinity
upper-bound (i.e. minimum weight of 0.0, left-most 3D mesh) to 0.01 (i.e. minimum weight of 10, right-most 3D mesh). The regions
highlighted with red circles disappear first because of high uncertainty. These correspond to textureless and aliased regions. The two
closest red circles correspond to the same region as the one depicted in Fig. 3.

where Wi is the weight stored in each voxel. The weights
are initialized to zero, W0 = 0, and the TSDF is initialized
to the truncation distance τ , φ0 = τ (in our experiments
τ = 0.1m). The formulation above, as a running weighted
average, is extremely flexible in terms of the weight func-
tion to be used. This flexibility has led to many differ-
ent ways to fuse depth-maps, sometimes departing from its
probabilistic formulations.

Most approaches determine a weight function by mod-
elling the error distribution from the depth-sensor used, be
it a laser scanner, an RGB-D camera, or a stereo camera
[7, 15, 18]. For example, Nguyen et al. [14] modeled the
residual errors from an RGB-D camera and determined that
the depth variance was dominated by z2, z being the mea-
sured depth. Bylow et al. [5] analyzed a variety of weight
functions, and concluded that a linearly decreasing weight
function behind the surface led to the best results. Voxblox
[15] combined these two works into a simplified formula-
tion with good results, which is also used in Kimera [17].

In our case, there is no sophisticated weighting or sen-
sor model needed; the depth uncertainties are computed
from the inherently probabilistic factor-graph formulation
in SLAM. Specifically, our weights are inversely propor-
tional to the marginal covariance of the depths, as derived
from a probabilistic perspective in Eq. (13). Notably, these
weights result from the fusion of hundreds of optical flow
measurements with their associated measurement noise es-
timated by a neural network (GRU’s output in Droid [24]).

3.5. Meshing with Uncertainty Bounds

Given that our voxels have a probabilistically sound un-
certainty estimate of the signed distance function, we can
extract the iso-surface for different levels of maximum un-
certainty allowed. We extract the surfaces using marching
cubes, by only meshing those voxels which have an un-
certainty estimate below the maximum allowed uncertainty.
The resulting mesh has only geometry with a given upper-
bound uncertainty, while our volume contains all the depth-
maps’ information.

If we set the uncertainty bound to infinity i.e., a weight
of 0, we recover the baseline solution, which is extremely
noisy. By incrementally decreasing the bound, we can bal-
ance between having more accurate, but less complete 3D
meshes, and vice-versa. In Section 4, we show different
meshes obtained with decreasing values for the uncertainty
bound (Fig. 2). In our experiments, we did not try to find
a particular pareto optimal solution for our approach, but
instead used a fixed maximum upper bound on the uncer-
tainty of 0.1, which leads to very accurate 3D meshes with
a minor loss in completeness (see Section 4 for a quanti-
tative evaluation). Note that, without fixing the scale, this
uncertainty bound is unitless, and may need to be adapted
depending on the estimated scale.

3.6. Implementation Details

We perform all computations in Pytorch with CUDA,
and use an RTX 2080 Ti GPU for all our experiments (11Gb



of memory). For the volumetric fusion, we use Open3D’s
[30] library, that allows for custom volumetric integration.
We use the same GPU for SLAM and to perform volumetric
reconstruction. We use the pre-trained weights from Droid-
SLAM [24]. Finally, we use the marching cubes algorithm
implemented in Open3D to extract the 3D mesh.

4. Results
Section 4.2 and Section 4.3 show a qualitative and quan-

titative evaluation of our proposed 3D mesh reconstruc-
tion algorithm, with respect to the baseline and state-of-the-
art approaches, on the EuRoC dataset, using the subset of
scenes that have a ground-truth pointcloud.

The qualitative analysis presents the strengths and weak-
nesses of our approach, and compares with other techniques
in terms of perceptual quality and geometric fidelity, For the
quantitative part, we compute the RMSE for both accuracy
and completeness metrics, to objectively assess the perfor-
mance of our algorithm against competing approaches. We
now describe the dataset and different approaches used for
evaluation.

4.1. Datasets & Methods for Evaluation

For evaluation of our reconstruction algorithm, we use
the EuRoC dataset, which consists of images recorded from
a drone flying in an indoor space. We use the ground-truth
pointclouds available in the EuRoC V1 and V2 datasets to
assess the quality of the 3D meshes produced by our ap-
proach. For all our experiments, we set our maximum ad-
missible mesh uncertainty to 0.1.

