
6.437 Notes
Anugrah Chemparathy

L2 - Bayesian Hypothesis Testing

Suppose we are trying to decide which hypothesis from a set H = {H0, · · · ,Hm} was responsible
for some empirical observations y .

Suppose you have some a prioiri probability of each hypothesis class being responsible, and can
write the conditional probability of observing the empirical data for each H :

pH(Hm) py |H(·,Hm)

Using Bayes’ rule we can rewrite the a posteriori probabilities of each hypothesis as:

pH|y (Hm|y) =
p(y |H)p(H)

p(y)
=

p(y |H)p(H)∑
Hi
p(y |Hi)p(Hi)

Now we consider the simpler binary hypothesis testing problem. We will construct a decision rule
in the form of a likelihood ratio which we can show has the lowest expected cost.

• Define C (Hj ,Hi) ≜ Ci j as the cost of deciding the hypothesis is Hi when it is actually Hj .

• A valid set of costs has Cj j < Ci j for i ̸= j

The optimal decision rule is:

Ĥ(·) = argmin
f (·)

φ(f ) where φ(f ) ≜ E [C (H , f (y)]

• The expectation is taken over both y and H and f (·) is our decision rule.

We call the expected cost φ(f ) the Bayes risk.

Theorem 2.1: Given Pi , valid costs Ci j , and data y , the Bayesian decision rule is:

L(y) ≜
py |H(y |H1)

py |H(y |H0)

Ĥ=H1

≷
Ĥ=H0

P0(C10 − C00)

P1(C01 − C11)
≜ η

It happens that L(y) is a sufficient statistic. As it turns out any invertible function g of L(y) is
also a sufficient statistic (i.e. g(L(y)) ≷ g(η) is an equally good decision rule).

Corollary 2.1 (Minimum Probability of Error): Using the 1-0 error loss function C01 = C10 = 1

φ(Ĥ) = P(Ĥ(y) = H0,H = H1) + P(Ĥ(y) = H1,H = H0)

has the decision rule Ĥ(y) = argmaxH pH|y (H |y) and (corollary 2.2) when both hypotheses are

equally likely is equivalent to Ĥ(y) = argmaxH py |H(y |H)
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L3 - NonBayesian Hypothesis Testing

For many formulations of binary hypothesis testing, the optimal deterministic decision rule turns
out to be an LRT of the same form as that from L2.

PR ≜ PD ≜ P(Ĥ(y) = H1|H = H1) Recall

PF ≜ P(Ĥ(y) = H1|H = H0) Size

Alternatively

P1
E ≜ P(Ĥ(y) = H1|H = H0) Type 1

P2
E ≜ P(Ĥ(y) = H0|H = H1) Type 2

Also we define the Precision

PP ≜ P(H = H1|Ĥ(y) = H1) =
pDpH(H1)

pĤ(Ĥ(y) = H1)
=

PDpH(H1)

PFPH(H0) + PDPH(H1)

As we sweep the LRT threshold η, we trace out a curve of points in the (Pf ,PD) plane where:

PD(η) = P(L(y) ≥ η|H = H1)

PF (η) = P(L(y) ≥ η|H = H0)

this is called the operating characteristic of the LRT (the OC-LRT).

The OC-LRT (figure 3.1) has the general shape of the top left of a quarter circle - i.e. there is a
tradeoff between having a large PD (you will have a high PF as well). We can actually rearrange
the Bayes risk from L2 as φ(f ) = αPF − βPD + γ.

Property 3.1: The OC-LRT is monotonically nondecreasing.

Neyman-Pearson Hypothesis Testing: maximize PD under a PF constraint.

argmax
Ĥ(·)

PD subject to PF ≤ α

Theorem 3.1 (Neyman Pearson lemma) We can show that one deterministic decision rule solu-
tion to the above is

py |H(y |H1)

py |H(y |H0)

H1

≷
H0

λ

where λ is chosen such that PF = α exactly using Lagrange Multipliers. This needs no prior!

We also define p-values by mapping the LRT → [0, 1] using an invertible g (as in L2).
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L4 - Performance Limits of Hypothesis Testing

The OC-LRT graph traced out by PD ,PF at varying η is not necessarily continuous. Note that
this can happen if the underlying data distribution is discrete, or even continuous but with some
piecewise components.

This can be suboptimal, particularly in the Neyman-Pearson approach. If there is a discontinuity
along the OC-LRT curve with points corresponding to η′ and η′′ on each side and PF (η

′) < α <
PF (η

′′) then we will be forced to use η′ as our threshold in the deterministic approach.

We can use a randomized LRT decision rule to interpolate between the two points on the OC-LRT

Ĥ(y) =

{
Ĥ ′

η′(y) u = η′

Ĥ ′′
η′′(y) u = η′′

Simply choosing one of two standard LRT decision rules with each threshhold with a tunable
Bernoulli p achieves PD = pPD(η

′) + (1− p)PD(η
′′) and PF = pPF (η

′) + (1− p)PF (η
′′).

Equivalently, with u ∼ B(p), we can write

Ĥ(y) =


H0 L(y) < η′

H1(u=η′) η′ ≤ L(y) < η′′

H1 L(y) ≥ η′′
pĤ|y (H1|y) =


0 L(y) < η′

p η′ ≤ L(y) < η′′

1 L(y) ≥ η′′

We treat the randomized decision rule Ĥ(·) as solely a function of the detail through a “Markov
chain” formalism: H ↔ y ↔ Ĥ . Ultimately we can write stuff like:

pĤ|y ,H(·|y ,H) = PĤ|y (·|y) and pH|y ,Ĥ(·|y , Ĥ) = PH|y (·|y)

We then define the randomized decision rule as a conditonal distribution: PĤ|y (H1|y) ≜ q(y)

Claim 4.1 A randomized test cannot achieve a lower Bayes’ risk than the optimum LRT (1L(y)≥η)
in binary Bayesian Hypothesis testing.

PF (q) = P(Ĥ(y) = H1|H = H0) =

∫
q(y)Py |H(y |H0)dy = E [q(y)|H = H0]

pD(q) = P(Ĥ(y) = H1|H = H1) =

∫
q(y)Py |H(y |H1)dy = E [q(y)|H = H1]
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Theorem 4.1 Given hypotheses H0,H1 and some α ∈ [0, 1], and a Bernoulli u ∼ B(p) the
decision rule

q(y) =


0 L(y) < η′

p η′ ≤ L(y) < η′′

1 L(y) ≥ η′′

satisfies PF (q∗) = α and PD(q∗) ≥ PD(q) for any decision rule q with PF (q) ≤ α.

Neyman Pearson Function: We define ζNP as a function mapping from PF → PD along the
Pareto optimal frontier which we define as FpY |H .

• The given proof requires the observation that the smallest η0 with P(L(y) > η0|H = H0) <
α implies a point mass at L(y) = η0, and no point mass when the inequality is no longer
strict (i.e. ≤ α).

Property 4.1: The Neyman-Pearson function satisfies ζNP(1) = 1 i.e. (1, 1) ∈ Fpy |H

Property 4.2: The Neyman-Pearson function satisfies ζNP(PF ) = PD ≥ PF .

Property 4.3: The Neyman-Pearson function is concave

Property 4.4: Let η0 be any LRT threshold such that there is no point mass at η0 for under
either hypothesis (i.e. P(L(y) = η0|H = H0) = P(L(y) = η0|H = H1) = 0).

˙ζNP(PF (η0)) = η0

Then the slope of the Neyman-Pearson function is equal to the threshold at each point η0.

4.6 Summary - Region of Possible Operating Points
If we have a decision rule corresponding to (P∗

F ,P
∗
D), then the reversed decision rule (corresponding

to reflection over (1/2, 1/2)) would correspond to (1− P∗
F , 1− P∗

D).

As a result, you cannot do worse than the inverse of the Pareto-optimal frontier (worst = the
lower right edge of the figure below). Additionally you can create a decision rule mapping to any
point in the interior by simply interpolating between two points on each side.

4



L5 - Minimax Hypothesis Testing

Under the minimax framework, we assume that nature will choose the most detrimental prior for
whatever decision rule we choose, and we must choose our decision rule with this in mind. We
allow nature to randomly choose one of {H0,H1} randomly with probability p = P(H = H1),
making the Bayes risk for r (irrespective of if r is a good decision rule):

φ(p, r) = (1− p)E [C (H , Ĥ)|H = H0]︸ ︷︷ ︸
≜φ0(r)

+p E [C (H , Ĥ)|H = H1]︸ ︷︷ ︸
≜φ1(r)

The optimum randomized decision rule Ĥm is

rM(·) = argmin
r

φM(r) φM(r) ≜ max
p∈[0,1]

φ(p, r)

In Bayesian hypothesis testing we used an LRT decision rule, with prior parameter q and bernoulli
decision parameter λ (for use when L(y) = η exactly). We define the mismatch Bayes risk as

φB(p, q,λ) ≜ φ(p, rB(·; q,λ))

where p is the true prior for p(H). The matched Bayes risk is:

φ∗
B(p) ≜ φB(p, p,λ)

Claim 5.1: We can show

1. φB(·, q,λ) is a linear function

φB(p, q,λ) = φ0
B(q,λ) + p[φ1

B(q,λ)− φ0
B(q,λ)]

where φi
B is the Bayes risk conditioned on H = Hi

2. φB(p, q,λ) is lower bounded by φ∗
B(p)

3. φ∗
B(·) is concave and continous on [0, 1]

4. φ∗
B(0) = C00 and φ∗

B(1) = C11

Note that in general, φ∗
B(p) will be differentiable at p iff the optimum Bayes decision rule is

“achieved at a unique point on the efficient frontier”. When two optimal decision rules on the
efficient frontier corresponding to the same p, there is a non-differentiable point (I guess).

