Flip Graphs on Self-Complementary Ideals of Chain Products

Serena An and Holden Mui Mentor: Elisabeth Bullock

SPUR Conference

August 4, 2023

Motivation

A family of sets is *intersecting* if every pair of sets share an element.

Example

The family $\{\{1,2\},\{1,3\},\{2,3\}\}$ is intersecting.

A family of subsets of $\{1, \ldots, n\}$ is *maximally intersecting* if adding any other subset to the family makes it no longer intersecting.

Example

For n = 3, the family $\{\{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$ is maximally intersecting.

Our project stems from a generalization of maximal intersecting families. Flip graphs on maximally intersecting families have been studied before, and our goal is to generalize these results.

Ideals

Let ℓ_1, \ldots, ℓ_d be a sequence of positive integers. Define

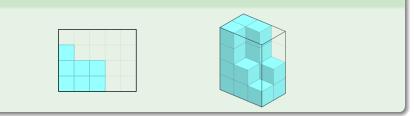
$$P = \{1, \ldots, \ell_1\} \times \cdots \times \{1, \ldots, \ell_d\}.$$

Definition

A subset $I \subseteq P$ is an *ideal* if

$$(a_1,\ldots,a_d)\in I ext{ and } b_1\leq a_1,\ldots,b_d\leq a_d \implies (b_1,\ldots,b_d)\in I.$$

Example

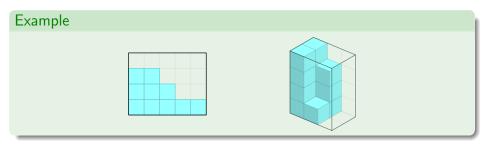


Self-Complementary Ideals

Let
$$P = \{1, \ldots, \ell_1\} \times \cdots \times \{1, \ldots, \ell_d\}.$$

Definition

An ideal $I \subset P$ is self-complementary if for every $(a_1, \ldots, a_d) \in P$, exactly one of (a_1, \ldots, a_d) or $(\ell_1 + 1 - a_1, \ldots, \ell_d + 1 - a_d)$ lies in I.

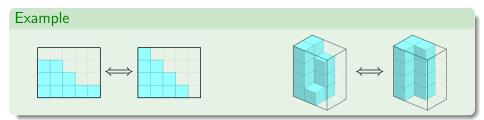


Flips

Let $P = \{1, \ldots, \ell_1\} \times \cdots \times \{1, \ldots, \ell_d\}$, and let I and J be two self-complementary ideals of P.

Definition

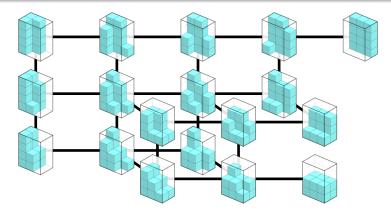
I and *J* differ by a *flip* if $|I \setminus J| = |J \setminus I| = 1$.



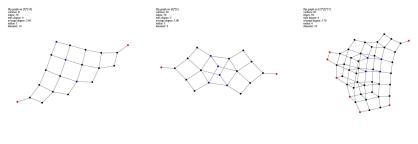
Flip Graphs on Self-Complementary Ideals

Definition

The flip graph on self-complementary ideals of P is the graph whose vertices are the self-complementary ideals of P, and whose edges connect pairs of ideals that differ by a flip.



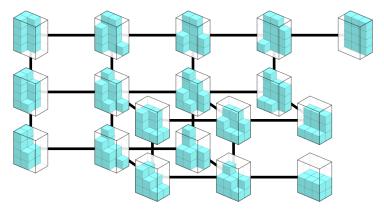
Flip Graph Examples



Graph Terminology

Let G be a connected graph.

- The *eccentricity* of a vertex *v* is the maximum distance from *v* to another vertex.
- The *diameter* of *G* is the maximum eccentricity of a vertex.
- The *radius* of *G* is the minimum eccentricity of a vertex.

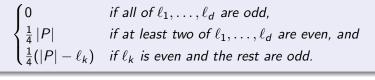


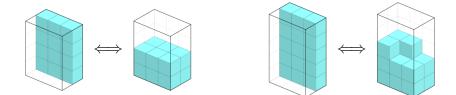
Diameter of Flip Graphs on Self-Complementary Ideals

Let $P = \{1, \ldots, \ell_1\} \times \cdots \times \{1, \ldots, \ell_d\}$, and let G denote the flip graph on self-complementary ideals of P.

