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Abstract— Visual-Inertial Odometry (VIO) algorithms typi-
cally rely on a point cloud representation of the scene that does
not model the topology of the environment. A 3D mesh instead
offers a richer, yet lightweight, model. Nevertheless, building a
3D mesh out of the sparse and noisy 3D landmarks triangulated
by a VIO algorithm often results in a mesh that does not fit the
real scene. In order to regularize the mesh, previous approaches
decouple state estimation from the 3D mesh regularization step,
and either limit the 3D mesh to the current frame [1], [2]
or let the mesh grow indefinitely [3], [4]. We propose instead
to tightly couple mesh regularization and state estimation by
detecting and enforcing structural regularities in a novel factor-
graph formulation. We also propose to incrementally build the
mesh by restricting its extent to the time-horizon of the VIO op-
timization; the resulting 3D mesh covers a larger portion of the
scene than a per-frame approach while its memory usage and
computational complexity remain bounded. We show that our
approach successfully regularizes the mesh, while improving
localization accuracy, when structural regularities are present,
and remains operational in scenes without regularities.

Index Terms— SLAM, Vision-Based Navigation, Sensor Fu-
sion.

SUPPLEMENTARY MATERIAL

https://www.mit.edu/~arosinol/research/struct3dmesh.html

I. INTRODUCTION

Recent advances in VIO are enabling a wide range of
applications, ranging from virtual and augmented reality
to agile drone navigation [5]. While VIO methods can
deliver accurate state estimates in real-time, they typically
provide a sparse map of the scene. In particular, feature-
based methods [6]–[9] produce a point cloud that is not
directly usable for path planning or obstacle avoidance. In
those cases, a denser map is built subsequently, e.g., by
using (multi-view) stereo algorithms [10], [11]. Alternatively,
direct every-pixel methods estimate denser point clouds on-
line [12]–[14]. Nevertheless, these algorithms rely on GPUs
which consume relatively high amounts of power, making
them impractical for computationally-constrained systems
such as micro aerial vehicles or smartphones. Furthermore,
these models typically decouple trajectory estimation and
mapping, resulting in a loss of accuracy [15], and produce
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Fig. 1: We propose a VIO pipeline that incrementally builds
a 3D mesh of the environment starting from a 2D Delaunay
triangulation of keypoints (a). We also detect and enforce
structural regularities, c.f. (b) planar walls (green) and floor
(blue). The bottom row compares the mesh constructed (c)
without and (d) with structural regularities.

representations that are expensive to store and manipulate.
Ideally one would like to use a map representation that (i) is
lightweight to compute and store, (ii) describes the topology
of the environment, and (iii) couples state estimation and
mapping, allowing one to improve the other and vice versa.
A 3D mesh representation is lightweight, while it provides
information about the topology of the scene. Moreover, a
3D mesh allows for extracting the structure of the scene,
which can potentially be used to improve simultaneously the
accuracy of the pose estimates and the mesh itself, thereby
coupling state estimation and mapping.

Recent approaches have tried to avoid the caveats of every-
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pixel methods by using a 3D mesh over the set of sparse
3D landmarks triangulated by a VIO pipeline. Nevertheless,
these approaches perform regularization of the mesh as a
post-processing step – decoupling state estimation and mesh
generation – and work on a per-frame basis [1], [2]. Our
approach instead tightly couples the 3D mesh generation
and the state estimation by enforcing structural constraints
in a factor-graph formulation, which allows for joint mesh
regularization and pose estimation. We also maintain the
3D mesh over the receding horizon of the VIO’s fixed-lag
optimization problem, thereby spanning multiple frames and
covering a larger area than the camera’s immediate field-of-
view.