We compare our approach with two different open-
source state-of-the-art learning and model-based dense VO
algorithms: Tandem [10], a learned dense monocular VO
algorithm that uses a MVSNet-style architecture and photo-
metric bundle-adjustment, and Kimera [17], a model-based
dense stereo VIO algorithm. Both use volumetric fusion to
reconstruct the 3D scene and output a 3D mesh of the en-
vironment. We also present the results from fusing Droid’s
pointclouds after Droid’s ad-hoc depth filter, which com-
putes the support of a depth value by counting the num-
ber of nearby depth-maps that reproject within a threshold
(0.005 by default). Any depth value with less than 2 sup-
porting depths, or smaller than half of the mean depth, is
then discarded. Droid’s filter is used to remove outliers on
the depth-maps, while we fuse all depth-maps weighted by
their uncertainty. As our baseline, we use the raw point-
clouds estimated by Droid, and fuse them directly into a
volumetric reconstruction.

4.2. Qualitative Mapping Performance

Fig. 2 shows how we can trade-off accuracy for com-
pleteness by varying the maximum level of uncertainty al-
lowed in the 3D reconstruction. We can also see how the

Figure 3. (Left Column) Frame i. (Right Column) Frame j. (Top-
Left) Estimated depth-map for frame i. (Bottom-Left) Estimated
depth-map uncertainty for frame i. (Top-Right) Optical-flow mea-
surement weights for the x component of the flow from frame i
to frame j. (Bottom-Right) Optical-flow measurement weights for
the y component. Note that the flow weights are localized where
frame i is visible in frame j. The depth uncertainty results from
the fusion of several optical-flow measurements, rather than a sin-
gle one. For the left column, low values are in yellow, high values
are in blue. For the right column, low values are in blue, high
values are in yellow. EuRoC V1 01 dataset.

less certain geometry gradually disappears. The least cer-
tain geometry corresponds to the artifacts floating in 3D
space due to the depths that are poorly triangulated, and
scattered in 3D rays when back-projected (first column in
Fig. 2). Then, we see that the subsequent geometry that
disappears corresponds to textureless regions (left-most and
right-most red circles in each column Fig. 2). Interestingly,
the removed geometry that follows after textureless regions
corresponds to highly aliased regions (middle red circles in
each column Fig. 2), such as the heaters, or the center of the
checkerboards present in the room.

A careful look in Fig. 3 shows that the estimated depth
uncertainty Σd is not only large for textureless regions, but
also for regions with strong aliasing that are difficult to re-
solve for optical-flow based SLAM algorithms (the heater in
the middle of the image). Indeed, the optical flow weights
(right column in Fig. 3) are close to 0 for regions with strong
aliasing or textureless regions. This emerging behavior is an
interesting result that could be used to detect aliased geom-
etry, or to guide hole-filling reconstruction approaches.

Fig. 4 qualitatively compares the 3D reconstruction of
Kimera [17], Tandem [10], the baseline approach, Droid
[24] and our approach. We can see that compared to our
baseline approach, we perform much better both in terms of
accuracy and completeness. Kimera is able to build a com-
plete 3D reconstruction but lacks both accuracy and detail



Figure 4. Comparison of the 3D mesh reconstructed by Kimera [17], Tandem [10], our baseline, and Droid’s depth filter [24] (using the
default threshold of 0.005) versus our approach using a maximum tolerated mesh uncertainty of 0.1. EuRoC V2 01 dataset.

Table 1. Accuracy RMSE [m]: for the 3D mesh generated from
our approach compared to Kimera, Tandem, Droid’s filter, and our
baseline, on the subset of the EuRoC dataset with ground-truth
pointclouds. Note that if an approach only estimates a few accurate
points (e.g. Droid), the accuracy can reach 0. Best approach in
bold, second-best in italics, − indicates no mesh reconstructed.