Fact 5.1 For any real valued function g we can show

min
a

max
b

≥ max
b

min
a

g(a, b)

• Essentially it is optimal to choose last in such games.

Theorem 5.1: Given data models Py |H(·|Hi) and valid costs, a minimax decion rule of r∗(·) ≜
rB(·; p∗,λ∗) where p∗ is the minimax prior:

min
r

max
p

φ(p, r) = φ(p∗, r∗) = φ∗
B(p∗)
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Additionally, when there exists a valid P∗
F such that the line gM intersects the efficient frontier

(i.e. along ζ(PF )) where we define gM as:

gM(PF ) ≜

(
C01 − C00

C01 − C11

)
−
(
C10 − C00

C01 − C11

)
PF

then it corresponds to an optimizing pair (p∗,λ∗) of parameters for a minimax bayesian decision
rule. Otherwise, we set λ∗ arbitrarily and xchoose p∗ according to:

p∗ =

{
0 ζNP(PF ) > gM(PF ) ∀ PF ∈ [0, 1]

1 ζNP(PF ) > gM(PF )

• The proof of this theorem uses the observation that nature can just choose either 0, 1
for p depending on which is worst for our choice of decision rule, making our Bayes risk
max[φ0

B ,φ
1
B(q)]. So for an optimal p ends up having φ0

B = φ1
B . The way you actually

prove it is with inequalities though as there are some holes in this intuition.

• Additionally for certain experiments, it is possible that the best decision rule to minimize
cost would be to always guess one hypothesis (set your q = 1, 0) and let nature choose the
opposite true prior (p = 1, 0) because always getting the decision rule wrong, but having a
choice of whether to pay C01 or C10, is optimal.

Corollary 5.1: If rB(·; p∗,λ∗) is a minimax decision rule, then:

p∗ ∈ argp maxφ∗
B(p)

Additionally we define rB(·; p∗,λ∗) as an equalizer rule when φ0
B(p∗,λ∗) = φ1

B(p∗,λ∗). If there
exist p∗,λ∗ belonging to an equalizer rule, then rB(·; p∗,λ∗) is a minimax decision rule.
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L6 - Bayesian Parameter Estimation

Suppose we have data y generated under some parameters x which we want to estimate.

We define the Bayes risk criteria:

x̂ = argf (·) minE [C (x , f (y)]

We can write the objective function as:

E [C (x , f (y))] =

∫ ∞

−∞

∫ ∞

−∞
C (x , f (y))px ,y (x , y) dx dy =

∫ ∞

−∞

(∫ ∞

−∞
C (x , f (y))px |y (x |y) dx

)
py (y) dy

minimizing this is equivalent to minimizing the interior term for each particular y :

x̂(y) = argmin

∫ ∞

−∞
C (x , a)px |yp(x |y) dx

• The MAE estimate (i.e. C (a, â) = |a − â|) is the median of posterior belief: px |y (·|y).
In other words the MAE estimator is the point at which the CDF equals 1/2.

• The MUC loss:

C (a, â) =

{
a |a − â| > ϵ

0 otherwise

is the mode of posterior belief (i.e. the MAP estimate) as ϵ → 0.

• The MSE loss (Bayes Least Squares) is the mean of posterior belief: X̂BLS = E [x |y = y ]

We define the error of an estimator e(x , y) = x̂(y)−x and the global bias b as constant vector:

b = E [e(x , y)] =

∫ ∞

−∞

∫ ∞

−∞
(x̂(y)− x)px ,y (x , y) dx dy

It will be useful to write e(x , y) = b + (e(x , y)− b)

We can write the error correlation matrix as E [eeT ] = Λe + bbT where Λe = E [(e − b)(e − b)T ]

Claim 6.4: The BLS estimate is unbiased (i.e. bBLS = 0).

Claim 6.5 The error covariance matrix of the BLS is the expected covariance of posterior belief:

Λe,BLS ≜ ΛBLS = E [Λx |y (y)] = E [E [(x − E [x |y ])(x − E [x |y ])T |y ]]

Theorem 6.1: An estimator x̂(·) is the BLS estimator iff estimation error e is orthogonal to any
vector-valued function g of the data (i.e. E [(x̂(y)− x)g(y)T ] = 0)

Theorem 6.2: The error covariance Λe of an arbitrary estimator x̂ satisfies ΛBLS ⪯ Λe with
equality iff x̂(y)− E [x̂(y)− x ] = x̂BLS(y)

Corollary 6.1: We can write E [Λx |y (y)] ⪯ Λx with equality iff E [x |y ] = E [x ]
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L8 - NonBayesian Parameter Estimation

Define an estimator f (·) as valid if x̂ = f (y) is in estimate of x based solely on y (and does not
depend on x) - i.e. p(x̂ |y , x) = p(x̂ |y).
Define the error and bias as:

e(y) = x̂(y)− x bx̂(x) = E [e(y)] = E [x̂(y)− x ]

and the error covariance is Λe = Ey [(e(y)− bx̂(x))(e(y)− bx̂(x))
T ].

Definition 8.2: An estimator x̂ for a nonrandom parameter x is unbiased if bx̂(x) = 0 ∀ x

We sometimes want the MVUE (minimum variance unbiased estimator) - the admissible (valid
and unbiased) estimator with the smallest variance: x̂MVUE = argx minλx̂(x).

It is not guaranteed that the MVUE exists (there may be several estimators which are each
minimum variance for only some values of x , or there may be no admissible estimators)

Theorem 8.1 (Cramer Rao Bound for scalars). Provided py (y ; x) satisfies the regularity condition

E

[
∂

∂x
ln py (y ; x)

]
= 0 ∀x

then for any admissible x̂ we have λx̂(x) ≥ 1
Jy (x)

with

Jy (x) ≜ E [S(y ; x)2] S(y ; x) =
∂

∂x
ln py (y ; x)

where Jy (x) is the Fisher information in y about x and S(y ; x) is the score function for x based
on y .

• The regularity condition enforces that the orders of integration and differentiation can be
exchanged:

∫
∂
∂x
py (y ; x) dy = ∂

∂x

∫
py (y ; x) dy

• The proof bounds the correlation of e(x̂ , y) with artificial variable f (y) = S(y ; x) to achieve
the final result, using the limit that ρ ≤ 1.

Corollary 8.1: The Fisher information can be equivalently expressed as

Jy (x) = −E

[
∂2

∂x2
ln py (y ; x)

]
Definition 8.4 An unbiased estimator is efficient if it satisfies the Cramer-Rao bound with
equality.

Corollary 8.2 An estimator x̂ is efficient iff it can be expressed as:

x̂(y) = x +
1

Jy (x)

∂

∂x
ln py (y ; x)

where the RHS must be independent of x for the estimator to be valid.

Claim 8.1 When an efficient estimator x̂eff exists, it is the MLE (i.e. x̂eff = x̂MLE ).
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Theorem 8.2 (Cramer Rao bound for vectors). Provided py (y ; x) satisfies the regularity condition

E

[
∂

∂x
ln py (y ; x)

]
= 0 ∀x

then the covariance matrix Λx̂(x) of any unbiased estimator satisfies:

Λx̂(x) ≥ J−1
y (x)

in the positive semidefiniteness sense, where Jy (x) is the Fisher Information matrix:

Jy (x) ≜ E [S(y ; x)TS(y ; x)] S(y ; x) ≜
∂

∂x
ln py (y ; x)

• Additionally, we can write the Fisher matrix as the expectation of the Hessian:

Jy (x) = −E

[
∂2

∂x2
ln py (y ; x)

]
Corollary 8.3 An unbiased efficient estimate x̂(y) exists iff

x̂(y) = x + J−1
y (x)

[
∂

∂x
ln pY (y ; x)

]
is a valid estimator (i.e. the RHS can be rewritten such that it does not depend on x , and thus
is equal for any choice of x).

Corollary 8.4 If an efficient unbiased estimate exists, it is the maximum likelihood estimate.

Therew as some discussion of regularization being equivalent to priors.

Theorem 8.3 (Gauss Markov Theorem). Suppose data y depends on parameters x through the
model:

y = Hx + w w ∼ N(0,Λw )

where Λw and H are full rank. Then the maximum likelihood estimator is

x̂ML(y) = (HTΛ−1
w H)−1HTΛ−1

w y

is the solution to the weighted least squares formulation, and it is the MVUE.

