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Abstract

We provide an overview of the theory of group cohomology, support varieties, and rank
varieties, before discussing a generalization to the setting of quantum complete intersections
Ac

q = k⟨x1, . . . , xc⟩/({xa
i }, {xixj − qxjxi}i<j). We compute rank varieties of low-dimensional

indecomposable Ac
q-modules and present progress towards classifying all rank varieties in the

c = 2 case.
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1 Introduction

Group cohomology is a useful tool for studying groups which exhibits connections to algebra and
topology. The object of interest is the graded commutative ring H∗(G, k) = Ext∗kG(k, k). We define
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support varieties VG by taking the maximal ideal spectrum and certain subvarieties VG(M) ⊂ VG

corresponding to each kG-module M . Rank varieties, introduced by Carlson [Car83], can be defined
when G is an elementary abelian group; these turn out to be isomorphic to support varieties but
are easier to compute explicitly. This setting with kG-modules is well understood.

We now consider generalizations of support and rank varieties for quantum complete intersections,
which are special k-algebras of the form

Ac
q = k⟨x1, . . . , xc⟩/({xai }, {xixj − qxjxi}i<j).

Quantum complete intersections are a generalization of exterior algebras E, which appear naturally
via Koszul duality, as Ext∗S(k, k)

∼= E for a symmetric algebra S. Rank varieties for Ac
q-modules

were defined by Bergh and Erdmann [BE09], and they also been defined for modules over truncated
polynomial algebras k[x1, . . . , xc]/({xai }) [EH06, PW09].

Our goal is to summarize the main points on this topic and provide additional examples which
do not appear in the present literature. This background reading also naturally led to the work and
questions in later sections.

We define group cohomology in Section 2 and give an overview of the fundamental techniques
for group cohomology computations in Section 3. We then define support varieties in Section 4 and
rank varieties in Section 5, before introducing quantum complete intersections and rank varieties
for them Section 6. In Section 7, we compute the rank varieties of all indecomposable modules in
[YZ19]. In Section 8, we pose a question about rank varieties and our partial progress, and Section 9
contains conjectures and questions for future study.

2 Group cohomology

We present an algebraic definition and a topological definition of group cohomology before proving
that they are equivalent.

2.1 Algebraic definition

Let G be a finite group, and let k be a field with characteristic dividing |G|. The group algebra kG
is the k-vector space

⊕
g∈G kg with multiplication induced by G.

Definition 2.1. The cohomology of G is the graded k-vector space

H∗(G, k) = Ext∗kG(k, k).

It turns out that H∗(G, k) is a graded commutative k-algebra, meaning that rs = (−1)|r||s|sr for
all r, s ∈ H∗(G, k) [Ben91a, Section 3.2]. The ring structure is derived from the Yoneda product.

Definition 2.2. The Yoneda product is the map

Exti(B,C)⊗ Extj(A,B) → Exti+j(A,C)

for modules A,B,C defined as follows. Given an element of Exti(B,C) represented by the extension

0 → C → E1 → · · · → Ei → B → 0

and an element of Extj(A,B) represented by

0 → B → F1 → · · · → Fj → A → 0,
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we compose to obtain the extension

0 → C → E1 · · · → Ei → F1 → · · · → Fj → A → 0

which represents an element of Exti+j(A,C).

Letting A = B = C = k, this defines a product structure on H∗(G, k) = Ext∗(k, k). It turns
out that the cup product for group cohomology H i(G,A)⊗k H

j(G,B) → H i+j(G,A⊗k B) with
A = B = k coincides with the Yoneda product in this case [BIK12, Section 2.3.1].

Example 2.3. Let G = Z/2 and char k = 2. We will compute that

H∗(G, k) ∼= k[y] where |y| = 1.

Letting G = {1, g}, we have kG = k1 ⊕ kg ∼= k[x]/(x2) by the isomorphism g − 1 7→ x. Then an
infinite free resolution of k is given by

· · · → kG
·x−→ kG

·x−→ kG
·x−→ k → 0.

We now take HomkG(kG, k) ∼= k and obtain the cochain complex

0 → k
·0−→ k

·0−→ k
·0−→ · · ·

where x acts by ·0 because g acts by ·1 in the trivial representation. Then the cohomology of the
cochain complex is

Ext∗R(k, k) =
⊕
n≥0

k.

The following is a variation of Maschke’s theorem which relates the structure of kG with the
condition char k | |G| stated at the beginning of this section.

Theorem 2.4 ([BIK12, Theorem 1.33]). The following are equivalent:

1. kG is a semisimple ring.

2. The trivial kG-module k is projective.

3. char k ∤ |G|.

Condition 2 implies that a projective resolution of k is simply 0 → k → k → 0, and we obtain
the following corollary.

Corollary 2.5. If char k ∤ |G|, then H0(G, k) ∼= k and H i(G, k) ∼= 0 for i ≥ 1.

Thus, to obtain interesting group cohomology, we include the condition char k | |G|.

2.2 Topological definition

There is an equivalent topological definition of group cohomology using Eilenberg-Mac Lane spaces
K(G, 1) or the principal G-bundle EG → BG [Ben91b]. We use K(G, 1) and BG interchangably.

Definition 2.6. The cohomology of G is the graded k-algebra

H∗(G, k) = H∗(K(G, 1); k) = H∗(BG; k).
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Example 2.7. We revisit Example 2.3 from a topological perspective. Let G = Z/2 and char k = 2.
Since K(Z/2, 1) ≃ RP∞, we have

H∗(Z/2, k) = H∗(RP∞; k) ∼= k[x].