Contributions. In this paper, we propose to incrementally
build a 3D mesh restricted to the receding horizon of the VIO
optimization. In this way, we can map larger areas than a per-
frame approach, while memory footprint and computational
complexity associated to the mesh remain bounded. We also
propose to use the 3D mesh to detect and enforce structural
regularities in the optimization problem, thereby improving
the accuracy of both the state estimation and the mesh at
each iteration, while circumventing the need for an extra
regularization step for the mesh. In particular, we extract co-
planarity constraints between landmarks (Fig. 1), and show
that we can detect these structural priors in a non-iterative
way, contrary to RANSAC-based approaches [16]. Overall,
our approach runs in real-time by using a single CPU core.
Moreover, we do not rely on sensors such as LIDAR or
RGB-D cameras, instead we use a (stereo) monochrome
camera.

Finally, we provide an extensive experimental evaluation
on the EuRoC dataset [17], where we compare the pro-
posed VIO approach against state-of-the-art methods. Our
evaluation shows that (i) the proposed approach produces a
lightweight representation of the environment that captures
the geometry of the scene, (ii) leveraging structural regu-
larities improves the state and map estimation, surpassing
the state-of-the-art when structural regularities are present,
while (iii) performing on-par with standard VIO methods in
absence of regularities.

II. APPROACH

We consider a stereo visual-inertial system and adopt
a keyframe-based approach [7]. This section describes our
VIO front-end and back-end. Our front-end proceeds by
building a 2D Delaunay triangulation over the 2D keypoints
at each keyframe. Then, the VIO back-end estimates the 3D
position of each 2D keypoint, which we use to project the
2D triangulation into a 3D mesh. While we incrementally
build the 3D mesh, we restrict the mesh to the time-horizon
of the VIO optimization, which we formulate in a fixed-lag
smoothing framework [18], [19]. The 3D mesh is further
used to extract structural regularities in the scene that are
then encoded as constraints in the back-end optimization.

A. Front-end
Our front-end has the same components as a keyframe-

based indirect visual-inertial odometry pipeline [7], [20], but

it also incorporates a module to generate a 3D mesh, and a
module to detect structural regularities from the 3D mesh.
We refer the reader to [21, Sec. 4.2.1] for details on the
standard modules used, and we focus here instead on the 3D
mesh generation and regularity detection.

1) 3D Mesh Generation: using a sparse point cloud from
VIO to create a 3D mesh is difficult because (i) the 3D
positions of the landmarks are noisy, and some are outliers;
(ii) the density of the point cloud is highly irregular; (iii) the
point cloud is constantly morphing: points are being removed
(marginalized) and added, while the landmarks’ positions
are being updated at each optimization step. Therefore, we
avoid performing a 3D tetrahedralisation from the landmarks,
which would require expensive algorithms, such as space
carving [22]. Instead, we perform a 2D Delaunay triangula-
tion only over the tracked keypoints in the latest frame, as
shown in Fig. 1 (a); and project the 2D triangulation in 3D
using the fact that each tracked keypoint has a 3D landmark
associated (Fig. 1 (b)). For the first frame, no keypoint is yet
tracked, hence no 3D mesh is generated.

The Delaunay triangulation maximizes the minimum angle
of all the angles of the triangles in the triangulation; thereby
avoiding triangles with extremely acute angles. Since we
want to promote triangles that represent planar surfaces, this
is a desirable property, as it will promote near isotropic
triangles that cover a good extent of a potentially planar
surface. Nevertheless, having an isotropic triangle in 2D
does not guarantee that the corresponding triangle in 3D
will be isotropic, as one of the vertices could be projected
far from the other two. Furthermore, a triangle in the 2D
image will result in a 3D triangle independently of whether
it represents an actual surface or not. We deal with some of
these misrepresentative faces of the mesh by using simple
geometric filters that we detail in [21, Sec. 3.2.1].

