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Roughly speaking, this class is about hSep and ω∗.

1.1 Convex optimization

1.1.1 Basics

A convex set in Rn is a set S ⊆ Rn such that for any x, y ∈ K and λ ∈ [0, 1], λx+ (1− λ)y ∈ K. Typically
we will consider compact sets but this is not necessary.

A key property of convex sets is the separating hyperplane theorem. It states that any point outside of
K can be separated from K with a hyperplane. Mathematically,

x 6∈ K ⇔ ∃b s.t. bTx > 1

bT y ≤ 1, ∀y ∈ K.
(1.1)

The vector b defines the separating hyperplane. The set of all such possible hyperplanes is itself a convex
set, called the polar of K.

K∗ = {b : bT y ≤ 1, ∀y ∈ K.}. (1.2)

There are two basic questions we can ask.

• Membership: given K, x, is x ∈ K?

• Optimizing linear functions: given K, y, calculate maxx∈K〈y, x〉.

A useful fact: the max of a linear function is always achieved on the boundary of the set. (Draw a picture
here).

As always when we deal with real numbers, it’s important to be careful about numerical precision. Let
S(K, δ) be the exterior δ-ball of K:

S(K, δ) := {x : ∃y ∈ K, ‖y − x‖ ≤ δ},

and let S(K,−δ) be the interior δ-ball of K:

S(K,−δ) := {x ∈ K : S(x, δ) ⊆ K}.

Then the “correct” versions of the basic problems are

• WMEM: given K, x, δ, decide whether x ∈ S(K,−δ) or x 6∈ S(K, δ), promised that one of the two is
the case.

• WOPT: given K, b ∈ Rn, δ, find y ∈ S(K, δ) such that bTx ≤ bT y + δ for all x ∈ S(K,−δ).

Note that for WOPT we allow two types of error, each (for convenience) parametrized by the same tolerance
δ: there is δ error in the actual value of the objective function (i.e. bT y) and there is a δ error in the definition
of K, i.e. we can replace with the sets S(K,±δ) in ways that add error.

These two problems are equivalent to each other, in the sense that given an oracle for one, we can solve
the other in polynomial time and poly invocations of the oracle. To prove this we first observe that WMEM
for K∗ is equivalent to WOPT for K, and vice versa. To go from WMEM(K∗) to WOPT(K) we use binary
search to search for the minimum γ > 0 such that γb ∈ K∗, and use 1/γ for our estimate of WOPT(K). In
the other direction we are given b and we report it belonging to K∗ if our algorithm for WOPT(K) reports
a value ≤ 1 + δ. (This is being a bit sloppy in terms of the precision parameter.)
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Additionally note that K∗∗ = K, i.e. the polar of the polar is the original set. This statement is basically
equivalent to the separating hyperplane theorem.

So far we have all the single arrows in the following diagram.

WMEM(K) WMEM(K∗)

WOPT(K) WOPT(K∗)

ellipsoid ellipsoid

We still need to prove the double arrows labeled “ellipsoid.” This reduction is done with the ellipsoid
algorithm. (Other methods, like interior point, are also possible. Their performance is better but are less
universal and have more complicated proofs.)

Here is a sketch of the ellipsoid algorithm. To solve WOPT, binary search over guesses for optimum
value γ, and check whether K ′ = K ∩ {x : bTx ≥ γ} is nonempty. Thus we have reduced to WMEM on
K ′, which we would like to use our WMEM(K) algorithm for. To do this, draw a big ellipsoid containing
K ′. (Here we use the fact that K is compact, and indeed further assume that we know an upper bound
on the size of a ball centered at the origin containing K. Later we will also need a lower bound on volume
of K.) Then, iteratively, check whether the center of the ellipsoid is in K ′, using WMEM(K). Otherwise,
find a separating hyperplane between K ′ and the center; in some cases our WMEM algorithm will return a
hyperplane, and if not there is a reduction to find one, which we will not discuss here. Resize your ellipsoid
so it’s on the right side of the separating hyperplane and still contains K ′, and repeat, until you find a point
in K ′ or your ellipsoid is too small. For this last step we assume we know a lower bound on the volume of
K. Since the ellipsoid’s volume shrinks by a bounded amount in each iteration, this guarantees termination
in polynomial time.

1.1.2 Examples

1.1.2.1 Efficiently solvable examples

Linear programming (LP). Given A ∈ Rm×n, b ∈ Rm, c ∈ Rn, find max cTx such that Ax ≤ b. Here
we interpret the ≤ entrywise, i.e. every entry in the vector on the LHS is ≤ the corresponding vector on the
RHS. This can be thought of as optimizing a linear function (cTx) over the polytope {x : Ax ≤ b}.