Theorem 2.8 ([Ben91b, Theorem 2.2.3]). Definition 2.1 and Definition 2.6 are equivalent; that is,

Ext∗kG(k, k) = H∗(K(G, 1); k).

Proof. Let X = K(G, 1), and let X̃ be its contractible universal cover. As G acts freely on X̃ by
permuting cells, we have Ci(X̃; k)/G ∼= Ci(X; k), or equivalently

Ci(X̃; k)⊗kG k ∼= Ci(X; k).

A free resolution of k as an kG-module is given by · · · → C1(X̃; k) → C0(X̃; k) → k → 0, so

ExtikG(k, k) = H i(HomkG(Ci(X̃; k), k))

∼= H i(Homk(Ci(X; k), k))

∼= H i(Ci(X; k))

∼= H i(X; k).

The second line above follows from the tensor-hom adjunction:

Homk(Ci(X; k), k) ∼= Homk(Ci(X̃; k)⊗kG k, k)

∼= HomkG(Ci(X̃; k),Homk(k, k))

∼= HomkG(Ci(X̃; k), k).

3 Group cohomology computations

3.1 Low-dimensional group cohomology

We compute H i(G, k) for i = 0, 1 and all groups G and fields k.

Proposition 3.1. H0(G, k) ∼= k.

Proof. By definition (or the left-exactness of Hom),

Ext0kG(k, k)
∼= HomkG(k, k) ∼= k,

since G acts trivially on k.
Alternatively, since K(G, 1) is connected, we have H0(K(G, 1); k) ∼= k.

Proposition 3.2. H1(G, k) ∼= Homgp(G, k).

Proof. Since π1(K(G, 1)) = G, we have H1(BG;Z) = Gab. Then by the universal coefficient theorem
and the universal property of the functor (−)ab,

H1(K(G, 1); k) ∼= HomZ(H1(K(G, 1);Z), k)
∼= HomZ(G

ab, k)
∼= Homgp(G, k).
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There is another proof of Proposition 3.2 using the cochain complex definition of group coho-
mology.

Definition 3.3. Let Cn(G,M) be the group of all functions from Gn → M , where C0(G,M) consists
of the constant functions. Define dn+1 : Cn(G,M) → Cn+1(G,M) by defining (dn+1φ)(g1, . . . , gn+1)
as

g1φ(g2, . . . , gn+1) +
n∑

i=1

(−1)iφ(g1, . . . , gi−1, gigi+1, . . . , gn+1) + (−1)n+1φ(g1, . . . , gn).

Then Hn(G,M) is the nth cohomology of this complex.

In particular, (d2φ)(g1, g2) = g1φ(g2)− φ(g1g2) + φ(g1), and (d1cm)(g) = gm−m, so

ker d2 = {φ : G → M | φ(g1g2) = g1φ(g2) + φ(g1)}
im d1 = {φ : G → M | φ(g) = gm−m for some fixed m ∈ M}.

The action of G on M = k is trivial, so ker d2 consists of group homomorphisms φ : G → k, and
im d1 = {0}. Then

H1(G, k) = ker d2/ im d1

∼= Homgp(G, k).

3.2 Elementary abelian groups

Elementary abelian groups play a special role in group cohomology, which we will see from the
Quillen stratification theorem in Section 4.1 and the introduction of rank varieties in Section 5.

Definition 3.4. The elementary abelian p-group of rank r is (Z/p)r.

We can compute their cohomology using the Künneth theorem.

Theorem 3.5 (Künneth). For finite abelian groups G1, G2, there is an isomorphism of graded
k-algebras

H∗(G1 ×G2, k) ∼= H∗(G1, k)⊗k H
∗(G2, k).

Example 3.6. Let G = (Z/2)r and char k = 2. After computing that H∗(Z/2, k) ∼= k[x] in
Example 2.3, the Künneth theorem implies that

H∗(G, k) ∼= k[x1, . . . , xr].

The cohomology of elementary abelian groups for char k > 2 is also well known. In the following
theorem, β denotes the Bockstein homomorphism.

Theorem 3.7 ([Ben91a, Corollary 3.5.7]). Let G = (Z/p)r and char k = p.

1. For p = 2, H∗(G, k) ∼= k[x1, . . . , xr] for |xi| = 1.

2. For p > 2, H∗(G, k) ∼=
∧
(x1, . . . , xr)⊗k k[y1, . . . , yr] for |xi| = 1, |yi| = 2, and β(xi) = yi.
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3.3 Periodic group cohomology

There is a technique to splice together chain complexes to form an infinite projective resolution to
obtain group cohomology that is periodic. We demonstrate this with an example.

Example 3.8. The quaternion group Q8 = {±1,±i,±j,±k} acts freely on

S3 ∼= {a+ bi+ cj + dk | a2 + b2 + c2 + d2 = 1}.

For example, if a+ bi+ cj + dk = i · (a+ bi+ cj + dk) = −b+ ai− dj + ck, then a = b = c = d = 0.
Since S3 is 3-dimensional, it has a CW chain complex of the form

0 → Z → C3 → C2 → C1 → C0 → Z → 0

where Q8 acts freely on the cells–this is because a CW structure on S3/Q8 can be lifted to CW
structure on S3 for which Q8 acts freely on the cells. We can now form the infinite splice

· · · → C1 → C0 → C3 → C2 → C1 → C0 → Z → 0

which shows that H∗(Q8, k) is periodic with period dividing 4.

