Semidefinite programming and computational aspects of entanglement ITHP Fall 2017

Lecture 3: November 10

Lecturer: Anand Natarajan Scribe: ¢

Yesterday, you saw computational hardness results for hgep. Today, we’ll do it for w*.

3.1 Definitions

A game G is specified by the question and answer alphabets X,Y, A, B, the distribution 7w over questions,
and the predicate function V. Given a game G, want to approximate w*. To compute a (¢, s)-approximation
to w* means to decide if

e W*>c¢, or
o W <,

promised that one of the two cases holds. Think of ¢ — s as the precision to which we’re computing w*.

3.2 CSPs and Games

A CSP over alphabet ¥ with clauses C1,...,C,, : ¥¥ — {0,1} is given by the function
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The value of a CSP is max, ¢(z). Let’s also recall the PCP theorem, which (roughly speaking) says that
there exists a constant s such that 1, s-approximations of our CSP are NP-hard.

CSPs are intimately connected to games. For every CSP ¢, can construct a 2-player game called the
clause-variable game Gey():

e Referee samples an index i € [m] of a clause at random, and an index ¢ € [k].
o Alice receives ¢, and responds with an assignment a; 1,...,a; k.

e Bob receives j; ¢, and responds with b.

o Win iff b = a; 4, and Ci(a;1,...,a:;0) = 1.

It’s easy to see that if w(Gey(¢)) = 1 iff val(¢) = 1: Alice and Bob both have to play according to the
satisfying assignment. We will now show that a converse result. Suppose that w(G.,(¢)) > 1 —e. Then we
will show a lower-bound on val(¢). Indeed, let b be the fixed assignment to all the variables used by Bob in
the optimal strategy; then we claim that ¢(b) > 1 — (k? + 1)e. To see this, we compute the probability that
b satisfies a random clause C;. Let a; be the assignment used by Alice to the variables in this clause.

PI'[CZ(b) = 1] > Pr [Cl(az) =1AW € [k],ai,z = bji,[}

x>

>1-Pr[Ci(a;) # 1] = Y Prla; ¢ #bj, ]
(=1
>1—e— k.

This means that a (1,1 — €) approximation to w becomes a (1,1 — (k? 4+ 1)€)) approximation to ¢. Hence, if

our starting CSP was PCP-able, we have shown NP hardness for constant-factor approximations to w. By
parallel repetition, one can drive down the constants to whatever you want.
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An alternative way to view what we did: a general optimal strategy allows Alice to choose any assignment
she wants for a clause. The above analysis shows that actually, she’s forced to play with assignments that
are consistent with Bob’s assignment.

Question: does this automatically imply that w* is NP-hard to compute? After all quantum games are
“harder,” right?

3.3 Quantum games: soundness and entanglement

You can think of the C-V game as a kind of proof system. Alice and Bob are collectively trying to prove to
the referee that they have a satisfying assignment to ¢. Above, we showed that the proof system is sound:
the referee cannot be convinced that val(¢) is high if there exists no such assignment. (Story about the
students and the flat tire)

From this perspective, it seems like entanglement could screw up soundness, and these games could
actually be easier! This was noticed by Cleve, Hgyer, Toner, Watrous.

One example of this is the magic square game. Consider 9 bits in a table as

L1 | T2 | X3
Ty Is Te
L7 | X8 | X9

Alice is asked about a row and Bob is asked about a column. The players win if Alice’s three bits have parity
0, Bob’s three bits have parity 1, and they agree on the coordinate they have in common. No assignment of
9 bits satisfies this, so the optimal winning probability is < 1 (in fact it is 8/9).

However there is an entangled strategy which achieves value one. The players assign the following
operators to each bit. They are chosen so that operators in that same row or column commute, so can be
simultaneously measured.

XI IX | XX

1Z zZI YA
-XZ | -ZX | YY

They measure these on a shared state |EPR>®2. Observe that the product of the operators in any row is I1
and in any column is —I1. This implies that the entangled value of the game is 1.