• When Λw ∝ I this becomes the ordinary least squares problem.
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L9 - Exponential Families

Definition 9.1 A parameterized family of distributions over alphabet Y is a one-parameter
exponential family if it can be expressed as:

py (y ; x) = exp{λ(x)t(y)− α(x) + β(y)} ∀ x ∈ X y ∈ Y

Note that α(x) is a normalizing constant, and the PDF can be rewritten:

py (y ; x) =
1

Z (x)
exp{λ(x)t(y) + β(y)} Z (x) =

∫
y

exp{λ(x)t(y) + β(y)}

Z (x) and α(x) are sometimes called the partition and log-partition function in statistical
physics.

The notation y ∼ E(X ,Y ,λ(·), t(·), β(·)) indicates that y is exponentially distributed.

Note: adding or subtracting constants from t(·) and β(·) does not change the distribution - it
simply allows some terms to be moved around into the normalization constant:

ln py = λ(x)(t(y)− c1)− α(x) + (β(y)− c2) = λ(x)t(y)− α̃(x) + β(y)

Additionally, if we choose c1 = 0 and c2 such that q(y) ≜ eβ(y)−c2 is normalized, then we can
rewrite the exponential family as

py (y ; x) ∝ q(y) exp{λ(x)t(y)}

Where q is referred to as the base-distribution of the family.

We can try to restrict analysis to exponential families where their support (output space) does
not depend on x . These are called regular.

We have two properties

d

dx
α(x) =

(
d

dx
λ(x)

)
E [t(y)]

d2

dx2
α(x) =

(
d2

dx2
λ(x)

)
E [t(y)] +

(
d

dx
λ(x)

)2

Var[t(y)]

The Fisher information in y about x is Jy (x) = λ̈(x) d
dx
E [t(y)]

A canonical exponential family, is one with λ(x) = x .

• For canonical families α̇(x) = E [t(y)] and α̈(x) = Var[t(y)] = Jy (x)

Firstly, any weighted geometric mean of two probability distributions can be written as a (within
the equivalence class) unique canonical exponential family (and vice-versa: p2(y) = c1e

β(y), p1(y) =
c2p2(y)e

t(y)):

py (y ; x) =
p1(y)

xp2(y)
(1−x)

Z (x)
ln py (y ; x) = x ln

p1(y)

p2(y)
+ ln p2(y)− lnZ (x)

Theorem 9.1: P is a one-dimensional exponential family iff for any p1, p2, p3 ∈ P , there exists
some λ for which p3 is a weighted geometric mean of p1, p2.
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There are also tilting distributions, which are scaled versions of any base distribution q expressed
as an canonical(?) exponential family. These weren’t very interesting, so I haven’t included
anything.

The ideas of exponential families generalize easily to multi-parameter families.

py (y ; x) = exp
{
λ(x)T t(y)− α(x) + β(y)

}
And they can be conveniently constructed as such to handle finite alphabets (output space
sets/range/image etc.), and under suitable conditions can “replicate” well behaved distributions.

Lastly, note that when analyzing given data, the only thing we really need to maintain for inference
about the distribution are t(y), β(y) which we can just compute, and then throw away the data.
For many applications such as ML estimation we don’t even need β(y), making t(y) kind of a
step in the direction of sufficient statistics, the topic of the next lecture.
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L10 - Sufficient Statistics

A statistic is a deterministic function of the data y , i.e. t(y) - this is itself a random variable
due to its dependence on y . Many values of y may map to the same value of t.

Def 10.1: a statistic t(·) is sufficient wrt py (·; x) if py |t(·|·; x) does not depend on x ∈ X :
py |t(; x1) = py |t(; x2).

• Essentially the uncertainty in y is not a function of x .

• An equivalent notion of sufficiency - the likelihoods are scalings (which may depend on y):
py (y ; x) ∝ pt(t(y); x)

Thm 10.1: A statistic t(·) is sufficient with respect to a model family iff Ly (x)
Lt(x)

= py (y ;x)
pt(t(y);x)

is not
a function of x for every y .

Thm 10.2 (Neyman Factorization Theorem): A statistic t(·) is sufficient wrt py (·; x) iff there
exist functions a, b such that py (y ; x) = a(t(y), x)b(y).

Def 10.2: A sufficient statistic s is minimal if for any other sufficient statistic t, there exists a
function g(·) such that s = g(t).

• The minimal sufficient statistic is not unique - any 1-1 function applied will also work.

Def 10.3: A sufficient statistic t is complete if for any function ϕ(·) with E [ϕ(t(y))] = 0 ∀x
must satisfy P(ϕ(t(y)) = 0) = 1.

• In the notes (L10 and L9.11c!) we show that for exponential families, their natural statistic
t(y) is complete.

Thm 10.3: A sufficient statistic t is minimal if it is complete

• Some minimal statistics may not be complete.

We can also choose to model the unknown parameter in a Bayesian framework

Def 10.4: A statistic t(·) is sufficient wrt px ,y iff py |t,x(y |t(y), x) = p(y |t(y))
Thm 10.4: A statistic t(·) is sufficient wrt px ,y iff px |y (·|y) = px |t(·|t(y))
Thm 10.5: A statistic t = t(·) is sufficient iff py |x(y |x) = pt|x(t(y)|x)py |t(y |t(y)) ∀x , y

Def 10.5: A variable t is a statistic if it satisfies the Markov chain x ↔ y ↔ t

Note: Hereafter we use ∝ defined as a multiplicative factor that may be non-constant

• Additionally, we define likelihoods as: Ly1(x) = py (y1; x)

Thm 10.6 (partition characterization): A statistic t is sufficient iff for all y1, y2 such that
t(y1) = t(y2) we have Ly1(x) ∝ Ly2(x) (i.e. there exists g s.t. Ly2(x) = g(y1, y2)Ly2(x))

Thm 10.7 (minimal, partition characterization): A sufficient statistic t is minimal iff for all y1, y2
s.t. Ly1(x) ∝ Ly2(x) we have t(y1) = t(y2).

• I don’t really understand this and should probably revisit it.
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L11 - Inequalities

A function f is convex if f (αx + (1− α)y) ≤ αf (x) + (1− α)f (y).

• strict convexity requires the inequality to be strict

• concave functions are the opposite (obviously)

Thm (Cauchy Schwarz): For any two lists of reals ai , bi we have:(
N∑
i=1

aibi

)2

≤

(
N∑
i=1

a2i

)(
N∑
i=1

b2i

)

Thm 11.1 (Jensen’s Inequality): If ϕ(·) is a concave function and v is a random variable defined
over V then

E [ϕ(v)] ≤ ϕ(E [v ])

If ϕ(·) is strictly concave, then the above holds with equality iff v is a deterministic constant.

Thm 11.2 (Csiszar’s Inequality): Given positive finite length sequences ai , bi and a strictly convex
function f (·) we have

N∑
i=1

bi f

(
ai
bi

)
≥

(
N∑
i=1

bi

)
f

(∑N
i=1 ai∑N
i=1 bi

)
with equality iff ai/bi is a constant

Corollary 11.1 (Log-Sum Inequality) Given positive finite length sequences ai , bi :

N∑
i=1

ai log
ai
bi

≥

(
N∑
i=1

ai

)
log

∑N
i=1 ai∑N
i=1 bi

with equality iff ai/bi is a constant

• Simply choose f (x) = x log(x) in Czisar’s inequality.

Thm 11.3 (Gibb’s Inequality): if v is a random variable distributed according to p(·), then for
any distribution q(·):

Ep[log q(v)] ≤ Ep[log p(v)]

with equality iff q ∼= p.

13



L12 - The EM algorithm

Given data y generated from py (·; x) we wish to compute the ML estimate for x̂(y) = argmaxa ℓy (a; y)
where ℓy (a; y) ≜ log py (y ; a).

We also define a variable z for which y = g(z) for some deterministic g . Essentially z is an
arbitrary (possibly fictitious) quantity which can use for other things [what other things?]

We define ℓz(a; z) ≜ log pz(z ; a). We can then write the expectation of the likelihood given a
choice of parameter x :

ℓ̂′z(x ; y) ≜ Epz|y (·|y ;x ′)[ℓz(x ; z)]

Additionally, since pz(z ; x) = pz,y (z , y ; x) = pz|y (z |y ; x)py (y ; x), if we take the log and expecta-
tion (wrt pz|y (·|y ; x ′) parameterized by arbitrary x ′) of each side we get:

log py (y ; x)︸ ︷︷ ︸
ℓY (x ;y)

= Epz|y (·|y ;x ′))[log pz(z ; x)]︸ ︷︷ ︸
≜U(x ;x ′)

−Epz|y (·|y ;x ′))[log pz|y (z |y ; x)]︸ ︷︷ ︸
≜V (x ;x ′)

= U(x ; x ′) + V (x ; x ′)

≥ U(x ; x ′) + V (x ′; x ′)

= [U(x ; x ′)− U(x ′; x ′)] + U(x ′; x ′) + V (x ′; x ′)

= [U(x , x ′)− U(x ′, x ′]︸ ︷︷ ︸
≜∆(x ′,x)

+ log py (y ; x
′)

Where in the inequality step we have used Gibbs’ inequality. Essentially this means the log-
likelihood will increase at every step if at every step we find a new x such that ∆(x ′, x) > 0.