This situation can be generalized to obtain the following theorem.

Theorem 3.9 ([BIK12, Theorem 2.27]). If G acts freely on Sn−1, then H∗(G, k) is periodic with
period dividing n.

3.4 Lyndon–Hochschild–Serre spectral sequence

The Lyndon–Hochschild–Serre spectral sequence allows us to compute more examples of group
cohomology. We provide background on spectral sequences from a double complex, and sketch the
construction of the Lyndon–Hochschild–Serre spectral sequence, before computing H∗(S3, k) as an
example.

Definition 3.10. A double complex consists of abelian groups Eij
0 and maps d0, d1 as shown below

such that d0 ◦ d0 = 0, d1 ◦ d1 = 0, and d0 ◦ d1 + d1 ◦ d0 = 0.

...
...

...

E02
0 E12

0 E22
0 · · ·

E01
0 E11

0 E21
0 · · ·

E00
0 E10

0 E20
0 · · ·

d1

d0

d1

d0 d0

d1

d0

d1

d0 d0

d1

d0

d1

d0 d0

Definition 3.11. The total complex Tot(E) has graded components Totn(E) =
⊕

i+j=nE
ij
0 with

differential d := d0 + d1 : Totn(E) → Totn+1(E).

In a spectral sequence, one takes the cohomology of the ith page E∗∗
i with respect to some map

di to obtain the successive (i+ 1)th page E∗∗
i+1. The abelian groups {Epq

i }i≥0 eventually stablize to
something denoted by Epq

∞ .
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Theorem 3.12 ([Ben91b, Theorem 3.4.2]). Given a double complex (Epq
0 , d0, d1), there is a spectral

sequence with

Epq
1 = H(Epq

0 , d0)

Epq
2 = Hp(Hq(E, d0), d1)

Epq
∞ = F pHp+q(Tot(E))/F p+1Hp+q(Tot(E)).

The shorthand notation for this theorem is

Hp(Hq(E, d0), d1) =⇒ Hp+q(Tot(E), d0 + d1).

Next, we need a generalization of group cohomology with coefficients in the kG-module k to any
kG-module M . For a kG-module M , let MG denote the invariant submodule

MG = {m ∈ M | m = gm} = HomkG(k,M).

Define the cohomology of G with coefficients in M by H∗(G,M) = Ext∗kG(k,M).
We now sketch the construction of the Lyndon–Hochschild–Serre spectral sequence which uses a

specific choice of Epq
0 . Let G be a group and N ◁ G be a normal subgroup. We take projective

resolutions of k as an k(G/N)-module

· · · → P1
∂1−→ P0

∂0−→ k → 0

and as an kG-module

· · · → Q1
∂′
1−→ Q0

∂′
0−→ k → 0.

Letting M be a kG-module, we define

Epq
0 = Homk(G/N)(Pp,HomkN (Qq,M))

with differentials d0 = (−1)p(∂′
q+1)

∗, d1 = (∂p)
∗ induced from ∂′

q+1 and ∂p respectively. By taking
cohomology and chasing definitions, we have

Epq
1 = Homk(G/N)(Pp, H

q(N,M))

Epq
2 = Hp(G/N,Hq(N,M)).

After proving that

Homk(G/N)(Pp,HomkN (Qq,M)) ∼= HomkG(Pp ⊗k Qq,M),

such as in [Ben91b, Lemma 3.5.1], we can identify

Epq
∞

∼= Hp+q(G,M).

Theorem 3.13 (Lyndon–Hochschild–Serre spectral sequence). There is a spectral sequence

Hp(G/N,Hq(N,M)) =⇒ Hp+q(G,M).

There are two cases in which the Lyndon–Hochschild–Serre spectral sequence collapses; that is,
Epq

2
∼= Epq

∞ .

Corollary 3.14 ([Iye04]). Let G be a finite group and N ◁ G be a normal subgroup.
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1. If char k ∤ [G : N ], then
H∗(G, k) ∼= H∗(N, k)G/N .

2. If char k ∤ |N |, then
H∗(G, k) ∼= H∗(G/N, k).

Proof. Note that H0(G,M) = MG by definition.

1. When char k ∤ [G : N ], then Hp(G/N,−) = 0 for p ≥ 1 by Corollary 2.5, so the spectral
sequence collapses. Setting M = k, we have

Hq(G, k) ∼= H0(G/N,Hq(N, k)) ∼= Hq(N, k)G/N .

2. When char k ∤ |N | then Hq(N,−) = 0 for q ≥ 1. Setting M = k, we have

Hp(G, k) ∼= Hp(G/N,H0(N, k)) ∼= Hp(G/N, k).

Example 3.15 ([Iye04]). We calculate H∗(S3, k) for all fields k.

Case 1: Let char k ̸= 2, 3. Then by Corollary 2.5, H0(S3, k) ∼= k and H i(S3, k) ∼= 0 for i ≥ 1.

Case 2: Let char k = 2. Since char k ∤ |N | for the normal subgroupN = {1, b, b2} ◁ S3, Corollary 3.14
yields H∗(S3, k) ∼= H∗(Z/2, k) ∼= k[x] with |x| = 1.

Case 3: Let char k = 3. Since char k ∤ [S3 : N ], we have by Corollary 3.14 and Theorem 3.7 that
H∗(S3, k) ∼= H∗(N, k)Z/2 ∼= (

∧
(e1) ⊗k k[e2])

Z/2. Letting y denote the generator of Z/2, we claim
that

y(e1) = −e1, y(e2) = −e2.