Also: 2-player XOR games are in P, whereas their classical counterparts correspond to MAX-CUT, and
are NP-hard.

3.4 Kempe Kobayashi Matsumoto Toner Vidick

Turns out there is a trick to preserve soundness against entangled provers: use monogamy of entanglement.
Let’s play an extended clause-variable game, with 3 players. In the game, two players are chosen at random
to play the roles of Alice and Bob from the C-V game, and the third is ignored.

It is clear that if val(¢) = 1, then w*(G,(¢)) = 1, for the same reason as before: just play according to a
correct assignment. But the surprising thing is that this game is that this game is sound against entangled
provers. More precise, if val(¢) < 1 — 4, then w*(G'(¢)) < 1 — poly(%).

We're going to sketch the proof of this. First, let’s introduce notation to describe an entangled strategy
for this game. WLOG we can assume that the shared state is pure, the strategy is symmetric (that is, the
state is invariant under permutation, and players 1,2,3 all use the same operators when receiving the same
questions), and the measurements applied are projective. Thus, a strategy can be specified by a tripartite
state |¥) and PVMS {A]*"""*} (corresponding to “Alice” queries), and {B}} (corresponding to “Bob”
queries).

In the calculations, I'll also assume a tensor product structure, although this isn’t necessary.

Now, for the proof. Write the probability of success of a strategy

1 1 1
DPsuccess = 6 E E E E E <<\I/| A?hm’ak X BZ‘K ®Id |‘I’> + all permutations)
ze[m] Ze[k] (a1 ..... ak)I—C,
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If psuccess = 1 — €, then each term in the sum is at least 1 — 6mke:

> (AP @ By @1d W) > 1 — 6mbke.
(al,‘..,ak)FCi

Now, note that A and Bg are both projectors. So the above expression implies that for any ay,

> 14f @ 1d@1d[¥) — Id @By @ 1d[) ||* :=d( Y | A? ®1d®1d,Id@B{* ® Id)* < 6mke.
aC; aC;

This function d(-, -) is called the state-dependent distance. It is the natural thing to use here, since we cannot

control what the measurement operators do on parts of the Hilbert space where the state has no support.

You should interpret this as saying that if you measure Bob’s part of the state and obtain outcome ay, when

you measure Alice’s part of the state you will find a SAT assignment to the clause that is consistent whp.
By performing this kind of analysis, you can also show in state-dep distance that

Bl @ldeld ~ Id®B! @ 1d, (3.1)

and so on for all permutations. This means that if you measure Bob’s operators on two different systems,
you get the same answer with high probability.

Putting these together, we basically do what we did for the classical C-V game. We show that we can
extract from Bob’s strategy a classical assignment that satisfies a high fraction of all the clauses. Instead of
writing down a fixed assignment, we give a prob. dist.

plai,...,a,) = ||Be ... BB @ Id@1d W) || (3.2)

We claim that an assignment sampled from this distribution satisfies a high fraction of the clauses on average.
The way to do this: prob that an assignment generated this way satisfies a clause is approx the prob that
Alice’s operator would satisfy that clause. But this is known to be high.

To see this, consider one particular clause. We use (3.1) to move the B in (3.2) not in that clause from
player 1 to player 2. We can then sum over them (using >, B} = I) to eliminate them. We are left with
the product of Bf corresponding to a clause. Then we can convert this into an appropriate clause operator
AZ.

2-player version The effect of monogamy of entanglement doesn’t require 3 players. We can simulate it
using “oracularization”. In this version of the game, Alice is asked for a clause ¢ with variables (a1, ..., ax),
and Bob for two variables: one from the clause (say j), and one at random (say [). But he doesn’t know
which is which (say they’re always in lexicographic order). You can show that Bob’s measurement operators
for different vars have to approximately commute, which is all that is needed for the analysis above.