We have the following iterate EM procedure for approximating ML estimates x̂(y):

1. Initialize/guess a starting estimate for x̂ (0)

2. E-step: Compute U(x ; x̂ (l) = Epz|y (·|y ;x̂(l))[log pz(z ; x)]

3. M-step: Solve the maximization x̂ (l+1) = argmaxx∈X U(x ; x̂ (l))

• We can use the stationary point equations: ∂
∂xk

U(x , x ′) = 0 for each k .

4. Increment l and go back to step 2. Repeat until convergence

The notes then cover a general application of EM algorithms to an exponential family, and
analysis/proof of its convergence to stationary points of ℓy (·; y).
Then there was an example of the EM algorithm used in a logistic modeling problem. It’s worth
reviewing to see the actual equations being used.

14



L13 - Inference as Decision Making

Again, we use the observation model py |x(·|·) with a bayesian prior px(·).
As a new perspective on inference, consider a decision device which returns a distribution q(·)
describing the relative likelihood of different x based on observed y .

We introduce a cost criterion - a function like C (x , q) = A
∑

a∈X (q(a) − 1a=x)
2 + B(x) or

C (x , q) = −A log q(x) + B(x)

Def 13.1 A cost function C (·, ·) is proper if

px |y (·|y) = argmin
q

Ep(x |y)[C (x , q)|y = y ] ∀y ∈ Y

• The optimal solution to a proper cost function returns the true px |y

Claim 13.1: The log-loss cost criterion is proper

Def 13.2: A cost function C is local if there exists a function ϕ such that C (x , q) = ϕ(x , q(x))

• The cost function only considers the estimated belief of x and not x ± ϵ!

Claim 13.2: The log-loss cost criterion is local

Thm 13.1: When the alphabet X costs of at least 3 values, then the log-loss is the only smooth,
local, proper cost function.

We proceed by studying the minimum expected cost of the log-loss criterion before we have any
observations. Obviously, this happens when q(·) = px(·). Thus we define entropy H(x):

H(x) = −Epx [log px(x)] = −
∑
a

px(a) log px(a)

• We adopt the convention 0 log 0 = 0

Claim 13.3: For discrete rv x ∈ X we have 0 ≤ H(x) ≤ log |X | where the lower bound requires
x to be constant and the upper bound requires x uniformly distributed.

We can define

• conditional entropy given y = y : H(x |y = y) ≜ −E [log px |y |y = y ] = −
∑

a px |y (a|y) log p(a|y)
• conditional entropy: H(x |y) ≜ Ey [H(x |y = y)] = −

∑
a,b px ,y (a, b) log px |y (a|b)

• We can show 0 ≤ H(x |y) ≤ H(x)

• chain rule of entropy: we can show: H(x , y) = H(x |y) + H(y)

The mutual information is the cost reduction from making an average observation:

I (x ; y) ≜ H(x)− H(x |y) =
∑
a,b

px ,y (a, b) log
px ,y (a, b)

px(a)py (b)

• conditional MI: I (x ; y |z) ≜ H(x |z)− H(x |y , z) ≥ 0 with equality iff x ↔ y ↔ z

• nonnegativity: I (x ; y) ≥ 0

15



• I (xy) = 0 iff x ⊥ y

• symmetry: I (x ; y) = I (y ; x)

• chain rule: I (x ; y , z) = I (x ; z) + I (x ; y |z) where I (x ; y |z) ≜ H(x |z)− H(x |y , z)
Thm 13.2 (Data Processing Inequality): If x ↔ y ↔ t is a Markov chain (i.e. if t is any
statistic), then

I (x ; y) ≥ I (x ; t)

with equality iff t is a sufficient statistic (i.e. x ↔ t ↔ y)

Corollary 13.1 A statistic t is sufficient iff I (x ; t) = I (x ; y)

Corollary 13.2 For any deterministic g(·), I (x ; y) ≥ I (x ; g(y)).

We define KL-divergence D(p||q) ≜ Ep[log
p(x)
q(x)

]

• By Gibbs’ Inequality: D(p||q) ≥ 0 with equality iff p = q

• identity: D(p||U(X )) = log |X | − H(p)

• identity: I (x ; y) = D(px ,y ||pxpy ) and I (x ; y |z = z) = D(Px ,y |z(|z)||px |z(|z)py |z(|z)
→ we can further write I (x ; y |z) =

∑
z pz(z)I (x ; y |z = z)

This setup can be extended to posterior beliefs upon having observed y , however there are some
intricacies, explained in the notes.

Claim 13.4 (connection to Fisher Info): Suppose the family of distributions py (·; x) is positive,
thrice differentiable for each y and satisfies the regularity conditions:

E

[
∂

∂x
ln py (y ; x)

]
= 0

∣∣∣∣E [ ∂3

∂x3
ln py (y ; x)

]∣∣∣∣ < ∞

Then for all x ∈ X we can write D(py (; x)||py (; x + δ)) = log(e)
2

Jy (x)δ
2 + O(δ2) as δ → 0

16



L14 - Information Geometry

We will develop a notion of geometry between probability distributions starting from the KL-
divergence D(p||q) = Ep[

log p(x)
q(x)

] as a distance metric.

For a finite alphabet Y = {1, · · · ,M}, we have
∑

py (i) = 1, so each allotment of probability
density (each possible distribution) is a point on the M-dimensional simplex.

• a distribution is on the boundary of the simplex if q(y) = 0 for some y

• if p, q are both on the interior of the simplex, D(p||q) < ∞ while if q is on the boundary,
then D(p||q) = ∞
→ However if p is on the boundary and q is not, then D(p||q) < ∞ again.

Def: Given a nonconstant function t(y) → R, the set of distributions in P with Ep[t(y)] =∑
y p(y)t(y) = c is known as a linear family with parameter c .

• This is a convex set

Def 14.1 (I-projection): The information projection of q onto a (nonempty + closed) set of
distributions P is p∗ = argminp D(p||q)
Thm 14.1 (Pythagoras’ Theorem): Let p∗ be the I-projection of q onto a (nonempty + closed
+ convex) set P . Then

D(p||q) ≥ D(p||p∗) + D(p∗||q) ∀p ∈ P

Cor 14.1 (Pythagoras’ Corollary): The I-projection p∗ of any q not on the boundary of PY onto
a linear family P cannot lie on a boundary component of PY unless all of P is confined to that
particular boundary component

Def 14.2 (Linear Family): A set of M-dimensional distributions P ⊂ PY is a linear family if for
some K < M there exists functions t = [t1(·), · · · , tK (·)]T and constants t = [t1, · · · , tK ] such
that t[p(1) · · · p(M)]T = t.

Claim 14.1: For every p1, p2 from a linear family L ⊂ Py , then for every λ ∈ R (including
λ > 1) λp1 + (1− λ)p2 ∈ Py .

Cor 14.2 (Pythagorean Identity): For any q in the simplex of PY and some L defined over Y ,
the I-projection p∗ of q onto L satisfies

D(p||q) = D(p||p∗) + D(p∗||q) ∀p ∈ L

• This is stronger than Thm 14.1 - it gives us equality!

Define Lt(p
∗) to be the linear family with given t which contains p∗. What is the set of all

distributions in the simplex whose I-projection onto Lt(p
∗) is p∗?

Thm 14.2: p∗ is the I-projection of q onto Lt(p
∗) iff q is in the exponential family Et(p∗) =

{q(y) = p∗(y) exp
{
xT t(y)− α(x)

}
∀y ∈ Y }

• We can use this to find the I-projection by finding the member satisfying t, t where α(x)
is the log-partition function normalizing over

∑
y p(y ; x) = 1

17



L15 - Modeling as Inference

Usually we try to estimate a parameter x of the distribution (estimation), but we can also try to
model the distribution itself by finding a sufficient approximation q(·) (modeling)

Thm 15.1 Let {py (; , x)} be a class of models, and let q ∈ PY be an admissible distribution
(does not depend on the parameter x). Then exist weights w for a mixture model qw (·) =∑

x w(x)py (·; x) such that

D(py (x)||qw ) ≤ D(py (x)||q) ∀x ∈ X

We use the minimax framework: R+ ≜ minq{maxx D(py (x)||q)}
Lemma 15.1: For any q ∈ PY we have maxx D(py (x)||q) = maxw

∑
x w(x)D(py (x)||q)

• This can be used to rewrite R+ = minq{maxw
∑

w(x)D(py (x)||q)}
Thm 15.2 (Redundancy-Capacity Theorem): Optimizing q and w on both sides of the the
minmax / maxmin are the same:

R+ = min
q

max
w

∑
w(x)D(py (x)||q) = max

w
min
q

∑
w(x)D(py (x)||q) = R−

If we visualize R− above from a Bayesian framework where w(x) is a prior px , then through some
simple algebra and tricks we can show:

R− = max
w

∑
x

∑
y

w(x)py (y ; x) log
py (y ; x)

qw (y)

which can eventually be rearranged to max I (x ; y).