We have H1(N, k) ∼= ke1 ∼= Homgp(N, k), where e1 corresponds to φ ∈ Homgp(N, k) with φ(b) = 1.
The action of y on N is y(b) = b2, so (yφ)(b) = φ(b2) = 2 = −1 which implies y(e1) = −e1.
To obtain y(e2) = −e2, we need the fact that the action of y is compatible with the Bockstein
homomorphism β. Then

H∗(S3, k) ∼=
(∧

(e1)⊗k k[e2]
)Z/2 ∼=

∧
(e1e2)⊗k k[e

2
2].

In the first few degrees, this ring has the following generators.

degree 0 1 2 3 4 5 6 7 8

generator 1 0 0 e1e2 e22 0 0 e1e
3
2 e42

Note that H i(S3, k) ∼= k for i ≡ 0, 3 (mod 4), and H i(S3, k) ∼= 0 otherwise.

4 Support varieties

4.1 Basic properties

Recall that H∗(G, k) is a graded commutative ring: rs = (−1)|r||s|sr for all r, s ∈ H∗(G, k). If
char k = 2, then H∗(G, k) is commutative, and for char k ̸= 2, the subring of even degree elements
H2∗(G, k) is commutative. This motivates the following definition.
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Definition 4.1. Let

H ·(G, k) =

{
H∗(G, k) if char k = 2

H2∗(G, k) else

which is a finitely generated graded commutative ring over k.

Definition 4.2. The support variety VG is the maximal ideal spectrum

VG = maxH ·(G, k).

The main theorem for support varieties is is the Quillen stratification theorem which divides a
variety VG into subvarieties based on the elementary abelian subgroups of G.

Definition 4.3. For a subgroup H ≤ G, there is an induced map res∗G,H : VH → VG. For an
elementary abelian subgroup E ≤ G, define the varieties

V +
E = VE \

⋃
E′<E

res∗E,E′ VE′

V +
G,E = res∗G,E V +

E .

Theorem 4.4 (Quillen Stratification). The variety VG is a disjoint union of subvarieties

VG =
⊔
E

V +
G,E

where E ranges over representatives for the conjugacy classes of elementary abelian subgroups of G.

Example 4.5. For G = S3 and char k = 2, we have from Example 3.15 that VG = Spec k[x]. The
elementary abelian subgroups of G are ⟨id⟩, ⟨(12)⟩, ⟨(23)⟩, and ⟨(13)⟩ where the last three are
conjugates. The variety V +

E is Spec k for E = ⟨id⟩ and Spec k[x] \ Spec k for E = ⟨(12)⟩.
For G = S3 and char k = 3, we have VG = Spec k[e22] using the notation from Example 3.15. The

elementary abelian subgroups of G are ⟨id⟩ and ⟨(123)⟩, and the respective varieties V +
E are Spec k

and Spec k[e2] \ Spec k.

4.2 Varieties for modules

Definition 4.6. To each kG-module M , we associate a subvariety VG(M) ⊂ VG as follows. There
is a natural map

H ·(G, k) = Ext·kG(k, k)
⊗M−−→ Ext∗kG(M,M)

given by mapping an extension k → · · · → k to the corresponding extension k ⊗M → · · · → k ⊗M .
Let the kernel of this map be IG(M). Then

VG(M) := maxH ·(G, k)/IG(M) ⊂ VG.

We state a few properties of the subvarieties VG(M).

Proposition 4.7 ([Ben91b, Section 5.7]). Let M and N be kG-modules.

1. VG(M) = {0} if and only if M is projective.

2. VG(M ⊕N) = VG(M) ∪ VG(N).

3. VG(M ⊗N) = VG(M) ∩ VG(N).
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Note that letting M be the trivial kG-module k yields VG(k) = VG. An analogue of the Quillen
stratification theorem for modules was proven by Avrunin and Scott [AS82]. We define

V +
E (M) = V +

E ∩ VE(M)

V +
G,E(M) = res∗G,E V +

E (M).

Theorem 4.8 ([AS82]). Let M be a finitely generated kG-module. The variety VG(M) is a disjoint
union of subvarieties

VG(M) =
⊔
E

V +
G,E(M),

where E ranges over representatives for the conjugacy classes of elementary abelian subgroups of G.

Finally, we state two important theorems about VG(M) which will have quantum analogues in
Section 6.

Theorem 4.9 ([Ben91b, Corollary 5.9.2]). For every closed homogeneous subvariety V of VG, there
exists a finitely generated kG-module M such that VG(M) = V .

Theorem 4.10 ([Car84]). Let M be a finitely generated kG-module. If VG(M) = V1 ∪ V2 with
V1 ∩ V2 = {0}, then M ∼= M1 ⊕M2 with VG(M1) = V1 and VG(M2) = V2.

5 Rank varieties

Let char k = p and E = ⟨g1, . . . , gc⟩ be an elementary abelian p-group of rank c. Let xi := gi − 1 so
that kE = k[x1, . . . , xc]/(x

p
1, . . . , x

p
c), and let V r

E = span{x1, . . . , xc}. For λ = (λ1, . . . , λc) ∈ kc, we
define uλ ∈ V r

E by
uλ = λ1x1 + · · ·+ λcxc.

For all λ ̸= 0, 1 + uλ is a unit of order p for all λ ̸= 0, so k⟨1 + uλ⟩ ∼= k[x]/(xp).

