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Rest of this course is about SoS. In the remaining lectures, Aram will tell you about how to prove positive
results on its performance (de Finetti theorems). In this lecture, you will see instances where it fails.

These instances will be based on CSPs. A special feature of CSPs: over n binary variables, degree-n
SoS always converges exactly. This is because all polynomials can be reduced to degree ≤ n over Boolean
variables. Or in the dual picture, deg-k SoS corresponds to searching over marginal probability distributions
on subsets of k variables, so when k = n this means searching over the full distribution on n variables.

5.1 Integrality Gaps for SoS

For constant degree, can cook up examples (e.g. MAX-CUT for degree 2) where SoS gives the wrong answer
(although this may still be a good approximation). This is called an “integrality gap” following terminology
from LP relaxations of integer programs. (If you’re not familiar with this, then don’t worry about where the
term comes from.)

5.1.1 Grigoriev

Theorem 1. For every ε > 0 and every n there exists a 3XOR instance with Θ(n/ε2) questions s.t. val(φ) ≤
1/2 + ε but vald(φ) = 1 for all d < d∗, where d∗ = Ω(n).

Proof. Pick a random instance. By Chernoff bound, for each fixed assignment x, the probability (over choice
of instance) that x satisfies the instance is exponentially small, specifically let’s say ≤ 2−2n. So by union
bound, the probability that a random instance has no satisfying assignment can be made exponentially close
to 1.

Next we need to argue that SoS estimates value 1 for this instance. Recall that the level-d SoS SDP is

max
Ẽ

Ẽ[φ(x)] (5.1a)

s.t. Ẽ[p(x)(x2
i − 1)] = 0 ∀p (5.1b)

E[q2(x)] ≥ 0 ∀q(x) (5.1c)

Saying that Ẽ[φ(x)] = 1 is equivalent to saying that for each clause xi1xi2xi3 = si we have

Ẽ[xi1xi2xi3 ] = si. (5.2)

We now use (5.2) to recursively build up assignments of Ẽ[xS ] for all |S| ≤ d. Start with Ẽ[1] = 1, with
Ẽ[xi1xi2xi3 ] = si for each clause and with Ẽ[xS ] undefined other choices of S. (It suffices for now to consider
only the action of Ẽ on monomials.) Then we repeatedly apply the following procedure. Choose S, T ⊆ [n]
s.t. Ẽ[xS ], Ẽ[xT ] are both defined and such that |S⊕T | ≤ d. Here ⊕ means the symmetric difference. This is
equivalent to demanding that deg(xSxT mod 〈x2

1−1, . . . , x2
n−1〉) ≤ d. To simplify notation we will implicitly

work modulo the ideal 〈x2
1 − 1, . . . , x2

n − 1〉 so that we write (for example) (x1x2x3)(x2x4x5) = x1x3x4x5.
When we have such an S, T we assign Ẽ[xSxT ] = Ẽ[xS ] Ẽ[xT ]. Continue this process until there are no

such pairs left. For any S ⊆ [n], |S| ≤ d that we haven’t reach in this way, set Ẽ[xS ] = 0.
We have now defined Ẽ for all monomials so we can extend it by linearity to all polynomials. By

construction it satisfies (5.1b) and (5.2). The nontrivial part is to show that it satisfies (5.1c). To do this,
first we have to argue that the process we have defined will not run into “contradictions,” that is, if we can
reach xS in two different ways, those must have involved the same clauses in a different order. This fact is
nontrivial but follows from the variable-clause constraint graph being a sufficiently good bipartite expander.
Random graphs have this property.
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Another way to see it is that the original 3-XOR game could be thought of as the F2-linear equations

∃u ∈ Fn2 s.t. Au = s (5.3)

where s ∈ Fm2 , A ∈ Fm×n2 are given. A “refutation” is a proof that no such u exists. Specifically we will
consider refutations that are vectors v ∈ Fm2 such that

vTA = 0 and vT s = 1. (5.4)

It is not hard to see that (5.3) is satisfiable iff (5.4) is unsatisfiable. Also, finding a contradiction in our con-
struction of Ẽ is equivalent to finding vectors v1, v2 such that v = v1+v2 satisfies (5.4) and |AT v1|, |AT v2| ≤ d.
This implies that |AT v| ≤ 2d and v 6= 0. However, a standard result in error-correcting codes due to Sipser
and Spielman states that for random degree-3 graphs kerAT contains no vectors of weight o(n) except the
0 vector. (Note that this proof also relies on bipartite expansion, so is essentially a rephrasing of the above
proof sketch.)