Def 15.1 Let py |x be a model. The least informative prior p∗x for the model is given by p∗x =
argmaxpx I (x ; y)

Def 15.2 The model capacity C of the model py |x is the average cost reduction associated
with the least informative prior: C = maxpx I (x ; y).

We also have 0 ≤ C ≤ log |X |
Thm 15.3 (Equidistance property): The optimum mixture model q∗ with optimum weights w ∗

is such that
D(py (x)||q∗) ≤ C ∀x ∈ X

with equality for all x s.t. w ∗(x) > 0.

• This is a very neat property with a kind of complicated proof.
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L16 - Information Measures for Continuous Variables

We define differential entropy:

h(x) ≜ −
∫ ∞

−∞
px(x) log px(x) dx

• not invariant to coordinate transformations, unlike in the continuous case

We can also write

h(x |y = y) = −
∫ ∞

−∞
px |y (x |y) log px |y (x |y) dx

h(x |y) ≜
∫ ∞

−∞
py (y)h(x |y = y) dy

Both differential mutual information and information divergence are coordinate-transformation
invariant.

Differential mutual information is similar to the discrete case: I (x ; y) = h(x)− h(x |y).

Similarly, information divergence is D(p||q) ≜
∫∞
−∞ p(x) log p(x)

q(x)
dx .

• We can write I (x ; y) = D(px ,y ||pxpy ) ≥ 0. Because of this we also know h(x |y) ≤ h(x) -
conditioning can never increase differential entropy!.

There was a very brief section on modeling with continuous alphabets. The mixture model is
now qw (y) =

∫
x
w(x)py (y ; x) dx , and the model capacity is still C = maxpx I (x ; y)

There were also a bunch of results for differential/conditional differential entropy for Gaussian
distributions. This was pretty long and straightforward, so just look at the notes if necessary.
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L17 - Max Entropy Distributions

The least informative prior we previously discussed in L15 is optimal but challenging in practice,
but we can get decent performance using a maximally-ignorant prior. Essentially given some
linear constraints Ep[tk(y)] = tk for K constraints we want to find the distribution with maximum
entropy.

In the finite alphabet case, we can find this by minimizing D(p||U) = log |Y | − H(p) where U
is the uniform distribution (and by construction the maximum entropy prior possible over finite
alphabets).

Note that U = q(y) = eβ(y) where β(y) = 0. By the results of the previous section, we simply
find the I-projection of U onto the corresponding linear family:

p∗(y) = exp

{∑
K

xi ti(y)− α(x)

}

where xi are chosen to satisfy the constraints.

For infinite alphabets with both discrete and continuous distributions, the result is similar

Claim 17.1: Among all distributiosn over Y ⊂ R in the linear family with finite differential
entropy, the following distribution p∗, when it exists is the unique distribution having maximum
differential entropy.

p∗(y) = exp

{∑
K

xi ti(y)− α(x)

}
• This is the same form as before!

• Claim 17.2: This result (and the form of p∗) is still applicable for discrete distributions
over infinite alphabets.

We can essentially use this to show that the normal distribution is the maximum entropy distri-
bution of given mean and variance!
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L18 - Conjugate Priors

Definition 18.1: For observations of the form y = [y1, · · · , yn]T over Y n and X , then py|x is
conditionally i.i.d. if for every x ∈ X , y ∈ Y N we have:

py|x(y1, · · · , yn|x) =
N∏

n=1

py |x(yn|x)

• conditional i.i.d. models have permutation invariance, and their sufficient statistics are
especially compact

Definition 18.2: A sequence y1, · · · , yn is exchangeable if for every permutation n1, · · · , nN and
all y1, · · · , yn ∈ Y N we have:

py1,··· ,yn(y1, · · · , yn) = pyn1 ,··· ,ynN (y1, · · · , yn)

• infinitely exchangeable: exchangeable for every finite N .

Theorem 18.1 (de Finetti): The sequence y1, y2, · · · is infinitely exchangeable iff for every N
there exists an alphabet X , distribution px , and model py1,··· ,yN |x =

∏
py |x(yi |x) such that:

py1,··· ,yN (y1, · · · , yN) =
∫

pyn1 ,··· ,ynN (y1, · · · , yN |x)px(x) dx

• Think of every infinitely exchangeable sequence as a mixture of i.i.d. distributions

We want to keep updating px |y as we add in more data points yi to our sequence. Note that:

px |y(·|y) = Ty[px(·)] ≜
px ,y (·|y)
py(y)

=
py|x(y|·)px(·)∫
py|x(y|a)px(a) da

so if we update px |y1 → px |y2,y1

px |y2,y1 = Ty2|y1[px |y1] ≜
py2|y1,xpx |y1(x |y1)∫

py2|y1,x(y2|y1, a)px |y1(a|y1) da

We are interested in finding families of priors for which our updated belief after each successive
observation yi is in the same family. We restrict our attention to the case of conditionally i.i.d.
models: py|x(y|x) =

∏
py |x(yi |x).

Def 18.3 A family Q = {q(·; θ) : θ : Θ ⊂)}, where the mapping from Θ to Q is continuous and
continuously invertible, is a conjugate prior family for the conditional i.i.d. model if for every
y ∈ Y we have px |y (·|y) ∈ Q whenever px(·) ∈ Q.

• If θ0 is the parameter specifying px , then θ(y ; θ0) is the parameter for px |y (·|y)
Claim 18.1: A collection Q of the above form is a conjugate prior family iff px |y1,··· ,yn(·|y1, · · · , yn) ∈
Q whenever px(·) ∈ Q for every N ≥ 1.

Def 18.4: A conjugate prior family is natural if for every y ∈ Y there exists a paramenter value
θ(y) ∈ θ s.t. q(·; θ(y)) ∝ py |x(y |·) with a constant of proportionality that is typically a function
of y .
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Theorem 18.2: For a conditional i.i.d. model such that Y ⊂ R is a region and py |x is continuous,
if a conjugate prior family exists, then for every N ≥ 1 there exists a continuous function
tN(·, . . . , ·) with finite dimension which is a sufficient statistic for inferences about x .

In one of the optional sections, it is shown that conjugate priors only exist for py |x which are from
exponential families. In the last section, they show how to construct a conjugate prior family
from a given exponential family, and essentially that all exponential families have a conjugate
prior family.

If py |x(y |x) = exp
{
λ(x)T t(y)− α(x) + β(y)

}
, then the corresponding conjugate prior family is:

Q = {q(·; t,N) : q(x ; t,N) = exp
{
[tTλ(x)− Nα(x)]− γ(t,N)

}
}

where t is an updating function of the t(y) we see, starting from our prior’s value of t0. The
corresponding prior is px(x) = q(x ; t0,N0).

Correspondingly, Q is itself a canonical exponential family with natural statistic [λ(x),−α(x)]
and parameter (known as x in the definition earlier in the notes) [t,N]
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L19 - Information Geometry of MLE and EM

We begin by showing that maximum likelihood estimation is simply finding a parametrized dis-
tribution with minimum KL divergence to the “empirical distribution”.

Fact 19.1: For any deterministic sequence v = {v1, · · · , vn} the empirical distribution is
p̂(v ; v) = 1

N

∑
N 1v=vn and we can apply functions such as 1

N

∑
N f (vn) =

∑
v f (v)p̂(v ; v).

Fact 19.2: The ML estimate of x over parameterized models py (·; x) is x̂ML(y) = argmina D(p̂y (·; y)||py (·; a))
• This is known as the reverse I-projection, or also the M-projection

• The proof follows from l̃(x ; y) =
∑

b∈Y p̂y (b; y) log py (bx)

We can show similar results on the EM algorithm on i.i.d. observations. In EM we want to find:

U(x , x ′) =
∑
z∈ZN

pz|y(z|y; x ′) log pz(z; x) =
∑
n

∑
c∈Z

pz|y (c |yn; x ′) log pz(c ; x)

where we have used the independence of pz|y (zi |yi ; x ′), pz(zj ; x) for i ̸= j to simplify terms.

Now we construct a hypothetical empirical distribution for pz drawn from:

P̂Z (y) ≜ {
∑

c∈{g(c)=b}

p̂z(c) = p̂y (b; y) ∀b ∈ Y }

For p̂∗z = argminp̂z∈P̂Z (y) D(p̂z(·)||pz(·; x)) we have the following property:

Claim 19.1: The empirical distribution p̂∗z (·; x) can be expressed as

p̂∗z (z ; x) =
pz(z ; x)p̂y (g(z))

py (g(z); x)

• This follows from a variant of the data processing inequality.

• Lemma 19.1 (DPI - Decision Form): Let g : Z → Y be an arbitrary mapping. Then for
arbitrary pz , qz and corresponding py , qy produced by g , we have D(pz ||qz) ≥ D(py ||qy )
with equality iff pz (z)

qz (z)
= py (g(z))

qy (g(z))
(presumably for every z).

and by some algebra we can write:

1

N
U(x , x ′) = −D(p̂∗z (z ; x

′)||pz(·; x))− H(p̂∗z (z ; x
′))

so argmaxx U(x , x ′) = argminx D(p̂∗z (z ; x
′)||pz(·; x))

So the EM algorithm is equivalent to first finding p̂∗z (z ; x
(l−1)) = argminp̂z∈P̂Z (y) D(p̂z(·)||pz(·; x))

(the E-step), and then computing x̂ l = argminx D(p̂∗z (z ; x
′)||pz(·; x)) (the M-step).