Theorem

The diameter of G is





Radius of Flip Graphs on Self-Complementary Ideals

Let $P = \{1, \ldots, \ell_1\} \times \cdots \times \{1, \ldots, \ell_d\}$, and let G denote the flip graph on self-complementary ideals of P.

Theorem

Suppose ℓ_1, \ldots, ℓ_d are even. Assuming Chvátal's conjecture, G's radius is $\left\lceil \left(\frac{1}{4} - \frac{1}{2^{d+1}} \binom{d-1}{\lfloor \frac{1}{2}(d-1) \rfloor} \right) |P| \right\rceil.$

Cyclically Symmetric Self-Complementary Ideals

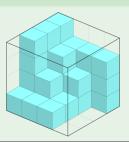
Let
$$P = \{1, ..., 2r\} \times \{1, ..., 2r\} \times \{1, ..., 2r\}.$$

Definition

A self-complementary ideal $I \subset P$ is cyclically symmetric if

$$(a_1,a_2,a_3)\in I \Longrightarrow (a_2,a_3,a_1)\in I ext{ and } (a_3,a_1,a_2)\in I$$

Example

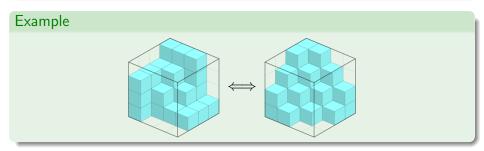


CSSC Flips

Let $P = \{1, ..., 2r\}^3$, and let I and J be two CSSC ideals of P.

Definition

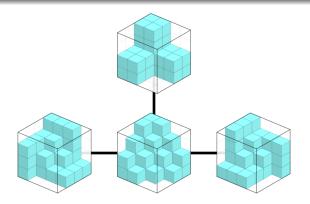
I and *J* differ by a *CSSC* flip if
$$|I \setminus J| = |J \setminus I| = 3$$
.



Flip Graphs on CSSC Ideals Let $P = \{1, ..., 2r\}^3$.

Definition

The *flip graph on CSSC ideals of* P is the graph whose vertices are the CSSC ideals of P, and whose edges connect pairs of ideals that differ by a CSSC flip.



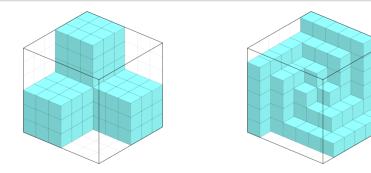
Diameter of Flip Graphs on CSSC Ideals

Let $P = \{1, ..., 2r\}^3$, and let G denote the flip graph on CSSC ideals of P.

Theorem

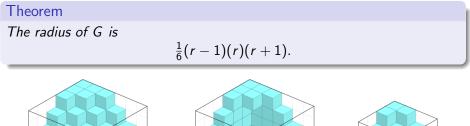
The diameter of G is

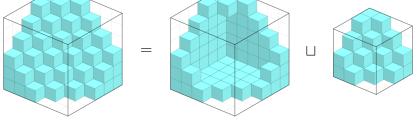
 $\frac{1}{3}(r-1)(r)(r+1).$



Radius of Flip Graphs on CSSC Ideals

Let $P = \{1, ..., 2r\}^3$, and let G denote the flip graph on CSSC ideals of P.





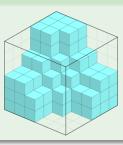
Totally Symmetric Self-Complementary Ideals Let $P = \{1, ..., 2r\}^3$.

Definition

A self-complementary ideal $I \subset P$ is *totally symmetric* if for every permutation $\sigma \in S_3$,

$$(a_1, a_2, a_3) \in I \implies (a_{\sigma(1)}, a_{\sigma(2)}, a_{\sigma(3)}) \in I.$$

Example



Serena An and Holden Mui (SPUR)

Properties of Flip Graphs on TSSC Ideals

Let $P = \{1, ..., 2r\}^3$. It is possible to define a flip graph G on TSSC ideals of P.

Theorem

The diameter of G is

$$\frac{1}{6}(r-1)(r)(2r-1).$$

Conjecture

The radius of G is

$$\left\lceil \frac{1}{12}(r-1)(r)(2r-1)\right\rceil.$$

Future Directions

What we studied:

- vertex count
- diameter
- radius

Other properties of interest:

- maximum degree
- edge count and average degree
- set of vertices with minimum eccentricity (center)
- set of vertices with maximum eccentricity (perimeter)

We would like to thank

- Elisabeth Bullock, our mentor, for her continuous support and guidance
- Prof. David Jerison, for organizing SPUR and for his thoughtful comments about our research
- Prof. Alexander Postnikov, for suggesting this project