2) 3D Mesh Propagation: While some algorithms update
the mesh for a single frame [1], [2], we attempt to maintain
a mesh over the receding horizon of the fixed-lag smoothing
optimization problem (Section II-B), which contains multiple
frames. The motivation is three-fold: (i) A mesh spanning
multiple frames covers a larger area of the scene, which
provides more information than just the immediate field of
view of the camera. (ii) We want to capture the structural
regularities affecting any landmark in the optimization prob-
lem. (iii) Anchoring the 3D mesh to the time-horizon of the
optimization problem also bounds the memory usage, as well
as the computational complexity of updating the mesh. The
3D mesh propagation can be decomposed in two parts.

a) Temporal propagation deals with the problem of up-
dating the 3D mesh when new keypoints appear and/or old
ones disappear in the new frame. Unfortunately, most of
the keypoints’ positions on the 2D image change each time
the camera moves. Hence, we re-compute a 2D Delaunay
triangulation from scratch over the keypoints of the current
frame. We can then project all the 2D triangles to 3D mesh
faces, since we are keeping track of the landmark associated
to each keypoint.

b) Spatial propagation deals with the problem of updating



the global 3D mesh when a new local 3D mesh is avail-
able, and when old landmarks are marginalized from the
optimization’s time-horizon. We solve the first problem by
merging the new local 3D mesh to the previous (global)
mesh, by ensuring no duplicated 3D faces are present. At
the same time, when a landmark is marginalized from the
optimization, we remove any face in the 3D mesh that has the
landmark as a vertex. This operation is not without caveats.
For example, the removed landmark might be at the center
of a wall, thereby leaving a hole when surrounding faces
of the mesh are deleted. While we did not attempt to solve
this issue, the problem usually appears on the portion of the
mesh that is not currently visible by the camera. Also, we
do not explicitly deal with the problem of occlusions.

3) Regularity Detection: By reasoning in terms of the
triangular faces of the mesh, we can extract the geome-
try in the scene in a non-iterative way (unlike RANSAC
approaches). In particular, we are interested in co-planarity
regularities between landmarks, for which we need to first
find planar surfaces in the scene. In our approach, we only
detect planes that are either vertical (i.e. walls) or horizontal
(i.e. floor, tables), which are structures commonly found in
man-made environments. Fig. 1 (b) shows the faces of the
mesh associated to a vertical wall in green, while the blue
faces correspond to the floor. To detect horizontal planes,
we cluster the faces of the mesh with vertical normals, and
then build a 1D histogram of the height of the vertices.
After smoothing the histogram with a Gaussian filter, the
resulting local maximums of the histogram correspond to
predominant horizontal planes. Among these planes, we take
the candidates with the most inliers (above a minimum
threshold of 20 faces). To detect vertical planes, we cluster
the faces of the mesh which have a horizontal normal. Then,
we build a 2D histogram; where one axis corresponds to the
shortest distance from the plane of the 3D face to the world
origin1, and the other axis corresponds to the azimuth of
the normal with respect to the vertical direction2. Candidate
selection is done the same way as in the horizontal case.

4) Data Association: With the newly detected planes, we
still need to associate which landmarks are on each plane.
For this, we use the set of landmarks of the 3D faces that
voted for the given plane in the original histogram. Once
we have a new set of planes detected, we still need to
check if these planes are already present in the optimization
problem to avoid duplicated plane variables. For this, we
simply compare the normals and distances to the origin of
the plane to see if they are close to each other.

B. Back-end

1) State Space: If we denote the set of all keyframes up
to time t by Kt, the state of the system xi at keyframe i ∈ Kt
is described by the IMU orientation Ri ∈ SO(3), position
pi ∈ R3, velocity vi ∈ R3, and biases bi = [bgi bai ] ∈

1The world origin corresponds to the first estimated pose of the IMU.
2Since gravity is observable via the IMU, we have a good estimate of

what the vertical direction is.

R6, where bgi ,b
a
i ∈ R3 are respectively the gyroscope and

accelerometer biases:

xi
.
= [Ri,pi,vi,bi]. (1)

We will only encode in the optimization the 3D positions
ρl for a subset Λt of all landmarks Lt visible up to time
t: {ρl}l∈Λt , where Λt ⊆ Lt. We will avoid encoding the
rest of the landmarks St = Lt \ Λt by using a structureless
approach, as defined in [8, Sec. VII], which circumvents the
need to add the landmarks’ positions as variables in the op-
timization. This allows trading-off accuracy for speed, since
the optimization’s complexity increases with the number of
variables to be estimated.