Definition 5.1. The rank variety V r
E(M) of a finitely generated kE-module M is

V r
E(M) = {0} ∪ {λ ∈ kc | M is not a projective k⟨1 + uλ⟩-module}.

The following rank inequality yields a straightforward way to compute whether λ ∈ V r
E(M).

Theorem 5.2. For all λ ∈ kc, we have

rankuλ ≤ p−1
p dimM,

where uλ denotes the map M
·uλ−−→ M that is multiplication by uλ. Equality holds if and only if

λ /∈ V r
E(M).

To prove this, we use following two facts about modules over a principal ideal domain.

Lemma 5.3. A module M over a PID is projective if and only if it is free.

Lemma 5.4. For a module M over a PID R, there exists a unique sequence of ideals (r1) ⊇ · · · ⊇ (rn)
such that M ∼= R/(r1)⊕ · · · ⊕R/(rn).

Proof. In our case with R = k[x]/(xp), all ideals of R are of the form (xi), so the possible summands
of M are of the form k[x]/(xi). For a free R-module summand M ′ = k[x]/(xp), we have dimM ′ = p
and dimxM ′ = p− 1, so there is equality in Theorem 5.2. If M is not projective and contains a
summand k[x]/(xi) for i < p, then we will have dimxM < p−1

p dimM .
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Corollary 5.5. If p ∤ dimM , then V (M) = kc.

Proof. If p−1
p dimM is not an integer, then equality can not hold in Theorem 5.2.

The Avrunin–Scott theorem [AS82] states that the rank and support varieties of a kE-module
M are isomorphic, which is useful as rank varieties are easier to compute.

Theorem 5.6 (Avrunin–Scott). There is a natural isomorphism VE
∼= V r

E under which VE(M) is
identified with V r

E(M).

There are some other properties analogous to Proposition 4.7 and Theorem 4.9.

Proposition 5.7 ([Ben91b, Section 5]). Let M and N be finitely generated kE-modules.

1. V r
E(M) is a closed homogeneous subvariety of kc.

2. V r
E(M) = {0} if and only if M is projective.

3. V r
E(M ⊕N) = V r

E(M) ∪ V r
E(N).

4. V r
E(M ⊗k N) = V r

E(M) ∩ V r
E(N).

5. For a closed homogeneous subvariety V of kc, there exists a finitely generated kE-module M
such that V r

E(M) = V .

6 Quantum complete intersections

We define support and rank varieties for quantum complete intersections following [BE09], before
presenting a quantum version of the Avrunin–Scott theorem which relates the two.

In the remainder of the paper, let k be an algebraically closed field. Let Λ be a finite-dimensional
k-algebra, and let Λe be the enveloping algebra Λ ⊗k Λop. The Hochschild cohomology ring is
HH∗(Λ) = Ext∗Λe(Λ,Λ) which is a graded k-algebra under the Yoneda product. An element of
HHn(Λ) can be represented by an extension

0 → Λ → E1 → · · · → En → Λ → 0.

Tensoring with a Λ-module M yields

0 → M → E1 ⊗Λ M → · · · → En ⊗Λ M → M → 0

which is exact. We then obtain a homomorphism

HH∗(Λ) → Ext∗Λ(M,M).

Definition 6.1. Let H be a commutative graded subalgebra of HH∗(Λ), and let M be a Λ-module.
The support variety VH(M) is defined by

VH(M) = {m ∈ maxH | m ⊃ AnnH Ext∗Λ(M,M)}.

Next, we define a special k-algebra Ac
q that is a quantum complete intersection. For Λ = Ac

q,

there exists a polynomial subalgebra H ∼= k[η1, . . . , ηc] of HH
2∗(Ac

q) with |ηi| = 2 [BE09]. This is
the H that we will take for the rest of the section.
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Definition 6.2. For a fixed integer a ≥ 2, let

a′ :=

{
a/ gcd(a, char k) if char k > 0

a if char k = 0
,

and let q ∈ k be a primitive a′th root of unity. The k-algebra Ac
q is defined by

Ac
q = k⟨x1, . . . , xc⟩/({xai }, {xixj − qxjxi}i<j).

Given λ = (λ1, . . . , λc) ∈ kc, define uλ ∈ Ac
q by

uλ = λ1x1 + · · ·+ λcxc.

Lemma 6.3 ([BEH07]). We have uaλ = 0.

Proof. The q-analogue of multinomial coefficients is(
r

r1, . . . , rn

)
q

=
[r]q!

[r1]q! · · · [rn]q!

where [m]q! = [m]q[m− 1]q · · · [1]q for m ≥ 1, or 1 for m = 0, and [m]q =
1−qm

1−q . Then

(
a′

r1, . . . , rc

)
=

{
1 if ri = a′ for some i

0 else

because if no ri equals a
′, then the numerator is 1−qa

′

1−q = 0. Thus,

ua
′

λ = λa′
1 x

a′
1 + · · ·+ λa′

c x
a′
c .

We are already done if a′ = a, as xai = 0 =⇒ uaλ = 0. Otherwise if char k = p and a = a′p, we

use the fact that xa
′

i x
a′
j = xa

′
j x

a′
i (because there are (a′)2 commutations and q(a

′)2 = 1) to obtain

uaλ = (λa′
1 x

a′
1 + · · ·+ λa′

c x
a′
c )

p

= λa
1x

a
1 + · · ·+ λa

cx
a
c

= 0.

The formula for q-multinomial coefficients in the above proof also shows for λ ≠ 0 that uiλ ≠ 0
for i < a. Importantly, we have

k[uλ] ∼= k[x]/(xa)

for all λ ̸= 0. We may now define rank varieties similarly to those for kE-modules in Definition 5.1.