Semidefinite programming (SDP). Primal form:

max
X

Tr(CX)

subject to Tr(AiX) ≤ bi ∀i ∈ [m]

X � 0.

(1.3)

Dual form:
min
y
〈y, b〉

such that
∑
i

yiAi � C

y ≥ 0.

(1.4)

Where does the dual come from? Suppose we want to find an upper bound on (1.3). For any y ∈ Rm, y ≥ 0
we can take linear combinations of the Tr(AiX) ≤ bi inequalities to obtain∑

i

yi tr(AiX) ≤ 〈y, b〉. (1.5)

On the one hand, we would like to minimize the RHS, i.e. minimizing 〈y, b〉. On the other hand, we would like
the LHS to upper bound (1.3). One way to guarantee this holds for any X � 0 is to have

∑
i yiAi � C. Thus

we obtain (1.4). This implies that (1.4) is ≥ (1.3), a fact known as weak duality. Somewhat surprisingly, in
many cases the two are equal, and when this happens we call this situation strong duality.
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Trivial example: computing the operator norm of a matrix M :

‖M‖ =

max
X

Tr(MX)

s.t. Tr(X) = 1

X � 0

.

This can equivalently be thought of as optimizing a homogenous quadratic polynomial over the unit
sphere. Indeed if M is symmetric then ‖M‖ = maxv

∑
i,jMi,jvivj subject to the constraint

∑
i v

2
i = 1.

We will see later some connections between SDPs and higher-degree polynomials.

1.1.2.2 Some harder examples

Max cut (aka optimizing a quadratic function over the cube): Given a graph adjacency matrix A,

MAXCUT(A) = max
x∈{±1}n

1

4
Tr
(
A(J − xxT )

)
,

where J is the all-ones matrix. For simplicity, let’s ignore the constant term and flip the sign so we get

MAXCUT′(A) = min
x∈{±1}n

Tr
(
A(xxT )

)
,

(N.b. there is a constant term which we have ignored) At first glance, this doesn’t look convex! But we
can convexify it. The cut polytope is

K = conv({xxT : x ∈ {±1}n}).

Then we are minimizing a linear function over K:

MAXCUT′(A) = min
X∈K

Tr(AX).

However, this is actually NP-hard!
This looks an awful lot like an SDP though. What makes it different? I claim that MAXCUT is equivalent

to the following “almost SDP”:

MAXCUT′(A) =

min
X

Tr(AX)

s.t.Xii = 1 ∀i
X � 0

rank(X) = 1.

Why? If X is rank one and PSD, it has the form X = xxT for some vector x (not necessarily of unit norm).
The constraints Xii = 1 imply that x2

i = 1, so the entries of xi are in {±1}.
Thus, if we wanted to approximate MAXCUT, we could relax the problem by removing the rank consraint

on X. This would give an SDP, whose answer is always an upper bound on the true value.
Another example of a very similar flavor is nuclear/atomic norms. Roughly speaking, if you could

minimize a linear function over the set

K = conv({x⊗ y ⊗ z : ‖x‖ = ‖y‖ = ‖z‖ = 1}),

then you could compute low-rank decompositions of tensors with three legs.

1.2 Intro to separable states

We will introduce hSep, also known as BSS (“best separable state”).
For some Hilbert spaces HA,HB , define

Sep = Sep(HA,HB) = conv {|α〉〈α| ⊗ |β〉〈β| : 〈α|α〉 = 〈β|β〉 = 1, α ∈ HA, β ∈ HB} . (1.6)
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These correspond to unentangled mixed states. In other words ρ is entangled iff ρ 6∈ Sep.

By contrast for pure states |ψ〉 is product if |ψ〉 = |α〉 ⊗ |β〉 and is entangled if it cannot be written in
this form. In this case a state is correlated iff it is entangled. Mixed-state entanglement is more complicated
because we want to define classically correlated states as being not entangled.

Using Sep we can define

hSep(M) = max
ρ∈Sep

Tr[Mρ]. (1.7)

Computing hSep corresponds to the problem OPT (Sep). We will typically work with WOPT, i.e. allowing
some small error.

Physical Interpretation. Let 0 � M � I, so {M, I −M} is a two-outcome measurement, whose out-
comes we call “yes” and “no”. Then hSep(M) is the largest possible probability of obtaining “yes” from an
unentangled state when we perform measurement M .