The set Λt corresponds to the landmarks which we con-
sider to satisfy a structural regularity. In particular, we are
interested in co-planarity regularities, which we introduce in
Section II-B.5. Since we need the explicit landmark variables
to formulate constraints on them, we avoid using a structure-
less approach for these landmarks. Finally, the co-planarity
constraints between the landmarks Λt require the modelling
of the planes Πt in the scene. Therefore, the variables to
be estimated comprise the state of the system {xi}i∈Kt

, the
landmarks which we consider to satisfy structural regularities
{ρl}l∈Λt

, and the planes {ππ}π∈Πt
. The variables to be

estimated at time t are:

Xt
.
= {xi,ρl,ππ}i∈Kt,l∈Λt,π∈Πt

. (2)

Since we are taking a fixed-lag smoothing approach for the
optimization, we limit the estimation problem to the sets of
variables in a time-horizon of length ∆t. To avoid cluttering
the notation, we skip the dependence of the sets Kt, Λt and
Πt on the parameter ∆t. By reducing the number of variables
to a given window of time ∆t, we will make the optimization
problem more tractable and solvable in real-time.

2) Measurements: The input for our system consists of
measurements from the camera and the IMU. We define the
image measurements at keyframe i as Ci. The camera can
observe multiple landmarks l, hence Ci contains multiple
image measurements zli, where we distinguish the landmarks
that we will use for further structural regularities lc (where
the index c stands for ‘constrained’ landmark), and the
landmarks that will remain as structureless ls (where the
index s stands for ‘structureless’). We represent the set
of IMU measurements acquired between two consecutive
keyframes i and j as Iij . Therefore, we define the set of
measurements collected up to time t by Zt:

Zt
.
= {Ci, Iij}(i,j)∈Kt

. (3)

3) Factor Graph Formulation: We want to estimate the
posterior probability p(Xt|Zt) of our variables Xt (Eq. (2))
using the set of measurements Zt (Eq. (3)). Using standard
independence assumptions between measurements, we arrive
to the following formulation where we grouped the different



terms in factors φ:

p(Xt|Zt)
(a)
∝ p(Xt)p(Zt|Xt)

= φ0(x0)
∏
lc∈Λt

∏
π∈Πt

φR(ρlc ,ππ)δ(lc,π) (4a)∏
(i,j)∈Kt

φIMU(xi,xj) (4b)

∏
i∈Kt

∏
lc∈Λt(i)

φlc(xi,ρlc)
∏
ls∈St

φls(xi∈Kt(ls)), (4c)

where we apply the Bayes rule in (a), and ignore the normal-
ization factor since it will not influence the result (Section II-
B.4). Eq. (4a) corresponds to the prior information we have
about Xt. The factor φ0 represents a prior on the first state
of the optimization’s time-horizon. The following terms in
Eq. (4a) encode regularity factors φR between constrained
landmarks lc and planes π. We also introduce the data
association term δ(lc, π), which returns a value of 1 if
the landmark lc is associated to the plane π, 0 otherwise
(Section II-A.4). In Eq. (4b), we have the factor correspond-
ing to the IMU measurements which depends only on the
consecutive keyframes (i, j) ∈ Kt. Eq. (4c) encodes the
factors corresponding to the camera measurements. We add
a projection factor φlc for each observation of a constrained
landmark lc, where we denote by Λt(i) ⊆ Λt the set of
constrained landmarks seen by keyframe i. Finally, we add
structureless factors φls for each of the landmarks ls ∈ St;
note that these factors depend on the subset of keyframes
that observe ls, which we denote by Kt(ls) ⊆ Kt. In Fig. 2,
we use the expressiveness of factor graphs [23], [24] to show
the dependencies between the variables in Eq. (4).

x0 x1 x2

ρl0 ρl1 ρl2

π0

φ0

φIMU φIMU

φlc φlc φlc φlcφlc

φls φls

φR

φR
φR

Fig. 2: VIO factor graph combining Structureless (φls ),
Projection (φlc ) and Regularity (φR) factors (SPR). The
factor φR encodes relative constraints between a landmark
li and a plane π0.