• Essentially computing a reverse I-projection followed by an I-projection.

Lastly, they show that if we are computing the MLE over a linear family we must have that
1
N

∑
N tk(yi) = Epy (·|x̂ML)[tk(y)] for each y .
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L20 - Stochastic Approximation

Solving problems in high dimensional systems is pretty hard. Things like marginalizing out a
variable

∑
x px ,y (x , y) = py (y) can be infeasible. In this lecture we develop sampling methods

from complex distributions.

Consider the challenge of approximating sampling from an infeasible distribution p using a simpler
distribution q. In fact, we only need access to samples from q and a non-normalized version p◦(x)

which satisfies p(x) = p◦(x)
Zp

(where Zp =
∑

x p◦(x)) for both p, q for the following approaches.

(In fact we don’t even need the exact form of q, beyond samples from it).

Importance Sampling: In order to estimate the mean of px we can use the following:

µ̂f (x) =
N∑

n=1

w(xn)∑N
n′=1 w(xn′)

f (xn)

where w(x) = p◦(x)
q◦(x)

is the importance weights

• The proof follows from Eq[w(x)] = Zp

Zq
and Eq[w(x)f (x)] = Zp

Zq
µf .

• Qualitatively, we want our q to be “close” to p, so we don’t have too few samples in high
density parts of p.

Rejection Sampling: Suppose there is a constant c such that cq◦(x) > p◦(x) for all x . Then
we can generate samples from q, and then generate u ∼ U([0, cq◦(x)]) and discard if u ≤ p◦(x).

Def 20.1 (FSHMC): A sequence of variables xi forms a finite-state homogeneous Markov
chain if 1) x is finite, 2)for every n we have the Markov chain x1 ↔ · · · ↔ xn, 3) pxn+1|xn does
not depend on n.

Def 20.2: A distribution px is a stationary distribution of a FSHMC if px(x) =
∑

x ′ w(x |x ′)px(x ′).
• These are called the global balance equations

Def 20.3: A FSHMC is fully communicating if it is possible to go from any state to any other
state (including itself) within some finite number of time steps.

Thm 20.1: If a FSHMC is fully communicating it has a unique stationary distribution.

Def 20.4: A fully communicating FSHMC is aperiodic if for some x it can return to x at any
desired time after some n0: pxn|x1(x |x) > 0 for all n > n0.

Thm 20.2: If a fully communicating FSHMC with stationary distribution px is aperiodic then
for any px1 we have limn→∞ pxn(x) = px(x) ∀x ∈ X .

Def 20.5: A fully communicating FSHMC with distribution px is reversible if when px1 = px we
have

px1,··· ,xn(x1, · · · , xn) = px1,··· ,xN (xn, · · · , x1)

Prop 20.1: A fully communicating FSHMC is reversible iff its stationary distribution satisfies:

px(x
′)w(x |x ′) = px(x)w(x ′|x)
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• These are called the detailed balance equations

Now we have the tools for MCMC approximations.

From Thm 20.2, we know for a fully communicating aperiodic FSHMC with stationary distribution
px we have limn→∞ D(px ||pxn) = 0.

Prop 20.2: For a finite-state homogenous Markov chain x1 ↔ x2 · · · with stationary distribution
px ∈ PX , for any px1 ∈ PX we have

D(px ||pxn+1 ≤ D(px ||pn)

• This doesn’t require the stationary distribution to be unique, or for pxn to converge to one.

Metropolis Hastings Algorithm: We begin with unnormalized p◦ and transition model v(·|·)
1. At time n suppose we have xn = x .

2. Generate x ′ from v(·|x)
3. Compute acceptance factor

a(x → x ′) ≜ min

{
1,

p◦(x
′)v(x |x ′)

p◦(x)v(x ′|x)

}
4. Sample u from bernoulli dist. with parameter a(x → x ′).

5. If u = 1, accept the transition to xn+1 = x ′. Otherwise xn+1 = x . Then repeat.

Thm 20.3: Given finite X and our choice of v(·|·) the sequence of samples generated by the
MH algorithm corresponds to a sequence of variables that form a reversible Markov chain with
transition distribution w(x ′|x) = v(x ′|x)a(x → x ′) for which the target p is the stationary
distribution

• The proof simply shows that detailed balance is satisfied.

There are some requirements for the “proposal distribution” v(·|·):
Corr 20.1: If the choice of v(·|·) is such that the induced Markov chain w(·|·) is fully commu-
nicating and aperiodic, then xn will have a distribution approaching the target p as n → ∞.

Corr 20.2: If the chain with transition distribution v(·|·) is fully communicating and a(x →
x ′) > 0 for all distinct pairs x , x ′, the the induced MH chain is fully communicating.

• Essentially, v(x ′|x) = 0 iff v(x |x ′) = 0

Corr 20.3: If we have the conditions of Corr 20.2, and a(x → x ′) < 1 for at least one distinct
pair x , x ′, then the induced MH chain is fully communicating and aperiodic.
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L21 - Typical Sequences and Large Deviation

Thm 21.1 (WLLN): Let wi be a set of i.i.d. random variables with mean µ and E [|wi |] < ∞.
Then for any ϵ > 0:

lim
N→∞

P

(∣∣∣∣∣ 1N ∑
N

wi − µ

∣∣∣∣∣ > ϵ

)
= 0

Define the normalized log-likelihood: Lp(y) =
1
N
log py (y) =

1
N

∑
N log p(yi).

• From the WLLN we have limN→∞ P(|Lp(y) + H(p)| > ϵ) = 0

Def 21.1 (Typical Set): Let yi be a sequence of N elements from Y , with a small constant ϵ.
The sequence is called ϵ-typical wrt p if

|Lp(y) + H(p)| ≤ ϵ

• Tϵ(p;N) is called the ϵ-typical set wrt p.

• The probability that a generated sequence is in the typical set is approximately 1.

• Since Lp(y) ≈ −H(p), we have py (y) ≈ 2−NH(p), and so |Tϵ(p;N)| ≈ 2NH(p)

→ Whenever H(p) < logM , only a (vanishingly) exponentially small fraction of possible
sequences actually occur.

Define the total probability of a set(of sequences) A: P{A} =
∑

y∈A p
N(y)

Thm 21.2 (Asymptotic Equipartition Property): Given Tϵ(p;N) with ϵ > 0, we have

• limN→∞ P{Tϵ(p;N)} = 1

• 2−N(H(p)+ϵ) ≤ pN(y) ≤ 2−N(H(p)−ϵ)

• (1− ϵ)2N(H(p)−ϵ) ≤ |Tϵ(p;N)| ≤ 2N(H(p)+ϵ)

We can extend these results to continuous distributions, replacing cardinality with “volume”.

If we are generating data from p and have some reference q, we can construct a new typical set
definition.

Using Lp|q(y) =
1
N
log pN(y)

qN(y)
= 1

N

∑
N log p(yi )

q(yi )
with WLLN we have:

lim
N→∞

P(|Lp|q(y)− D(p||q)| > ϵ) = 0

Def 21.2 (Typical set, another): The sequence y is called divergence ϵ-typical wrt p relative
to reference q if:

|Lp|q(y)− D(p||q)| ≤ ϵ

• The set of all such sequences of length N : Tϵ(p|q;N)

The two variations of the typical set are not strictly equivalent, but sequences of samples from p
will fall in both sets with high probability. The sequences that are unique to one of the variations
occur with negligible probability.
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We can compute the probability of sampling a sequence from p’s typical set using q:

qN(y) ≈ pN(y)2−ND(p||q)

Q{Tϵ(p|q;N))} ≈ 2−ND(p||q)

The probability of sampling from q and producing any sequence in the typical set of p is expo-
nentially small!

Thm 21.3: Given, p, q,N , then:

(1− ϵ)2−N(D(p||q)+ϵ) ≤ Q{Tϵ(p|q;N)} ≤ 2−N(D(p||q)+ϵ)

It is useful to characterize the “large deviation probability”: P
(
1
N

∑
N t(yi) ≥ γ

)
Thm 21.4 (Cramer’s): Given yi generated from q, and statistic t : Y → R with µ = Eq[t(y)] <
∞. For any γ > µ:

lim
n→∞

− 1

N
logP

(
1

N

∑
N

t(yi) ≥ γ

)
= EC (γ)

where EC (γ) ≜ D(p(·; x)||q) is the chernoff exponent with p(y ; x) = q(y)ext(y)−α(x) and x > 0
satisfying Ep(·;x)[t(y)] = γ.

27



L22 - Method of Types/Sanov’s Thoerem
Def 22.1: The type, or empirical distribution, of a sequence y is the probability distribution:
p̂(b; y) = Nb(y)

N
(where Nb(y) is the count of b in the sequence).

Def 22.2: The set of types PY
N is the set of all possible types for sequences of length N

generated from alphabet Y .

