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Today’s lecture is about the sum-of-squares (SoS) hierarchy. This is a general method to find SDP
relaxations to optimization problems with polynomial constraints and objective functions.

On the first day we saw that our problems of interest can be cast as polynomial optimization problems:

max
x∈Rn

f(x)

s.t. gi(x) = 0∀i
hj(x) ≥ 0 ∀j,

(4.1)

where f(x), g1(x), g2(x), . . . , h1(x), . . . are polynomials.
This is unfortunately not convex for polynomials with degree > 1. How can we make it convex? Let S

denote the feasible region
S = {x ∈ Rn : ∀igi(x) = 0,∀jhj(x) ≥ 0}. (4.2)

Then we can replace the max over x with a max over probability distributions p supported on S. Our new
optimization is

max
p:supp p⊆S

E
x∼p

[f(x)] ∼= 〈E, f〉. (4.3)

This is now convex but infinite dimensional.

Necessary conditions for p supported on S. We note that E must satisfy certain properties if it indeed
arises from p supported on S. Here is an (incomplete) list:

E[·] is a linear function (4.4a)

E[1] = 1 (4.4b)

E[gi(x)r(x)] = 0 ∀i,∀r(x) (4.4c)

E[q2(x)] ≥ 0 ∀q(x) (4.4d)

E[hj(x)q2(x)] ≥ 0 ∀j,∀q(x) (4.4e)

Observe also that E is a linear map from polynomials to real numbers. Our relaxation will replace E with
a “pseudo-expectation” Ẽ that acts only on polynomials of degree ≤ d, which we call R[x1, . . . , xn]≤d. The

set of such Ẽ is a finite dimensional vector space, indeed it has dimension O(nd).
The level-d SOS relaxation of (4.1) is then to maximize Ẽ[f ] subject to Ẽ satisfying the conditions in

(4.4). (Will explain the “SOS” name later.)
Why is this an SDP? If u, v are monomials of degree ≤ d/2 then we can define a matrix X such that

Xu,v = Ẽ[uv]. (4.5)

For example, if n = 2, d = 2 then (using x, y instead of x1, x2 as variables for readability)

X =


1 x y

1 1 Ẽ[x] Ẽ[y]
x Ẽ[x] Ẽ[x2] Ẽ[xy]
y Ẽ[y] Ẽ[xy] Ẽ[y2]

. (4.6)

What do the constraints look like in this picture? Linearity (4.4a) is automatic. The equality constraints
(4.4b) and (4.4c) become simple equality constraints on linear combinations of matrix entries of X, e.g.
X1,1 = 1. For (4.4c) note that we do not need to consider arbitrary r(x) but it suffices to consider only all
the monomials of degree ≤ d− deg gi.
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The inequality constraints are more interesting. Start with (4.4d). Let q =
∑

i αiqi where αi ∈ R and
each qi is a monomial of degree ≤ d/2. Then

0 ≤ Ẽ[q2] = Ẽ

∑
i,j

αiαjqiqj

 = αTXα, (4.7)

where in the last step we have defined the vector α to have components αi. (4.4d) holds for all q iff (4.7)
holds for all α iff X � 0. Thus (4.4d) is equivalent to a psd constraint.

Likewise we can define Y
(j)
u,v = Ẽ[uhjv] and it turns out that Y (j) � 0 iff (4.4e) holds for all q(x).

Thus we have an SDP with O(nd) variables which can be solved in time nO(d).

Dual picture. The dual is

min{γ : γ − f(x) =
∑
i

s2
i (x) +

∑
j

rj(x)gj(x) +
∑
k,l

q2
k,l(x)hk(x)}, (4.8)

where all polynomials have degree ≤ d. Note that dual feasible points are “proofs” that f(x) ≤ γ for all
x ∈ S. We can see this by applying Ẽ to both sides of (4.8). We refer to terms such as

∑
i s

2
i (x) as “sums

of squares” of polynomials, aka “SOS polynomials”. It is not immediately obvious that (4.8) is an SDP.
To see this, we observe that there is an SDP to search over SOS polynomials. The argument is similar to
the one in (4.7). Let p(x) =

∑
u,v Au,vuv, where u, v are monomials and Au,v depends only on the product

uv. If A � 0 then A = BTB for some matrix B. This means that p(x) =
∑

u,v,iBi,uBi,vuv =
∑

i bi(x)2,
where bi(x) =

∑
uBi,uu. Thus p is SOS. The argument can run in the other direction too: there is a 1-1

correspondence between polynomials p and matrices A, and between SOS polynomials p and psd matrices
A.