4) MAP Estimation: Since we are only interested in the
most likely Xt given the measurements Zt, we calculate the
maximum a posteriori (MAP) estimator XMAP

t . Minimizing
the negative logarithm of the posterior probability in Eq. (4)
(under the assumption of zero-mean Gaussian noise) leads
to a nonlinear least-squares problem:

XMAP
t = arg min

Xt

‖r0‖2Σ0
+
∑
lc∈Λt

∑
π∈Πt

δ(lc, π) ‖rR‖2ΣR

+
∑

(i,j)∈Kt

∥∥rIij

∥∥2

Σij
+
∑
i∈Kt

∑
lc∈Λt(i)

‖rlc‖
2
ΣC

+
∑
ls∈St

‖rls‖
2
ΣS
,

where r represents the residual errors, and Σ the covariance
matrices. We refer the reader to [8, Sec. VI, VII] for the
actual formulation of the preintegrated IMU factors φIMU and
structureless factors φls , as well as the underlying residual
functions rIMU, rls . For the projection factors φlc , we use a
standard monocular and stereo reprojection error as in [19].

5) Regularity Constraints: For the regularity residuals rR,
we use a co-planarity constraint between a landmark ρlc ∈
R3 and a plane π = {n, d}, where n is the normal of the
plane, which lives in the S2 .

= {n = (nx, ny, nz)
T
∣∣‖n‖ = 1}

manifold, and d ∈ R is the distance to the world origin:
rR = n ·ρlc−d. This plane representation is nevertheless an
over-parametrization that will lead to a singular information
matrix. This is not amenable for Gauss-Newton optimization,
since it leads to singularities in the normal equations [25].
To avoid this problem, we optimize in the tangent space
TnS

2 ∼ R2 of S2 and define a suitable retraction Rn(v) :
TnS

2 ∈ R2 → S2 to map changes in the tangent space to
changes of the normals in S2 [8]. In other words, we rewrite
the residuals as:

rR(v, d) = Rn(v)T · ρ− d (5)

and optimize with respect to the minimal parametrization
[v, d] ∈ R3. This is similar to [25], but we work on the
manifold S2 instead of adopting a quaternion parametriza-
tion. Note that a single co-planarity constraint, as defined
in Eq. (5), is not sufficient to constrain a plane variable,
and a minimum of three are needed instead. Nevertheless,
degenerate configurations exist, e.g. three landmarks on a
line would not fully constrain a plane. Therefore, we ensure
that a plane candidate has a minimum number of constraints
before adding it to the optimization problem.

III. EXPERIMENTAL RESULTS

We benchmark the proposed approach against the state
of the art on real datasets, and evaluate trajectory and map
estimation accuracy, as well as runtime. We use the EuRoC
dataset [17], which contains visual and inertial data recorded
from an micro aerial vehicle flying indoors. The EuRoC
dataset includes eleven datasets in total, recorded in two
different scenarios. The Machine Hall scenario (MH) is the
interior of an industrial facility. It contains little (planar)
regularities. The Vicon Room (V) is similar to an office room
where walls, floor, and ceiling are visible, as well as other
planar surfaces (boxes, stacked mattresses).

Compared techniques. To assess the advantages of our
proposed approach, we compare three formulations that build
one on top of another. First, we denote as S the approach that
uses only Structureless factors (φls , in Eq. (4c)). Second, we
denote as SP the approach that uses Structureless factors,
combined with Projection factors for those landmarks that



have co-planarity constraints (φlc , in Eq. (4c)), but without
using regularity factors. Finally, we denote as SPR our
proposed formulation using Structureless, Projection and
Regularity factors (φR, in Eq. (4a)). The IMU factors (φIMU,
in Eq. (4b)) are implicitly used in all three formulations.
We also compare our results with other state-of-the-art
implementations in Table II. In particular, we compare the
Root Mean Squared Error (RMSE) of our pipeline against
OKVIS [26], MSCKF [6], ROVIO [20], VINS-MONO [18],
and SVO-GTSAM [8], using the reported values in [27].
Note that these algorithms use a monocular camera, while
we use a stereo camera. Therefore, while [27] aligns the tra-
jectories using Sim(3), we use instead SE(3). Nevertheless,
the scale is observable for all algorithms since they use an
IMU. No algorithm uses loop-closure.