Def 22.3: For some p ∈ PY
N , the type class of p (T Y

N (p)) is the set of all sequences whose
type is equal to p: T Y

N (p) = {y p̂(·; y) ∼= p(·)}
Identity 22.1: For arbitrary g(·) we can write: (

∏
N g(yi))

1/N =
∏

M g(b)p̂(b;y)

We also define exponential rate notation: f (N)
.
=2Nα denotes limN→∞

log f (N)
N

= α

• Note the use of
.
=! This will be used frequently in the notes.

• This notation is a bit imprecise. Here are some cases:

→ f (N)
.
= ∞ .

= 2N∞ - grows superexponentially

→ f (N)
.
= 0

.
= 2−N∞ - decays superexponentially

→ f (N)
.
= 1

.
= 2N·0 - grows or decays subexponentially. This could mean many things

including convergence to a constant, or N2 or 1/N , but the approximation is very
coarse for the range of possible cases and doesn’t directly separate them.

→ given f (N)
.
= 2Nα, g(N)

.
= 2Nβ, addition and multiplication behave like f (N) +

g(N)
.
= 2N max(α,β) and f (N) · g(N)

.
= 2N(α+β)

Lemma 22.1 For any finite alphabet Y , |PY
N | ≤ (N + 1)|Y | - the number of total types is

polynomial in sequence length.

Lemma 22.2: For a sequence y and distribution q we have:

qN(y) = 2−N(D(p̂(·;y)||q)+H(p̂(·;y)))

Lemma 22.3: |T Y
N (p)| ≈ 2NH(p). Specifically:

cN−|Y |2NH(p) ≤ |T Y
N (p)| ≤ 2NH(p)

• Every nondegenerate type class contains exponentially many sequences

• The proof uses: Fact 22.1: (coarse Stirling’s) For n ≥ 1: e
(
n
e

)n ≤ n! ≤ ne
(
n
e

)n
Thm 22.1: For p, q ∈ PY :

cN−|Y |2−ND(p||q) ≤ Q{T Y
N (p)} ≤ 2−ND(p||q) and Q{T Y

N (p)} .
= 2−ND(p||q)

• There is an exponentially small probability that a sequence obtained by sampling from q
will have a type p ̸= q

• However, a sequence generated from q will have a type other than q with high probability,
but it will be within ϵ of q with high probability, and q will be the most likely candidate.

Given a set S ⊂ PY we can structure problems as computing the total probability over the set
of sequences whose type matches S: R = {y ∈ Y N : p̂(·; y) ∈ S ∩ PY

N }
Note: We adopt the following abuse of notation: Q{S} ≜ Pq(p̂(·; y) ∈ S) = Q{R}
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• Note that Q{S} ≜ Pq(p̂(·; y) ∈ S) = Q{S ∩ PY
N }!

Thm 22.2 (Sanov’s Theorem): for arbitrary S ⊂ PY and q ∈ PY :

Q{S ∩ PY
N } ≤ (N + 1)|Y |2−ND(p∗||q) and Q{S ∩ PY

N } ≤̇ 2−ND(p∗||q)

where p∗ = argminp∈cl(S) D(p||q) is the I-projection of q onto cl (S).

• Moreover, if cl (S) = cl (int(S)) then Q{S ∩ PY
N } ≈ (N + 1)|Y |2−ND(p∗||q)

• Note that cl (S) refers to the closure of S - all points in S, and its boundary. int(S) refers
to the interior of S which disqualifies the theorem from having to process extremely weird
sets which have random floating isolated points (since such points would not be in int(S)).

• The notes comment probability of any type p generated under q decays exponentially, but
its maximized at the type closest to q which dominates. These bounds feel pretty loose to
me so the claim seems a bit strong but I guess I should mention it.

We can use these developments to resolve the “large deviations” scenario from the previous
lecture: 1

N

∑
N t(yi) ≥ γ.

Define R = {y ; p̂(·; y) ∈ S ∩ PY
N } where S = {p : Ep[t(y)] ≥ γ}. Then S is a linear family

within PY , and the I-projection of q onto it lies along the one-parameter linear exponential family:
py (y ; x) = q(y)ext(y)−α(x).

Using these shortcuts, we can handle special large deviation events, such as:

P

(
1

N

∑
N

yi ≥ γ1 and
1

N

∑
N

s(yi) ≥ γ2

)
which the scalar version of Cramer’s Theorem cannot. But the vector version of Cramer’s theorem
can handle this, and has 2 advantages: (1) It is not limited to finite distributions, and specifically
works on continuous distributions (2) it has better bounds on the large deviation probability
because it doesn’t depend on the cardinality |Y | of the alphabet.

Thm 22.3 (Conditional Limit Theorem): Given i.i.d. y generated from q ∈ PY , and nonempty
closed and convex S ⊂ PY , then for any ϵ > 0:

lim
N→∞

P(|p̂(b; y)− p∗(b)| > ϵ|p̂(·; y) ∈ S) = 0

where p∗ is the I-projection from Sanov’s theorem.

• Essentially, given that the sequence lies in S , p̂(·; y) converges in probability to p∗(·).
• The proof first shows that as N → ∞, sequences corresponding to types p near p∗ (ac-
cording to KL) will occur with probability 1 when generated from q (conditioning on the
sequence begin in S to begin with). Then they bound D(p||p∗) ≤ ϵ, and use Pinsker’s
Inequality (below) to show convergence to p∗.

The proof of the above uses Lemma 22.4 (Pinsker’s Inequality): For any q, p ∈ PY we have:

||p − q||1 ≜
∑
b∈Y

|p(b)− q(b)| ≤
√
2 ln 2D(p||q)

• Two distributions that are close in divergence are close in absolute difference as well!
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L23 - Asymptotics of Hypothesis Testing

We extend previous results for the log-likelihood ratio test is formulated as:

L′(y) =
1

N
log

pN1 (y)

pN0 (y)
=

1

N

∑
N

log
p1(yi)

p0(yi)

Ĥ=H1

≷
Ĥ=H0

γ

while the corresponding LRT (i.e. Lec 2) would be:

L(y) ≜
py |H(y |H1)

py |H(y |H0)
=

pN1 (y)

pN0 (y)

Ĥ=H1

≷
Ĥ=H0

2Nγ

We can define decision regions Ri = {y ∈ Y N : L′(y)(≥ / ≤)γ}
• where we include the equality case in both regions for convenience. This is imprecise, but
it doesn’t make much difference since these events are very small.

we further define S0 = {p ∈ PY : Ep[log
p1(y)
p0(y)

] ≤ γ} (and S1 resp.)

• So Ri = {y ∈ Y N : p̂(·; y) ∈ Si ∩ PY
N }

We can write Ep0[log
p1(y)
p0(y)

] = −D(p0||p1),Ep1[log
p1(y)
p0(y)

] = D(p1||p0). So for a “logical” experi-

ment, we would want −D(p0||p1) ≤ γ ≤ D(p1||p0).
• otherwise in expectation, data generated from p0 would be classified as H1 or vice versa,
implying a very aggressive/passive detector respectively.

By Sanov’s Theorem, the false-alarm and miss probabilities decay exponentially:

PF = P0{R1} = 2−ND(p∗0 ||p0)

where p∗0 is the I-projection of p0 onto S1. Analogously P1 = 2P−ND(p∗1||p1).
The boundary between the distributions is the linear family:

L =

{
p ∈ PY : Ep

[
log

p1(y)

p0(y)

]
= γ

}
and the exponential family of weighted geometric means between p0, p1 is:

Ep0,p1 =
{
p ∈ PY : p(y ; x) =

p0(y)
1−xp1(y)

x

Z (x)

}
=

{
p ∈ PY : exp

{
x log

p1(y)

p0(y)
− α(x) + log p0(y)

}}
• This uses p0 as its base distribution, and t(y) = log p1(y)

p0(y)
. So by thm 14.2 (orthogonal

projection), Ep0,p1 intersects the boundary L at p∗0.

• x varies from 0 ≤ x ≤ 1 with p0(·) = p(·; 0), p1(·) = p(·; 1)

If we reparametrize x̃ = 1 − x , we can write Ep1,p0 using t(y) = log p0(y)
p1(y)

and rewrite L to use
this form. This allows us to show that Ep1,p0 intersects L at p∗1, which implies p∗0 = p∗1!

Using results from L14, for exp. families of the form exp{xt(y)− α(x) + ln q(y)} we have
d
dx
D(p(·; x)||q) = xδp(·;x)[t(y)], which applied to the above parametrization yields D(p(·; x)||p0)
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is a monotonically increasing function of x . The alternate x̃ parametrization suggests D(p(·; x)||p1)
is a monotonically increasing function of x̃ (and thus monotonically decreasing in x).

We can then show that Ep[log
p1(y)
p0(y)

] = D(p(·; x)||p0)−D(p(·; x)||p1) is a monotonically increasing

function of x , and p∗ = p∗0 = p∗1 is the unique choice of x satisfying Ep[log
p1(y)
p0(y)

] = γ.