Definition 6.4. The rank variety V r
A(M) of an Ac

q-module M is

V r
A(M) = {0} ∪ {λ ∈ kc | M is not a projective k[uλ]-module}.

Since uλ has order a, the same argument as Theorem 5.2 shows that M not being a projective
k[uλ]-module is equivalent to the following rank inequality.

12



Theorem 6.5. For all λ ∈ kc, we have

rankuλ ≤ a−1
a dimM,

where uλ denotes the map M
·uλ−−→ M that is multiplication by uλ. Equality holds if and only if

λ /∈ V r
A(M).

This theorem shows that the rank variety is indeed a homogeneous affine variety. The rank
variety is related to the support variety via a quantum version of the Avrunin–Scott theorem.

Theorem 6.6 ([BE09]). Let F : kc → kc be the map which sends (α1, . . . , αc) 7→ (αa
1, . . . , α

a
c ). For

every Ac
q-module M , we have

F (V r
A(M)) = VH(M).

Remark 6.7. It is not possible to extend this rank variety definition to most other quantum complete
intersections k⟨x1, . . . , xc⟩/({xaii }, {xixj − qijxjxi}i<j). In particular, we need uλ to have the same
order for all λ ̸= 0. This is not true if the exponents ai are not all the same. Also, Lemma 6.3 does
not hold when q is not a primitive a′th root of unity.

The following two theorems are analogues of Theorem 4.9 and Theorem 4.10 for Ac
q-modules

instead of kG-modules.

Theorem 6.8. For every closed homogeneous subvariety V of VH , there exists a finitely generated
Ac

q-module M such that VH(M) = V .

Theorem 6.9. Let M be a finitely generated Ac
q-module. If VG(M) = V1 ∪ V2 with V1 ∩ V2 = {0},

then M ∼= M1 ⊕M2 with VG(M1) = V1 and VG(M2) = V2.

[EHT+04] proves these theorems for Λ-modules under two conditions:

1. There exists a commutative Noetherian graded subalgebra H of HH∗(Λ) with H0 = HH0(Λ).

2. Ext∗Λ(M,N) is a finitely generated H-module for all finitely generated Λ-modules M,N .

Then [BO08, Theorem 5.5] proves that that Λ := k⟨x1, . . . , xn⟩/({xaii }, {xjxi − qijxixj}i<j) satisfies
these conditions with respect to H = HH2∗(Λ) if and only if all qij are roots of unity. In particular,
Theorem 4.9 and Theorem 4.10 hold for Λ = Ac

q.

7 Rank varieties for low-dimensional modules

We compute the rank varieties of the modules in [YZ19] subject to the conditions in Definition 6.2
from [BE09]. You and Zhang [YZ19] classify all indecomposable modules over the k-algebras

A(q, 2, 2) = k⟨x, y⟩/(x2, y2, xy − qyx)

A(q,m, n) = k⟨x, y⟩/(xm, yn, xy − qyx)

of dimensions up to 5 and 3 respectively. To apply Theorem 6.5 for A(q, 2, 2) we need q = −1, and
for A(q,m, n) we need m = n = a and for q to be a primitive a′th root of unity. In other words, we
will compute the rank varieties of modules over the k-algebras

A(−1, 2, 2) = k⟨x, y⟩/(x2, y2, xy + yx) (1)

A(q, a, a) = k⟨x, y⟩/(xa, ya, xy − qyx). (2)

Recall from Theorem 6.5 that the rank condition for both algebras is rankuλ < a−1
a dimM , where

uλ = λ1x+ λ2y.
Following [YZ19], we use diagrams with vertices and labeled arrows to represent the A-modules.
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Definition 7.1. The vertices are basis elements of the module, and the arrows are labeled with
generators of A. A solid arrow such as

u vx

means xu = v. A dashed arrow
u vx

means xu = αv for some α ∈ k∗, and two dashed arrows

v u wx x

with the same label means xu = αv + βw for α, β ∈ k∗. If there does not exist an arrow from a
vertex u labeled with x, then xu = 0.

Indecomposable modules over the algebra (1)

We first compute the rank varieties of indecomposable A(−1, 2, 2)-modules of dimensions up to 5.
Recall from Corollary 5.5 that when a = 2 does not divide dimM , we should obtain V r

A(M) = k⊕2.

Dimension 2

The rank condition is rankuλ < 1
2 · 2, or uλ = 0.

1.1. u vx 1.2. u v
y

1.3. u v
x

y

In Diagram 1.3, yu = αv for α ∈ k∗.

1. We need (λ1x+ λ2y)u = λ2v = 0 so λ2 = 0 .

2. Similar to the above case, λ1 = 0 .

3. We need (λ1x+ λ2y)u = (λ1 + λ2α)v = 0 so λ1 + λ2α = 0 .

Dimension 3

The rank condition is rankuλ < 1
2 · 3, or rankuλ ≤ 1.

2.1. v1 v v2
x y

2.2. v1 v v2
x y

1. Since v1 and v2 are annihilated by uλ, the rank variety is k⊕2 .

2. Since imuλ is spanned by v, the rank variety is k⊕2 .
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Dimension 4

The condition is rankuλ < 1
2 · 4, or rankuλ ≤ 1.