V1 V2

01 02 03 01 02 03

Kimera 0.14 0.15 0.16 0.22 0.22 0.25
Tandem 0.10 0.12 0.20 0.12 0.16 0.29
Baseline 0.22 0.24 0.28 0.32 0.31 0.34

Droid 0.05 − − 0.07 − 0.11
Ours 0.03 0.03 0.02 0.04 0.04 0.07

compared to our approach. Tandem is the competing ap-
proach performing best, and results in similar reconstruc-
tions than our proposed approach. From Fig. 4, we can
see that Tandem is more complete than ours (see bottom
right missing strip of floor in our reconstruction), while be-
ing slightly less accurate (see top-left section of the recon-
struction that is distorted in Tandem’s mesh). In principle,
our approach could reconstruct the ground-floor of the room
as well (the baseline reconstruction has that information).
Nonetheless, in a robotics context, it is better to be aware of
what region is unknown rather than committing with a first
guess that is inaccurate, since that can close path-ways that
could have been traversed by the robot (a common scenario
in the DARPA SubT challenge [1], where robots explore a
network of tunnels and caves). Finally, Droid’s depth fil-
ter is missing important regions and negatively affects the
reconstruction accuracy.

4.3. Quantitative Mapping Performance

We evaluate each mesh against the ground truth using
the accuracy and completeness metrics, as in [16, Sec. 4.3]:
(i) we first compute a point cloud by sampling the recon-
structed 3D mesh with a uniform density of 104 points/m2,
(ii) we register the estimated and the ground truth clouds
with ICP [2] using CloudCompare [6], and (iii) we evalu-

Table 2. Completeness RMSE [m]: for the 3D mesh generated
from our approach compared to Kimera, Tandem, and our base-
line, on the subset of the EuRoC dataset with ground-truth point-
clouds. Note that if an approach estimates a dense cloud of points
(e.g. Baseline), completeness can reach 0. Best approach in bold,
second-best in italics, − indicates no mesh reconstructed.

V1 V2

01 02 03 01 02 03

Kimera 0.36 0.38 0.35 0.48 0.43 0.41
Tandem 0.16 0.12 0.13 0.20 0.12 0.24
Baseline 0.05 0.04 0.04 0.05 0.05 0.05

Droid 0.62 − − 0.35 − 0.32
Ours 0.20 0.16 0.19 0.24 0.18 0.16

ate the average distance from ground truth point cloud to
its nearest neighbor in the estimated point cloud (accuracy),
and vice-versa (completeness), with a 0.5m maximum dis-
tance.

Section 4.2 and Section 4.3 provide a quantitative com-
parison between our proposed approach, Droid’s filter, and
our baseline, as well as a comparison with Kimera [17] and
Tandem [10], in terms of accuracy and completeness. As we
can see from the tables, our proposed approach is the best
performing in terms of accuracy by a substantial margin (as
high as 90% compared to Tandem and 92% compared to
the baseline for V1 03), while Tandem achieves the second-
best accuracy overall. In terms of completeness, Tandem
achieves the best performance (after the baseline approach),
followed by our approach. Droid’s filter achieves good ac-
curacy at the expense of substantially incomplete meshes.

Fig. 6 shows the estimated cloud (V2 01) color-coded by
the distance to the closest point in the ground-truth cloud
(accuracy) for both Tandem (top) and our reconstruction
(bottom). We can see from this figure where our recon-
struction is more accurate than Tandem’s. In particular,
it is interesting to see that Tandem tends to generate in-
flated geometry, particularly in textureless regions such as
the black curtains in the V2 01 dataset (gray-colored geom-
etry). Our approach has better details, and better overall



accuracy. Fig. 5 shows a close-up view of the reconstructed
3D mesh for both Tandem and our approach. Our recon-
structions tend to be less complete and suffer from bleeding
edges, but retain most of the details, while Tandem’s recon-
structions lack overall detail and tend to be slightly inflated,
but remain more complete.

4.4. Real-Time Performance

Downsampling the Euroc images to 512×384 resolution
leads to tracking speeds of 15 frames per second. Comput-
ing the depth uncertainties decreases the tracking speed by
a few frames per second to 13 frames per second. Volu-
metrically fusing the depth estimates, with or without depth
uncertainties, takes less than 20ms. Overall, our pipeline is
able to reconstruct the scene in real-time at 13 frames per
second, by parallelizing camera tracking and volumetric re-
construction, and by using custom CUDA kernels.

Figure 5. Closer look at the differences between Tandem’s 3D re-
constructions and ours. EuRoC V2 01 dataset.