We can think of the dual picture as searching for a “SOS proof” that γ− f(x) ≥ 0. An SOS proof is just
a way of proving a polynomial is nonnegative by writing it as a sum of squares, plus terms that are forced
to be zero or nonnegative by the constraints.

The convergence of the dual is established by the following theorem.

Putinar’s Positivstellensatz. Given S suppose there is an SOS proof that ‖x‖22 ≤ C for some constant
C. This is known as the “Archimedean condition.” Given a function f that is strictly positive on S, there
is an SOS proof that f is nonnegative on S, i.e.

f =
∑
i

s2
i +

∑
j

rjgj +
∑
k

q2
k,lhk, (4.9)

for appropriate polynomials si, rj , qk,l. In other words, the SOS hierarchy converges to the correct answer
as d→∞.

Example: MAX-CUT SDP (Goemans-Williamson). The polynomial optimization problem is min
∑

i,j Ai,jxixj
s.t. x2

i = 1,∀i ∈ [n]. The d = 2 SOS relaxation is

min
X

Tr[AX]

s.t. Xi,i = 1,∀i
X � 0

(4.10)

This equivalent to taking Ẽ as our variables and computing

min Ẽ[
∑
i,j

Ai,jxixj ]

s.t. Ẽ[x2
i ] = 1,∀i

(4.11)
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Example: hSep Applying it to hSep:

max
x,y

∑
ijk`

Mijk`x
∗
i y
∗
jxky` (4.12a)

s.t.
∑
i

x∗i xi = 1 (4.12b)

s.t.
∑
i

y∗i yi = 1. (4.12c)

We now have complex variables. So we we need to allow polynomials in x, y, x∗, y∗.
Second: WLOG, only nonzero moments are those that where x, x∗ and y, y∗ are balanced (let x, y have

independent, uniformly chosen phases).
Third: to specify such a moment matrix, sufficient to specify the highest degree moments only.

ρijk` := Ẽ[xiyjx
∗
ky
∗
` ].

This is because of the normalization constraints which effectively allow us to carry about partial traces and
obtain lower degree moments. Indeed Ẽ[r(x)] = Ẽ[r(x)‖x‖2].

These moments can be viewed as a quantum state! The normalization conditions (4.12b), (4.12c) imply
that tr[ρ] = 1. And the usual psd conditions from the SOS hierarchy yield that ρ � 0.

Let us generalize the degree-d condition slightly and allow degree dx in the x variables and degree dy in
the y variables. We obtain

ρ ∈ D(H⊗dx/2
X ⊗H⊗dy/2

Y ), (4.13)

where supp ρ is contained in Symdx/2HX ⊗ Symdy/2HY . If we take the marginal on one of the copies of
HX and one of the copies of HY then we obtain a state that is in the set called DPSk. (This is named after
Doherty, Parrilo, Spedalieri, who proposed this relaxation.)

It includes the k-extendible condition which states that a separable state σXY can be found as the XY1

marginal of some state ρXY1...Yk that is symmetric under permutation of the Y1, . . . , Yk. (Other versions also
exist, e.g. we could have dx/2 copies of HX and dy/2 copies of HY .)

It also includes the PPT condition. Indeed take dx = dy = 2 and consider some polynomial q =∑
i,j qi,jxiy

∗
j . Then Ẽ[|q|2] = 〈q| ρΓ |q〉 and so we obtain the condition that ρΓ � 0. This is called the PPT,

or positive partial transpose condition.