3.1.

u1 u2

v1 v2

y

x x
y

3.2.

u1 u2

v1 v2

x xy
3.3.

u1 u2

v1 v2

y y
x

3.4.

u1 u2

v1 v2

xy
y x y

We have yv1 = q−1v2 in Diagram 3.1 and yu1 = αv1 + v2, yu2 = αv2 in Diagram 3.4.

1. Since imuλ = span{λ1v1 + λ2u2, λ1v2, q
−1λ2v2}, we need λ1 = λ2 = 0 .

2. Since imuλ = span{λ1v1, λ1v2 + λ2v1}, we need λ1 = 0 .

3. Similar to the above case, λ2 = 0 .

4. Since imuλ = span{λ1v1 + λ2(αv1 + v2), (λ1 + λ2α)v2}, we need λ1 + λ2α = 0 .

Dimension 5

The condition is rankuλ < 1
2 · 5, or rankuλ ≤ 2.

4.1.

u1 u u2

v1 v2

x y x y 4.2.

u1 u2

v1 v v2

y
x

x
y

1. Since imuλ is spanned by only v1 and v2, the rank variety is k⊕2 .

2. Since v1, v, and v2 are annihilated by uλ, the rank variety is k⊕2 .

Indecomposable modules over the algebra (2)

We now compute the rank varieties of indecomposable A(q, a, a)-modules of dimensions up to 3.

Dimension 2

A 2-dimensional A(q, a, a)-module M for a ≥ 3 is in fact an A(q, 2, 2)-module: x2 must act by 0 on
M , and similarly for y2.

These were classified earlier. In all cases, for a > 2, the rank variety is k⊕2 by Corollary 5.5 as
a ∤ dimM . Alternatively, we can check that rankuλ < a−1

a · 2 or rankuλ ≤ 1 is true in all examples.
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Dimension 3

We need rankuλ < a−1
a · 3. If a > 3, then this is satisfied for all λ ∈ k⊕2 as a ∤ dimM , so it remains

to consider the case of a = 3 and rankuλ ≤ 1.

5.1. u v w
y y

5.2. u v wx x

5.3. u v wx y
5.4. u v wx y

5.5. u v wy

x

y 5.6. u v wx

y

x

5.7. u v wx

y

x

y

We have xu = αw in Diagram 5.5, yu = αw in Diagram 5.6, and yu = qαv, yv = αw in Diagram
5.7.

1. Since imuλ = span{λ2v, λ2w}, we need λ2 = 0 .

2. Similar to the above case, λ1 = 0 .

3. Since imuλ is spanned by v, the rank variety is k⊕2 .

4. Since u and w are annihilated by uλ, the rank variety is k⊕2 .

5. Since imuλ = span{λ2v + λ1αw, λ2w}, we need λ2 = 0 .

6. Similar to the above case, λ1 = 0 .

7. Since imuλ = span{λ1v + qαv, λ1w + αw}, we need λ1 + λ2qα = 0 or λ1 + λ2α = 0 .

Note that the last case does not contradict Theorem 6.9: applying F to the lines {λ1+λ2α = 0}
and {λ1 + λ2qα = 0} both yield the points {(λa, (−λα)a) : λ ∈ k} since qa = 1. This is an example
of how the rank variety of an Ac

q-module does not have to be connected, even though the support
variety is.

8 Classifying rank varieties over quantum complete intersections

In the previous section, we computed special cases of rank varieties of modules over

A = k⟨x, y⟩/(xa, ya, xy − qyx).

We now provide progress towards the following question.

Question 8.1. Characterize the attainable rank varieties V r
A(M) of indecomposable A-modules M .
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The quantifier “indecomposable” is added for simplicity, as we can understand rank varieties of
A-modules in general by taking unions of rank varieties of indecomposable A-modules. The support
and rank varieties of an A-module are homogeneous closed subvarieties of k⊕2, yielding possibilities
of {0}, k⊕2, and a union of lines. From Theorem 6.9, the support variety VH(M) = F (V r

A(M)) of
an indecomposable A-module M is connected, which yields the cases of {0}, k⊕2, and one line. We
give examples for attaining V r

A(M) = {0} and k⊕2, and a specific example in the third case which
generalizes the low-dimensional examples in Section 7.

Case 1: F (V r
A(M)) = {0}.

Then V r
A(M) = {0}. We show this is attainable by the free A-module A. Visually, it is the

following diagram which generalizes Diagram 3.1, where xvij = qj−1v(i+1)j for all 1 ≤ i ≤ a− 1 and
1 ≤ j ≤ a.

v11 v12 · · · v1a

v21 v22 · · · v2a

··
·

··
· . . . ··
·

va1 va2 · · · vaa

y

x

y

x

y

x

y

x

y

x

y

x

x x x

y y y

We can find a(a− 1) linearly independent vectors in imuλ which are the images of vij for 1 ≤ i ≤ a
and 1 ≤ j ≤ a− 1, unless λ1 = λ2 = 0. Since dimA = a2, this means rankuλ < a−1

a dimM only for
λ = 0, and V r

A(M) = {0}. To see that it is indecomposable, we defer the proof to Proposition 8.2.

Case 2: F (V r
A(M)) = k⊕2.

Then V r
A(M) = k⊕2 by considering the possibilities for homogeneous subvarieties of k⊕2. This is

attainable whenever a ∤ dimM by Corollary 5.5. However, this is not a necessary condition, as in
Diagram 5.3 with a = 3 and dimM = 3, there were also rank varieties with V r

A(M) = k⊕2.

Case 3: F (V r
A(M)) is one line.