5. Conclusion

We propose an approach to 3D reconstruct scenes using
dense monocular SLAM and fast depth uncertainty compu-
tation and propagation. We show that our depth-map un-
certainties are a source of reliable information for accurate

Figure 6. Accuracy evaluation of both Tandem’s (top) and our
(bottom) 3D mesh reconstruction results. We truncate the color
scale at 0.05m, and visualize anything above it as gray, up to 0.5m
(geometry beyond this error is discarded). Note that our recon-
struction has its biggest error at 0.37m, while Tandem’s largest
error is beyond the 0.5m bound. EuRoC V2 01 dataset.

and complete 3D volumetric reconstructions, resulting in
meshes that have significantly lower noise and artifacts.

Given the mapping accuracy and probabilistic uncer-
tainty estimates afforded by our approach, we can foresee
future research to focus on active exploration of uncertain
regions in the map, reconstructing the 3D scene beyond
its geometry by incorporating semantics, as in Kimera-
Semantics [18], or by using neural volumetric implicit rep-
resentations for photometrically-accurate 3D reconstruc-
tions, as in Nice-SLAM [31].

Acknowledgments
This work is partially funded by ‘la Caixa’ Foundation

(ID 100010434), LCF/BQ/AA18/11680088 (A. Rosinol),
‘Rafael Del Pino’ Foundation (A. Rosinol), ARL DCIST
CRA W911NF-17-2-0181, and ONR MURI grant N00014-
19-1-2571. We thank Bernardo Aceituno for helpful discus-
sions.



References
[1] A. Agha et al. NeBula: Quest for robotic autonomy in chal-

lenging environments; TEAM CoSTAR at the DARPA Sub-
terranean Challenge. Journal of Field Robotics, 2021.

[2] P. J. Besl and N. D. McKay. A method for registration of 3-D
shapes. IEEE Trans. Pattern Anal. Machine Intell., 1992.

[3] M. Bloesch, J. Czarnowski, R. Clark, S. Leutenegger, and
A. J. Davison. CodeSLAM: learning a compact, optimisable
representation for dense visual SLAM. In IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), 2018.

[4] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S.
Omari, M.W. Achtelik, and R. Siegwart. The EuRoC micro
aerial vehicle datasets. Intl. J. of Robotics Research, 2016.

[5] E. Bylow, Jürgen Sturm, C. Kerl, F. Kahl, and D. Cre-
mers. Real-time camera tracking and 3D reconstruction us-
ing signed distance functions. In Robotics: Science and Sys-
tems (RSS), 2013.

[6] Cloudcompare.org. CloudCompare - open source project.
https://www.cloudcompare.org, 2019.

[7] B. Curless and M. Levoy. A volumetric method for building
complex models from range images. In SIGGRAPH, 1996.

[8] V. Ila, L. Polok, M. Solony, and K. Istenic. Fast incremental
bundle adjustment with covariance recovery. 2017.

[9] G. Klein and D. Murray. Parallel tracking and mapping for
small AR workspaces. In IEEE and ACM Intl. Sym. on Mixed
and Augmented Reality (ISMAR), 2007.

[10] L. Koestler, N. Yang, N. Zeller, and D. Cremers. Tandem:
Tracking and dense mapping in real-time using deep multi-
view stereo. In Conference on Robot Learning (CoRL), 2022.

[11] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R.
Ramamoorthi, and R. Ng. NeRF: Representing scenes as
neural radiance fields for view synthesis. In European Conf.
on Computer Vision (ECCV), 2020.

[12] R.A. Newcombe, S.J. Lovegrove, and A.J. Davison. DTAM:
Dense tracking and mapping in real-time. In Intl. Conf. on
Computer Vision (ICCV), 2011.

[13] R. A Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D.
Kim, A. J Davison, P. Kohli, J. Shotton, S. Hodges, and A. W
Fitzgibbon. KinectFusion: Real-time dense surface mapping
and tracking. In IEEE and ACM Intl. Sym. on Mixed and
Augmented Reality (ISMAR), 2011.

[14] C. V Nguyen, S. Izadi, and D. Lovell. Modeling Kinect sen-
sor noise for improved 3D reconstruction and tracking. In In-
ternational Conference on 3D Imaging, Modeling, Process-
ing, Visualization & Transmission, 2012.