Once we have no contradiction we can assign the monomials to equivalence classes. Say that S ∼ T if
Ẽ[xSxT ] 6= 0. (Note that for all S, Ẽ[xS ] ∈ {−1, 0, 1}.) When this occurs we also have

Ẽ[xSxT ] = Ẽ[xS ] Ẽ[xT ]. (5.5)

Given a polynomial q, group the terms by equivalence class so that q =
∑
k qk where each qk has monomials

in a single distinct equivalence class. Then Ẽ[q2] =
∑
k Ẽ[q2

k] since the cross terms vanish. Consider now a
single qk =

∑
S αSxS , so that

Ẽ[q2
k] =

∑
S,T

αSαT Ẽ[xSxT ]
(5.5)
=
∑
S,T

αSαT Ẽ[xS ] Ẽ[xT ] =

(∑
S

αS Ẽ[xS ]

)2

≥ 0. (5.6)

Implications for hSep. Given a Ẽ of degree k we can construct a state on (Cn)⊗k/2

ρ ∝
∑

S,T types of deg ≤k/2

Ẽ[xSsT ] |S〉 〈T | . (5.7)

Here a type S is a subset of [n] of size k/2 and |S〉 is the superposition of all strings with this empirical
distribution. The symmetry means ρ � 0 and has support in the symmetric subspace. It is also PPT. Thus
it passes the SoS-based tests for separable states presented in the previous lectures.

However corresponding to the Grigoriev 3XOR instance φ there is a measurementMφ such that maxx φ(x) =
hSep(Mφ). Then

SoSk(Mφ) = 1, hSep(Mφ) ≤ 1

2
+ ε. (5.8)

The relevant dimensions come the hardness constructions earlier which maps CSPs (there 3-SAT but
could also be 3-XOR) into measurements. Thus deciding if hSep(d,2) is = 1 or ≤ 1/2 needs k = Õ(log2 d) of

SoS and deciding if hSep(d,2) is = 1 or ≤ 1 − 1/d needs k = Õ(d) levels. The full details are in our paper
with Xiaodi Wu [2].

5.2 Extension Complexity

SoS is an instance of an SDP relaxation: approximating a convex body by a projection of a simpler body.
The study of when this is possible is called extension complexity.
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5.2.1 Polytopes and nonegative rank

To build intuition, we’ll start with the case of polytopes and linear programming relaxations. For polytopes
Q, P , say that Q is an extension of P if P = T (Q) for some linear map T . The complexity of Q is the
dimensionality of Q + the number of facets. The extension complexity of P (denoted xc(P )) is the minimum
complexity of Q over all extensions.

This is relevant because if Q extends P , can optimize over P by solving an LP over Q, i.e.

max{yTx : x ∈ P} = max{(yTT )z : z ∈ Q}. (5.9)

Any polytope can be represented by its slack matrix MP with rows corresponding to facets and columns
to vertices. Suppose P = {x : Ax = b, Cx ≤ d} has f faces (each of the form cjx = dj) and v vertices
x1, . . . , xv. Then (MP )i,j := dj − cTj xi. This measures how much “slack” there is in the constraint. By
construction the entries are nonnegative.

Definition 2. Given a matrix A ∈ Rm,n≥0 , the nonnegative rank rank+(A) is the minimum r such that
A = BC for nonnegative matrices B and C with dimensions m× r and r × n respectively.

Theorem 3 (Yannakakis). Extension complexity of P ⊆ Rn is Θ(n+ rank+(MP )).

Proof. First we show that nonnegative rank is an upper bound on extension complexity. Let the polytope
P = {x : Ax = b, Cx ≤ d} with f faces and v vertices, and suppose that its slack matrix has a decomposition
MP = FV , with dimensions f × r and r × v. Then we claim that the polytope

Q =

{(
x
y

)
: Ax = b, Cx+ Fy = d, y ≥ 0

}
(5.10)

is an extension of P . (This appears to have many equality constraints but you can just pick a linearly
independent subset of them.) To show this, take T to be the map that projects onto the x component,

i.e. T

(
x
y

)
= x. Then clearly T (Q) ⊆ P . Moreover, every vertex of P lies in T (Q) by taking y to be the

corresponding column of V .
Now we show that extension complexity is an upper bound on nonnegative rank. By rotating and

introducing slack variables (at most doubling the number of vars and constraints), we assume that the map

T is just a projection on to the first n coordinates, and the Q has the form

{(
x
y

)
: Rx+ Sy = t, y ≥ 0

}
.

Then for each vertex xi, there exists yi such that (xi, yi) ∈ Q. Moreover, each vertex satisfies cTj xi ≤ dj for
each facet inequality j, and hence the optimum of the LP

max
x,y

cTj xi

s.t.
(
R S

)(x
y

)
= t

y ≥ 0

is at most dj . The dual to this LP is

min
u,f

uT t

s.t.

(
RT

ST

)
u =

(
cj
f

)
f ≥ 0

.

By strong duality, therefore, there exists a dual feasible point uj , fj s.t. uTj t = dj and cjxi + fjyi =

uTj
(
R S

)(x
y

)
= dj . Hence putting together the ys and fs into a matrix one gets a factorization for MP .

The dimension r of the matrices in this factorization are given by the dimension of y.

Yannakakis used this to show that there exist no sub-exponential size symmetric LPs for matching/TSP
polytopes.
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5.2.2 SDPs and PSD-rank

The preceeding discussion can be generalized to SDP relaxations. Define the semidefinite extension com-
plexity of a convex body K (denoted also xcsdp(K)) as the minimum dimension + number of constraints of
an SDP expressing K. It turns out that for a polytope P we have again

Theorem 4. xcsdp(P ) = rankpsd(MP )

Here rankpsd(M) is the lowest number r for which Mi = 〈Ai, Bj〉 for some r-dimensional psd matrices
{Ai}, {Bj}, and where 〈A,B〉 = trA†B.