A. Localization Performance

Absolute Translation Error (ATE). The ATE looks
at the translational part of the relative pose between the
ground truth pose and the corresponding estimated pose at
a given timestamp. We first align our estimated trajectory
with the ground truth trajectory both temporally and spatially
(in SE(3)), as explained in [21, Sec. 4.2.1]. We refrain
from using the rotational part since the trajectory alignment
ignores the orientation of the pose estimates. Table I shows
the ATE for the pipelines S, SP, and our proposed approach
SPR on the EuRoC dataset.

First, if we look at the performance of the different algo-
rithmic variants for the datasets MH 03, MH 04 and MH 05
in Table I, we observe that all methods perform equally.
This is because in these datasets no structural regularities
were detected. Hence, the pipelines SP and SPR gracefully
downgrade to a standard structureless VIO pipeline (S).
Second, looking at the results for dataset V2 03, we observe
that both the SP and the SPR pipelines achieve the exact
same performance. In this case, structural regularities are
detected, resulting in Projection factors being used. Neverthe-
less, since the number of regularities detected is not sufficient
to spawn a new plane estimate, no structural regularities
are actually enforced. Finally, Table I shows that the SPR
pipeline consistently achieves better results over the rest
of datasets where structural regularities are detected and
enforced. In particular, SPR decreases the median APE by
27.6% compared to the SP approach for dataset V1 02,
which has multiple planes.

Table II shows that the SPR approach achieves the best
results when compared with the state-of-the-art on datasets
with structural regularities, such as in datasets V1 01 and
V1 02, where multiple planes are present (walls, floor). We
observe a 19% improvement compared to the next best per-
forming algorithm (SVO-GTSAM) in dataset V1 01, and a
26% improvement in dataset V1 02 compared to ROVIO and
VINS-MONO, which achieve the next best results. We also
see that the performance of our pipeline is on-par with other
state-of-the-art approaches when no structural regularities are
present, such as in datasets MH 04 and MH 05.

TABLE I: ATE for pipelines S, SP, and SPR. Our proposed
approach SPR achieves the best results for all datasets where
structural regularities are detected and enforced.

ATE [cm]

S SP SPR (Proposed)

EuRoC Sequence Median RMSE Median RMSE Median RMSE

MH 01 easy 13.7 15.0 12.4 15.0 10.7 14.5
MH 02 easy 12.9 13.1 17.6 16.7 12.6 13.0
MH 03 medium 21.0 21.2 21.0 21.2 21.0 21.2
MH 04 difficult 17.3 21.7 17.3 21.7 17.3 21.7
MH 05 difficult 21.6 22.6 21.6 22.6 21.6 22.6
V1 01 easy 5.6 6.4 6.2 7.7 5.3 5.7
V1 02 medium 7.7 8.9 8.7 9.4 6.3 7.4
V1 03 difficult 17.7 23.1 13.6 17.6 13.5 16.7
V2 01 easy 8.0 8.9 6.6 8.2 6.3 8.1
V2 02 medium 8.8 12.7 9.1 13.5 7.1 10.3
V2 03 difficult 37.9 41.5 26.0 27.2 26.0 27.2

TABLE II: RMSE of the state-of-the-art techniques (reported
values from [27]) compared to our proposed SPR pipeline,
on the EuRoC dataset. A cross (×) states that the pipeline
failed. In bold the best result, in blue the second best.