Entanglement witnesses. These are operators M � 0 for which hSep(M) < ‖M‖. This means that there
exist ρ for which Tr[Mρ] > maxσ∈Sep Tr[Mσ]. Thus ρ is entangled and M is a “witness” to this fact. Bell
inequalities (once we fix our measurement strategies) are examples of this; thus, such M can be carried out
by remote non-communicating parties.

Polynomial formulation of hSep. Since the maximum is achieved by an extreme point we have

hSep(M) = max
α,β

∑
i,j,k,l

Mijklαiβjα
∗
kβ
∗
l

s.t.
∑
i

|αi|2 = 1∑
i

|βi|2 = 1

α ∈ Cn1 , β ∈ Cn2

(1.8)

The PPT relaxation. PPT means “positive partial transpose.” Since hSep(M) is hard to compute we’d
like relaxations. One relaxation is hSep(M) ≤ ‖M‖. Equivalently, we can say that Sep ⊂ D = {ρ : Tr[ρ] =
1, ρ � 0}, where D is the set of all states (density matrices). However, this can be far from tight. Taking
M = |Φn〉〈Φn| where |Φn〉 = 1√

n

∑n
i=1 |i〉 ⊗ |i〉 we have ‖M‖ = 1 and hSep(M) = 1/n. In general the best

bound we can prove is hSep(n1,n2)(M) ≥ ‖M‖/min(n1, n2).

PPT is a better relaxation. Observe that if

σ =
∑
i

pi |αi〉〈αi| ⊗ |βi〉〈βi| , (1.9)

with pi ≥ 0,
∑
i pi = 1 then

σΓ =
∑
i

pi |αi〉〈αi| ⊗ (|βi〉〈βi|)T =
∑
i

pi |αi〉〈αi| ⊗ |βi〉〈βi|∗ � 0. (1.10)

In general XΓ = (id⊗T )(X) is called the “partial transpose,” since we transpose only the second system.
We say that a density matrix σ ∈ PPT if σΓ � 0. We have just shown that Sep ⊂ PPT.

This is better than the trivial Sep ⊂ D relaxation, equivalently, PPT ( D. To see this, let ρ = |Φ2〉〈Φ2|.
Then

ρ =
1

2


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

 and ρΓ =
1

2


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 6� 0 (1.11)
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Thus we have an improved SDP relaxation

hSep(M) ≤ hPPT(M) = max
ρ

Tr[Mρ]

s.t. Tr[ρ] = 1

ρ � 0

ρΓ � 0

(1.12)

(By the way, the set of PPT states is {ρ ∈ D : ρΓ ≥ 0}.)

1.3 Intro to correlations

Alice and Bob share a possibly entangled state ρ. A referee sends them questions a, b respectively and they
return answers x, y. The input-output statistics form some conditional probability distribution p(x, y|a, b).
The set of all such conditional p.d.’s that can be achieved with entangled states is called

Q = {p(x, y|a, b) : realizable by quantum Alice, Bob}. (1.13)

(We will be more formal later.) This is a convex set because given two strategies using states ρ1, ρ2 they can
use the state λ |1〉〈1| ⊗ ρ1 + (1− λ) |2〉〈2| ⊗ ρ2, and use the first register to tell them which measurements to
use. In this way they can simulate the mixture of any two strategies in Q.

Suppose the referee samples questions from distribution π(a, b) and evaluates the answers by assigning
the score V (x, y, a, b) ∈ {0, 1}. This is called a non-local game G = (π, V ) and its value is

ω∗(G) = max
p∈Q

∑
a,b,x,y

π(a, b)V (x, y, a, b)p(x, y|a, b). (1.14)

It corresponds to the maximum probability with which a game can be won with entangled strategies. For
simplicity, we can write G(a, b, x, y) = π(a, b)V (x, y, a, b).

This looks somewhat different from what we’ve seen so far. But in the “polynomial optimization” picture
it seems closer. We can write

ω∗(G) = max
ρ,{Ax

a},{B
y
b }

∑
x,y,a,b

G(a, b, x, y) Tr[ρ(Axa ⊗B
y
b )]

s.t. Axa � 0,∀a, x
Byb � 0, ∀b, y∑
x

Axa ≤ I, ∀a∑
y

Byb ≤ I, ∀b

≤ max
{Ax

a},{B
y
b }

∥∥∥∥ ∑
x,y,a,b

G(a, b, x, y)AxaB
y
b

∥∥∥∥
s.t. Axa � 0,∀a, x

Byb � 0, ∀b, y∑
x

Axa ≤ I, ∀a∑
y

Byb ≤ I, ∀b

[Axa, B
y
b ] = 0∀a, b, x, y

(1.15)
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