For ease of computation, suppose F (V r
A(M)) is the line {(λa, (−λα)a) | λ ∈ k} for some α ∈ k

so that

V r
a (M) ⊂

a−1⋃
i=0

{λ1 + λ2q
iα = 0}.

It is still an open question as to which subvarieties are attainable in this case, but we present three
examples.

1. Generalizing Diagram 5.2, we can consider the following module.

v1 v2 · · · va
x x x

In order for rankuλ < a−1
a · a, we need dim span{λ1v2, . . . , λ1va} ≤ a− 2, so λ1 = 0 .

2. By replacing all instances of x with y in the previous module diagram, we can similarly obtain
the locus λ2 = 0 .
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3. We can construct a union of lines which are rotations by q using a generalization of Diagram
5.7. Consider the module diagram

v1 v2 · · · va−2 va−1 vax

y

x

y

x

y

x

y

x

y

(3)

where yvi = qa−1−iαx for all 1 ≤ i ≤ a− 1. The rank condition is rankuλ < a−1
a · a, or

dim span{(λ1 + λ2q
a−2α)v2, . . . , (λ1 + λ2qα)va−1, (λ1 + λ2α)va} ≤ a− 2.

This yields the locus

{λ1 + λ2q
a−2α = 0} ∪ · · · ∪ {λ1 + λ2qα = 0} ∪ {λ1 + λ2α = 0}.

which is a union of a− 1 distinct lines if a′ = a, or a′ distinct lines if a′ < a.

The following proposition shows that all A-modules constructed in this section are indecompos-
able.

Proposition 8.2. An A-module that is generated by a single element is indecomposable.

Proof. For a module M over a local ring (A,m), all minimal generating sets of M have the same
cardinality, namely dimA/mM/mM by Nakayama’s lemma. As A = k⟨x, y⟩/(xa, ya, xy − qyx) is a
local ring with maximal ideal (x, y), an A-module M which splits as a direct sum must be generated
by more than one element.

9 Future directions

In addition to Question 8.1, we have the following conjectures and questions.

Conjecture 9.1. Let c > 2 be fixed. Not all homogeneous subvarieties V ⊂ kc are attainable as
the rank variety V r

A(M) of some Ac
q-module M .

This is a conjectured partial answer to Question 8.1. The motivation comes from the kG-module
case where the proof of Theorem 4.10 relies on a construction which implies Theorem 4.9. However,
connectedness for rank varieties of indecomposable Ac

q-modules does not hold as seen from Diagram
5.7.

Note that Conjecture 9.1 is known to be true for support varieties VH(M) of Ac
q-modules as

stated in Theorem 6.8. It is also true for rank varieties in the c = 2 case by the computations in
Section 7, as all lines λ1 + λ2α = 0 are attainable. In particular, we have not yet found for c > 2 an
Ac

q-module M for which V r
A(M) = {λ1 + λ2α = 0} with α ̸= 0.

For the next conjecture, we consider the c = 2 case and define φqi : A → A as the automorphism
with x 7→ x and y 7→ qiy. Let Mqi be the “twisted” module M with the action of λ ∈ A on m ∈ Mqi

defined to be φ(λ)m. In other words, (α, qiβ) ∈ V r
A(M) corresponds to (α, β) ∈ V r

A(Mqi).

Conjecture 9.2. For the c = 2 case, if (α, β) ∈ V r
A(M), then (α, β) ∈ V r

A(Mqi) for all but at most
one of 1 ≤ i ≤ a′.

This encapsulates the rank variety of the module diagram (3) which is a union of a− 1 lines if
a′ = a, or a′ lines otherwise.
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Question 9.3. Is it possible to generalize rank varieties to the quantum complete intersection
k⟨x1, . . . , xc⟩/({xai }, {xixj − qijxjxi}i<j) where qij are potentially different primitive a′ roots of
unity?

From Remark 6.7, we likely need all qij to be primitive a′ roots of unity for a rank variety
definition to make sense.

Question 9.4. Classify the attainable rank varieties of Ac
q-modules for c > 2.

This is an extension of Question 8.1 to c > 2 variables. We give one example of a module which
naturally generalizes Diagram 3.4 to c > 2 variables. Consider the following module with vertices
v1, . . . , vr, w1, . . . , wr and arrows labeled with x1, . . . , xn between from each ui to each vj .

v1 v2 · · · vr

w1 w2 · · · wr

xi
xi xi (4)

The rank of uλ can be computed as follows. Construct an r × r matrix U with (i, j)th entry as

λ1(coefficient of ui
x1
99K vj) + · · ·+ λn(coefficient of ui

xn
999K vj).

Then rankuλ = rankU , and for an r × r matrix U , we have

rankuλ = rankU ≤ r − 1 ⇐⇒ detU = 0.

However, it is not possible to construct all homogeneous polynomials in λ1, . . . , λn as detU for some
r × r matrix U with linear entries. Furthermore, this module may not be indecomposable.

Question 9.5. Is there a condition of the corresponding matrix U , such as diagonalizability, which
characterizes whether the above Ac

q-module (4) is indecomposable?

For context from [YZ19], the more general form of Diagram 3.4 in the c = 2 case is the diagram

u1 u2

v1 v2

x
y

y
x

y
y

(
yu1
yu2

)
= T

(
v1
v2

)

for a 2× 2 invertible matrix T . From [YZ19, Lemma 2], this A-module is indecomposable if and
only if T is not diagonalizable. Now assuming that k is algebraically closed, we can write T in

Jordan normal form as
(
α 1
0 α

)
to obtain Diagram 3.4.
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