Key Equation: Ep∗[log
p1(y)
p0(y)

] = D(p∗||p0)− D(p∗||p1) = γ

• This corresponds to PF ≈ 2−ND(p∗||p0),PM ≈ 2−ND(p∗||p1)

• We choose x∗ so that D(p∗||p0)− D(p∗||p1) = γ

Neyman-Pearson: We constrain PF and minimize PM

• Set γ = D(p0||p1), which implies p∗ = p0

• Corresponds to PM
.
= 2−ND(p0||p1) and PF

.
= 1.

→ Keep in mind exponential rate notation - this means lim logPF

N
= 0 so PF decays

subexponentially (to a constant), while PM optimally decays with rate D(p0||p1).
• Stein’s Lemma: when PF ≤ α, the fastest rate of decay for PM is D(p0||p1).

Bayesian: Given C00 = C11 = 0, the expected cost is:

E [C ] = C01P0PF + C10P1PM

.
= C01P − 02−ND(p∗||p0) + C10P12

−ND(p∗||p1)

.
= 2−N min{D(p∗||p0),D(p∗||p1)}

Maximizing the rate of cost decay is equivalent to maximizing the minimum of D(p∗||p0),D(p∗||p1).
Obviously, we maximize this by setting D(p∗||p0) = D(p∗||p1).
This corresponds to γ = 0, and LRT threshold 2Nγ = 1.

The notes also define the Chernoff information EC , which didn’t seem relevant.

They also commented that the expected cost decays exponentially with EC , and any subexpo-
nential LRT threshold in general.

In the special case that both p0/p1 belong to the same set (either of) Si , we see one of PM/PF

decay to 0, while the other approaches 1 as N → ∞
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L24 - Convergence of Random Sequences

Def 24.1 (Almost-Sure): A sequence of random variables zi converges almost surely (or with
probability 1) to a random variable z if P(limN→∞ zN = z) = 1.

• Notation: zN
a.s.−−→ z

Def 24.2 (In Probability): A sequence of random variables zi converges in probability (or with
“high” probability) to a random variable z if limN→∞ P(|zN − z | < ϵ) = 1.

• Notation: zN
p−→ z

• We can use this formulation to alternatively define almost sure convergence :

→ Fact 24.1: for a r.v. collection zi and z , we have zN
a.s.−−→ z iff for every ϵ > 0,

limN→∞ P(|zN − z | < ϵ for all N > N0) = 1

Essentially, in almost sure convergence the probability that a sample path eventually
gets to and remains within ϵ of z approaches one. Meanwhile, converge in probability
only suggests the probability that any individual sample in the sequence approaches
one as N → ∞.

→ Fact 24.2 For a r.v. collection zi and z we have zN
a.s.−−→ z if for every ϵ > 0 we have∑∞

n=1 P(|zn − z | > ϵ) < ∞
Essentially, the almost sure convergence is equivalent to convergence in probability
decaying sufficiently fast.

Def 24.3 (In Distribution): A sequence of random variables zi converges in distribution (or in
“law”) to a random variable z if CDF limN→∞ PzN (z) = Pz(z) for all z with continous Pz(·)

• Notation: zN
d−→ z

• equivalently: limn→∞ E [g(zN)] = E [g(z)] for all bounded, continuous g(·).
• (stronger variant): Def 24.4 (In Divergence): A sequence zi converges in divergence (or
strongly in law) to r.v. z if limn→∞D(pzN ||pz) = 0

Thm 24.1 (Continuous Mapping): If zi are defined over Rk and g : Rk → R is continuous then

for x ∈ d , p, a.s. we have zN
x−→ z implies g(zN)

x−→ g(z).

• Generally, this holds whenever the set of points with g(·) is discontinuous has probability
0 under pz .

Thm 24.2 (Slutsky’s): If xN
d−→ x and yN

d−→ c where c is a finite constant, then:

xN + yN
d−→ x + c and xNyN

d−→ cx

and if zN is any sequence with xN = zNyN and c ̸= 0, then zN
d−→ x/c .

Thm 24.3 (SLLN): The exact same conditions and result as the WLLN (Thm 21.1), but with
almost sure convergence (instead of in probability)!

For analyzing estimators, we want a more general version of the SLLN. We can use the following
variant, created by Wald:
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Thm 24.4 (Uniform LLN): For i.i.d. w1, · · · ,wN ∈ W , and compact parameter set Θ, and
g(w ; θ) which is continuous in θ for each w and which has some g+(w) > 0 with E [g+(w)] < ∞
and |g(w ; θ)| ≤ g+(w) for all w , θ, then:

max
θ

∣∣∣∣∣ 1N ∑
N

g(wi ; θ)− µ(θ)

∣∣∣∣∣ a.s.−−→ 0 as N → ∞

where µ(θ) = E [g(w ; θ)] - the sample average almost surely converges uniformly to its mean.

Thm 24.5 (CLT): Let wi be a set of i.i.d. r.v.s with mean µ and variance σ2 < ∞. Then:

√
N

(
1

N

∑
N

wi − µ

)
d−→ N(0,σ2) as N → ∞

• A theorem from Polya tells us if zN
d−→ z and CDF Pz(·) is continuous, then the convergence

is uniform (limmaxz |PzN (z)− Pz(z)| = 0), so the convergence in the CLT is uniform.

• We even have a 1/
√
N bound on the convergence thanks to Berry-Essen theorem apparently.

The following stronger variant also exists, although I don’t exactly understand it. Thm 24.6
(SCLT): Let wi be a set of i.i.d. r.v.s with mean µ and variance σ2 < ∞. Then:

eN ≜
√
N

(
1

N

∑
N

wi − µ

)
D−→ N(0,σ2) as N → ∞

iff D(peN ||N(0,σ2)) < ∞ for some N .
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L25 - Asymptotics of Parameter Estimation

We begin with nonrandom parameter estimation

Def 25.1: A parameter x is identifiable if x ′ ∈ X satisfies D(py (·; x)||py (·; x ′)) = 0 only when
x ′ = x .

Def 25.2: A sequence x̂N(y
N) of estimates is weakly consistent if x̂N(yN))

p−→ x as N → ∞
• Strong consistency is the same, but with almost sure convergence

Def 25.3 A sequence of estimates is asymptotically normal if
√
N(x̂N − x)

d−→ N(0, 1
σ2(x)

) for

some σ2(x) > 0

Def 25.4: A sequence of estimates is asymptotically efficient if it is asymptotically normal as
in 25.3 with σ2(x) = Jy (x), the fisher information of py (y ; x).

We also define empirical divergence: D̂N
y (a) ≜

1
N

∑
N log py (yn;x)

py (yn;a)

For finite X alphabets, we have the following result using WLLN:

Thm 25.1: For py (·; ·) with |Y | < ∞ and |X | < ∞, and yi generated i.i.d. according to some
identifiable py (·; x) with py (y ; a) > 0 for all y , a, the MLE x̂N(y

N) is weakly consistent.

We can also extend to continuous X : py (y ; a) = exp{at(y)− α(a) + β(y)}, for which we derived
properties of the ML estimate in L19. Here we show the resulting estimate is strongly consistent
and asymptotically efficient.

Thm 25.2: For an exponential family as above and yi generated according to some representative
identifiable py (·; x) with α̈(x) = Jy (x) > 0, the ML estimate x̂N(y

N) is strongly consistent.

Thm 25.3: For an exponential family as above and yi generated according to some representative
identifiable py (·; x) with α(x) = Jy (x) > 0, the ML estimate is asymptotically efficient.

TODO: I skipped some examples which are probably helpful to read

We can also prove some results when the parametrization for py is of the wrong form.

Thm 25.6: For P with finite |Y |, |X | and samples yi from qy /∈ P with qy (y), py (y ; x) > 0 for

all y , x and with unique x∗ = argminx D(qy ||py |x(·|x)), then x̂N(yi)
p−→ x∗.

We then evaluate bayesian parameter estimation.

Generally we want to be able to integrate px |yN (x |yN) =
∫
px(a)pyN |x(y

N |a) da. We can approx-
imate this with Laplace’s Method

Laplace’s Method: We approximate integrals of the form
∫ b

a
eNg(z) dz where g is smooth and

N is large using a taylor series for g(z) about argmaxz∈[a,b] g(z).

Thm 25.7 (Laplace’s method): for twice-differentiable g : [a, b] → R with unique maximum
z∗ ∈ (a, b) s.t. g̈(z∗) < 0 we have:∫ b

a
eNg(z) dz

eNg(z∗)
√

2π
|Ng̈(z∗)|

→ 1 as N → ∞
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The notes then specialize this to show that when X is continuous, under some suitable conditions
the posterior tends towards a gaussian centered at x̂N,MLE (y) px |yN ≈ N(x̂N(y

N), 1
NJy (x

)

They also prove a result when py |x is from an exponential family:

Thm 25.8: With py |x from an exponentntial family and yi generated i.i.d according to py |x where
x is generated from some prior distribution px and all x are identifiable and α̈(x) = Jy (x) > 0.
Then:

ln
px̃ |y (ã|yN)

px̃ |y (0̃|yN)

a.s.−−→ 1

2
Jy (x)ã

2 as N → ∞, ã ∈ R

where x̃ ≜
√
N(x − x̂N(y

N))
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