RMSE ATE [cm]

Sequence OKVIS MSCKF ROVIO VINS-
MONO

SVO-
GTSAM

SPR

MH 01 16 42 21 27 5 14
MH 02 22 45 25 12 3 13
MH 03 24 23 25 13 12 21
MH 04 34 37 49 23 13 22
MH 05 47 48 52 35 16 23
V1 01 9 34 10 7 7 6
V1 02 20 20 10 10 11 7
V1 03 24 67 14 13 × 17
V2 01 13 10 12 8 7 8
V2 02 16 16 14 8 × 10
V2 03 29 113 14 21 × 27

Relative Pose Error (RPE). While the ATE provides
information on the global consistency of the trajectory esti-
mate, it does not provide insights on the moment in time
when the erroneous estimates happen. Instead, RPE is a
metric for investigating the local consistency of a trajectory.
RPE aligns the estimated and ground truth pose for a given
frame i, and then computes the error of the estimated pose for
a frame j > i at a fixed distance farther along the trajectory.
We calculate the RPE from frame i to j in translation and
rotation (absolute angular error) [21, Sec. 4.2.3]. As [28],
we evaluate the RPE over all possible trajectories of a given
length, and for different lengths.

Fig. 3 shows the results for dataset V2 02, where we
observe that using our proposed pipeline SPR, with respect
to the SP pipeline, leads to: (i) an average improvement of
the median of the RPE over all trajectory lengths of 20% in
translation and 15% in rotation, and (ii) a maximum accuracy
improvement of 50% in translation and 30% in rotation of
the median of the RPE.

B. Mapping quality

We use the ground truth point cloud for dataset V1 to
assess the quality of the 3D mesh by calculating its accuracy,
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Fig. 3: Boxplots of the RPE on dataset V2 02 for the
approaches S, SP, and SPR (proposed).

as defined in [10]. To compare the mesh with the ground truth
point cloud, we compute a point cloud by sampling the mesh
with a uniform density of 103 points/m2. We also register
the resulting point cloud to the ground truth point cloud. In
Fig. 4, we color-encode each point r on the estimated point
cloud with its distance to the closest point in the ground-truth
point cloud G (dr→G). We can observe that, when we do not
enforce structural regularities, significant errors are actually
present on the planar surfaces, especially on the walls (Fig. 4
top). Instead, when regularities are enforced, the errors on
the walls and the floor are reduced (Fig. 4 bottom). A closer
view on the wall itself (Fig. 1(c)-(d)) provides an illustrative
example of how adding co-planarity constraints results in
smoother walls.

C. Timing

The pipelines S, SP, and SPR differ in that they try to solve
an increasingly complicated optimization problem. While the
S pipeline does not include neither the 3D landmarks nor
the planes as variables in the optimization problem, the SP
pipeline includes 3D landmarks, and the pipeline using regu-
larities (SPR) further includes planes as variables. Moreover,
SP has significantly less factors between variables than the
SPR pipeline. Hence, we can expect that the optimization
times for the different pipelines will be each bounded by the
other as toptS < toptSP < toptSPR, where toptX is the time taken to
solve the optimization problem of pipeline X.

Fig. 5 shows the time taken to solve the optimization
problem for each type of pipeline. We observe that the
optimization time follows roughly the expected distribution.
We also notice that if the number of plane variables is
large (∼ 101), and consequently the number of constraints
between landmarks and planes also gets large (∼ 102), the
optimization problem cannot be solved in real-time (see
keyframe index 250 in Fig. 5). This can be avoided by
restricting the number of planes in the optimization. Finally,
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Fig. 4: Point cloud sampled from the estimated 3D mesh
color-encoded with the distance to the ground truth point
cloud (V1 01), for SP approach (top) and SPR (bottom).
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Fig. 5: Comparison of the time to solve the optimization
problem for pipeline S, SP, and SPR for dataset V1 01.

the SPR pipeline has the overhead of generating the mesh.
Nevertheless, it takes just 8ms per frame.

IV. CONCLUSION

We present a VIO algorithm capable of incrementally
building a 3D mesh of the scene restricted to a receding
time-horizon. Moreover, we show that we can improve the
state estimation and mesh by enforcing structural regularities
present in the scene. Hence, we provide a tightly coupled
approach to regularize the mesh and improve the state
estimates simultaneously.

Finally, while the results presented are promising, we are
not yet enforcing higher level regularities (such as parallelism
or orthogonality) between planes. Therefore, these improve-
ments could be even larger, potentially rivaling pipelines
enforcing loop-closures.
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