Example: ω∗. Recall that

ω∗ = max 〈ψ|
∑

a,b,x,y

G(a, b, x, y)Ax
aB

y
b |ψ〉

s.t. Ax
a ≥ 0, ∀a, x

By
b ≥ 0, ∀b, y∑
x

Ax
a = I, ∀a∑

y

By
b = I, ∀b

[Ax
a, B

y
b ] = 0∀a, x, b, y

(4.14)

We will need a new SDP hierarchy for this. But we can make use of:

The noncommutative Positivstellensatz (Helton, McCullough). Let S := {X : pi(X) ≥ 0 ∀i}
where X is a list of Hermitian operators, and the pi are expectations of polynomials of X. Suppose f(X) > 0
for all X ∈ S and we assume some analogue of the Archmedean condition. Then

f =
∑
k

r†krk +
∑
i,j

s†i,jpisi,j , (4.15)
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where all these terms are noncommutative polynomials in X.

This yields the ncSOS hierarchy for nonlocal games [1, 2].

max
Ẽ

Ẽ

 ∑
a,b,x,y

G(a, b, x, y)Ax
aB

y
b


s.t. Ẽ[q†Ax

aq] ≥ 0 ∀q, a, x
Ẽ[q†By

b q] ≥ 0 ∀q, b, y
Ẽ[p[Ax

a, B
y
b ]q] = 0 ∀p, q, a, b, x, y

Ẽ[p(
∑
x

Ax
a − I)q] = 0 ∀p, q, a

Ẽ[p(
∑
y

By
b − I)q] = 0 ∀p, q, b

Ẽ[q†q] ≥ 0 ∀q
Ẽ[I] = 1

(4.16)

Tsirelson’s characterization of 2-player XOR games. For any XOR game, x, y ∈ {0, 1} and V (x, y|a, b) =
1 if x⊕y = sa,b or 0 if not. We can define Aa = A0

a−A1
a and Bb = B0

b−B1
b . Then A2

a = B2
b = I, [Aa, Bb] = 0,

and the XOR condition states that

ω∗ = max
∑
a,b

π(a, b)(−1)sa,b︸ ︷︷ ︸
G(a,b)

〈ψ|AaBb |ψ〉+ constant. (4.17)

Tsirelson proved that level 2 of the ncSOS hierarchy gives the exact answer in this case. This remarkable
since the commutative analogue is a generalization of MAX-CUT where the SOS hierarchy does not give an
exact answer at O(1) levels.

The proof will take a solution to the ncSOS relaxation and construct an entangled strategy achieving the
same value. Since the ncSOS relaxation gives a value that is ≥ ω∗ and any given strategy achieves a value
≤ ω∗, this proves that we have actually found ω∗.

The ncSOS in this case is

max
∑
a,b

G(a, b)Xa,b

s.t. X � 0

X1,1 = 1

Xa,a = 1 ∀a
Xb,b = 1 ∀b
Xa,b = Xb,a ∀a, b

(4.18)

Since this is psd, it is a Gram matrix and we have Xa,b = 〈ua, ub〉.
Now define the Clifford observables, C1, . . . , Cn to be operators satisfying

{Ci, Cj} = 2δi,jI, ∀i, j ∈ [n] (4.19)

One way to achieve this is to take Ci = σ⊗i−1
x ⊗ σz ⊗ I⊗n−i.

Given a vector u ∈ RN , let C(u) =
∑

i uiCi. Observe that

{C(u), C(v)} = 2〈u, v〉I. (4.20)

Now we use the shared state |Φ〉 = 1√
2N

∑2N

i=1 |i〉 ⊗ |i〉 and take Aa = C(ua), Bb = C(ub). We find that
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the payoff from this strategy is ∑
a,b

G(a, b) 〈Φ|AaBb |Φ〉

=
∑
a,b

G(a, b)
trAaBb

2N

=
∑
a,b

G(a, b)
tr{Aa, Bb}

2 · 2N

=
∑
a,b

G(a, b)
tr{C(ua), C(ub)}

2 · 2N

=
∑
a,b

G(a, b)〈ua, ub〉
tr I

2N

=
∑
a,b

G(a, b)Xa,b.

(4.21)
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[2] M. Navascués, S. Pironio, and A. Aćın. A convergent hierarchy of semidefinite programs characterizing
the set of quantum correlations. New J. Phys., 10(7):073013, 2008, arXiv:0803.4290.

http://arxiv.org/abs/0803.4373
http://arxiv.org/abs/0803.4290