[15] H. Oleynikova, Z. Taylor, M. Fehr, R. Siegwart, and J. Nieto.
Voxblox: Incremental 3D euclidean signed distance fields for
on-board mav planning. In IEEE/RSJ Intl. Conf. on Intelli-
gent Robots and Systems (IROS), 2017.

[16] A. Rosinol. Densifying Sparse VIO: a mesh-based approach
using Structural Regularities. Master’s thesis, ETH Zurich,
2018.

[17] A. Rosinol, M. Abate, Y. Chang, and L. Carlone. Kimera:
an Open-Source Library for Real-Time Metric-Semantic Lo-
calization and Mapping. In IEEE Intl. Conf. on Robotics and
Automation (ICRA), 2020. (video), (code), (pdf).

[18] A. Rosinol, A. Violette, M. Abate, N. Hughes, Y. Chang,
J. Shi, A. Gupta, and L. Carlone. Kimera: from SLAM to
Spatial Perception with 3D Dynamic Scene Graphs. Intl. J.
of Robotics Research, 2021. (pdf).

[19] R. B. Rusu and S. Cousins. 3D is here: Point Cloud Li-
brary (PCL). In IEEE Intl. Conf. on Robotics and Automation
(ICRA), 2011.

[20] J. L Schonberger and J.-M. Frahm. Structure-from-motion
revisited. In IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), 2016.

[21] E. Sucar, S. Liu, J. Ortiz, and A. J Davison. iMAP: Im-
plicit mapping and positioning in real-time. In IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR), 2021.

[22] K. Tateno, F. Tombari, I. Laina, and N. Navab. CNN-SLAM:
Real-time dense monocular SLAM with learned depth pre-
diction. In IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), 2017.

[23] Z. Teed and J. Deng. Raft: Recurrent all-pairs field trans-
forms for optical flow. In European Conf. on Computer Vi-
sion (ECCV), 2020.

[24] Z. Teed and J. Deng. Droid-SLAM: Deep visual SLAM for
monocular, stereo, and RGB-D cameras. Advances in Neural
Information Processing Systems (NIPS), 2021.

[25] W. Wang, D. Zhu, X. Wang, Y. Hu, Y. Qiu, C. Wang, Y. Hu,
A. Kapoor, and S. Scherer. TartanAir: A dataset to push the
limits of visual SLAM. In IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems (IROS), 2020.

[26] S. Weder, J. Schonberger, M. Pollefeys, and M. R Oswald.
RoutedFusion: Learning real-time depth map fusion. In
IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2020.

[27] S. Weder, J. L Schonberger, M. Pollefeys, and M. R Oswald.
NeuralFusion: Online depth fusion in latent space. In IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR),
2021.

[28] T. Whelan, S. Leutenegger, R. Salas-Moreno, B. Glocker,
and A. Davison. ElasticFusion: Dense SLAM without a pose
graph. In Robotics: Science and Systems (RSS), 2015.

[29] Y. Yao, Z. Luo, S. Li, T. Fang, and L. Quan. MVSNet: Depth
inference for unstructured multi-view stereo. In European
Conf. on Computer Vision (ECCV), 2018.

[30] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Open3D: A
modern library for 3D data processing. arXiv:1801.09847,
2018.

[31] Z. Zhu, S. Peng, V. Larsson, W. Xu, H. Bao, Z. Cui, M. R Os-
wald, and M. Pollefeys. Nice-SLAM: Neural implicit scal-
able encoding for SLAM. In IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR), 2022.

https://www.cloudcompare.org
https://www.youtube.com/watch?v=-5XxXRABXJs
https://github.com/MIT-SPARK/Kimera
https://arxiv.org/pdf/1910.02490.pdf
https://arxiv.org/pdf/2101.06894.pdf

	1 . Introduction
	2 . Related Work
	2.1 . Dense SLAM
	2.2 . Depth Fusion

	3 . Methodology
	3.1 . Dense Monocular SLAM
	3.2 . Inverse Depth Uncertainty Estimation
	3.3 . Depth Upsampling & Uncertainty Propagation
	3.4 . Uncertainty-aware Volumetric Mapping
	3.5 . Meshing with Uncertainty Bounds
	3.6 . Implementation Details

	4 . Results
	4.1 . Datasets & Methods for Evaluation
	4.2 . Qualitative Mapping Performance
	4.3 . Quantitative Mapping Performance
	4.4 . Real-Time Performance

	5 . Conclusion