Let’s suppose that Bob’s measurement operators are Blbfj’bj corresponding to questions [, j and answers
by, b;. Assume WLOG these are symmetric under exchange of [, j. Define the “marginals” to be

1 bi,b;
Cl=-> B (3.3)
4ib

Then we can show that C;Cy = CjC) in the state-dependent distance.

3.5 Generalizations: rigidity and self-testing

The above analyses are instances of “rigidity” results for games: we show that any strategy that is close
to the optimal strategy must be close to a target strategy—in our case, a classical strategy. However, the
analysis given above does not yield constant-factor hardness. A successful approach to get this is to use
techniques from the classical PCP theorem, which we review before continuing.
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PCP theorem The theorem states that for NP-hard CSPs, there exists a constant s < 1 such that the
(1,5)-CSP is NP-hard. Let’s focus on 3SAT. Originally we saw that a (1,1—1/m)-approximation is NP-hard
(this is the Cook-Levin thm). Random guessing means that a (1,7/8) approximation is in P (this can also
be derandomized). PCP states that a (1,0.99) approximation is NP-hard. (In fact this can be improved to
(1,7/8 +¢).

The high level idea is that we take a 3SAT instance ¢ and map it to a new one ¢’ such that if ¢ is
satisfiable then ¢’ is too, and if ¢ is unsatisfiable then ¢’ has at least a constant fration of clauses unsatisfied
by any assignment. This map is based on a “low-degree test” which verifies that a function is close to a
low-degree polynomial.

Using this idea, [Ito-Vidick *12] and [Vidick’13] showed that a (1 —€,1/2 + €)-approximation to 3-player
XOR games is NP-hard. [Natarajan-Vidick ’17] also showed that a (1,1/2)-approximation to 2-player games
(not XOR) is NP-hard. Basically, instead of asking players for the assignment directly, we query bits of a
robust encoding of it. Specifically, one encodes an assignment a by finding a low-degree polynomial over a
finite field g, whose values at some fixed set of n points encode a;. Then we can query g, on other points
and interpolate to recover the assignment.

That was rigidity for classical strategies. But this approach seems limited to proving NP-hardness. Can
we go further, by exploiting the quantum power of honest players? Yes: use a quantum analogue of a CSP,
called a local Hamiltonian.

This will go beyond NP to a class called QMA, which means the class of yes-no questions where “yes”
instances can be verified with a poly-time quantum computer given a witness |¢)) that has poly(n) qubits.
Here n is the size of the input in bits.

Just as 3SAT is the canonical NP-complete problem, there is a natural analogue for QMA called the local
Hamiltonian problem. The input is a Hamiltonian

jr > H;, (3.4)

m“

where each H; acts on 3 qubits and satisfies 0 < H; < I. The problem is to determine whether Apin(H)
is < a or > b given the promise that one of these holds. If b —a = 1/ poly(n) then this is QMA-complete.
It is an open question - known as the quantum PCP conjecture - that this is also QMA-hard when b — a is
constant.

What does this have to do with w*? If the honest provers use entanglement then perhaps they can prove
that the ground-state energy of a Hamiltonian is small. Specifically our goal is to show that estimating w*
is QMA-hard by mapping a Hamiltonian H to a game G(H) such that w*(G(H)) > 1 — € < Amin(H) < 6.

In [Fitzsimons-Vidick ’14] and [Ji ’15] it was proved that a 1/poly approximation to w* for 4-player games
is NP-hard.

Games qPCP conjecture. This conjectures that even a constant approximation to w* is QMA-hard.
The proof technique is based on self-testing. This means that if val(|¢)) , M) > 1 — € then we must have
|t} & |1ideal), Where this “~” needs to still allow for |¢)), M to be jointly rotated, and for the possibility of
ancilla systems that are approximately ignored by M.
Recent work by [Natarajan-Vidick ’17] improved the EPR self testing to certify n EPR pairs using
poly log(n) communication. This self-test is based on low-degree testing. Using this we can show that the
Hamiltonian qPCP conjecture implies the games qPCP conjecture.
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