This is about representing a polytope exactly as a spectrahedral lift. But we want to approximately solve
some approximation problem. For instance, suppose we want to obtain a (c, s)-aproximation to a CSP using
semidefinite programming, i.e. we want to know whether val(φ) is ≥ c or ≤ s given the promise that at least
one of these holds.

Turns out, there is a “slack matrix” for this problem. Let Π = {φ : val(φ) ≤ s}, and define the matrix
M with rows indexed by instances in Π and columns indexed by assignments, such that M(φ, x) = c−φ(x).
Then rankpsd(M) is the size of the smallest SDP to obtain a (c, s) approximation to the problem.

Here we consider only SDPs where the constraints depend on the type of CSP (e.g. 3-XOR, k-coloring,
etc.), but not the particular instance. The choice of instance should enter only via the objective function.

5.2.3 LRS: connection SoS degree to PSD rank

LRS shows that SoS is in some sense the optimal SDP relaxation for CSPs.

Theorem 5. Suppose SoS needs at least degree d to achieve a (c, s) approximation for some CSP on instances

of size m. Then for all n ≥ 2m, rankpsd(M) ≥ Cm
(

n
logn

)d/4
, where M is the slack matrix for instances of

size n as defined above.

Important technical note: Cm is allowed to depend on m! So the above theorem is not as good as it
looks. There are some bounds on the dependence of Cm which are only nontrivial when d is small (log(n)).

We end up with extension complexity lower bounds for e.g. 3XOR of nΩ̃(logn).

Proof. The proof is quite technical so we will just sketch the main steps.
First, the claim that we need degree d to achieve a (c, s) approximation for the CSP can be reformulated:

it is saying that for some instance φ of size m with val(φ) < s, function f(x) = c− φ(x) has SOS degree d.
This implies that there exists some pseudoexpectation Ẽ[·] defined up to degree d− 2 such that Ẽ[f ] < 0.

We will show the contrapositive of the theorem; that is, we will show that if M has psd rank that is too
small, then Ẽ[f ] ≥ 0 which violates our assumption.

Actually, instead of considering the full matrix M , consider a submatrix called the “pattern matrix” Mf
n ,

with rows indexed by subsets S ⊂ [n] of size m, and columns indexed by assignments x ∈ {0, 1}n, such that

Mf
n (S, x) = f(xS).

If the psd rank of M is small, then so is that of Mf
n . Write our factorization

Mf
n (S, x) = Tr(P (S)Q(x)) = f(xS).

If Q(x)1/2 were a low-degree polynomial in x, we’d be done, since it would imply that f(y) has low SOS
degree.

What LRS show is that given an arbitrary Q(x), can find a low-degree R(x) such that

|E
x

Tr
(
Λ(x)(Q(x)−R(x)2)

)
| ≤ ε,

for all “simple” functions Λ(x) (i.e. low degree polynomials with bounded norm). If we choose ε to be small
enough, then applying this to our factorization, we get

E
S
Ẽx Tr

(
P (S)R(x)2

)
< 0
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which is impossible since E is a valid pseudo-expectation covering polynomials of the degree we encounter
here.

Why can we restrict to Λ(x) that are themselves low degree? This uses n ≥ 2m and some new facts
about random restrictions.

5.2.4 Applications to hSep and the no-disentangler conjecture

Everything we said above was for CSPs. How do we apply it to hSep? Everything in this section is from [2].
As we have seen with the hardness results, we can embed a CSP into hSep by mapping φ 7→ Mφ such

that φ(x) ≈ hSep(Mφ). The way this works is that there is also a map from solutions x to “honest witness
states” ρx such that

hSep(Mφ) = max
σ∈Sep

tr[Mφσ] ≈ max
x

tr[Mφρx] = max
x

φ(x). (5.11)

Following LRS we can get results like this:

Corollary 6. To achieve a (1, 1− 1/d2) approximation to hSep, we need an SDP of size dlog d/ log log d.

This is the worst of both worlds; we have not only 1 − 1/ poly(d) soundness but only a quasipolyno-
mial lower bound on dimension. This is because of the various losses mostly from LRS. There was a big
improvement in efficiency for LPs, due to [3].

One neat application of Corollary 6 is a weak version of the “no approximate disentangler” conjecture of
Watrous, first reported in [1]. An exact disentangler is a surjective linear map from D(Cd′) to Sep(d, 2). An
ε-approximate disentangler is a map from D(Cd′) whose image is ε-close in Hausdorff distance (see wikipedia
for def) to Sep(d, 2).

If Φ is an ε-approximate disentangler then maxρ∈D(Cd′ ) tr[Φ(ρ)M ] gives an ε-approximation to hSep(M).

So if ε ≤ 1/d2 then we can show that d′ . dlog d/ log log d is impossible.
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