
DYSON BROWNIAN MOTION AS NONCOLLIDING BROWNIAN MOTION

SERENA AN

Abstract. In this expository paper, we discuss Dyson Brownian motion as noncolliding Brownian

motions via Doob’s h-transform. We additionally outline the usage of Doob’s h-transform for

describing Dyson Brownian motion with a boundary at the origin.

1. Introduction

Dyson Brownian motion was initially described as the eigenvalues of an n ˆ n Hermitian

random matrix with entries performing independent complex-valued Brownian motions [Dys62].

These n (real) eigenvalues X1 ď X2 ď ¨ ¨ ¨ ď Xn satisfy the stochastic differential equations

dXi “
ÿ

1ďjďn
j‰i

dt

Xi ´ Xj

` dBi (1 ď i ď n)

for independent one-dimensional Brownian motions Bi (1 ď i ď n). The process also satisfies

X1ptq ă X2ptq ă ¨ ¨ ¨ ă Xnptq for all times t ą 0 a.s. [Sas11]. From the SDE, the eigenvalues can

be thought of as evolving according to a Brownian motion and a “repulsion force” between nearby

eigenvalues that is inversely proportional to their separation.

The fact that the eigenvalues are distinct motivates viewing Dyson Brownian motion as n
processes conditioned to never collide. In fact, this leads to the main theorem of our paper: an

equivalent definition of Dyson Brownian motion is n independent Brownian motions conditioned to
never collide.

The aim of this expository paper is to introduce Dyson Brownian motion from the perspective

of noncolliding Brownian motions. We begin in Section 2 by defining Doob’s h-transform, a

technique of rescaling transition probabilities that will be useful in the later sections; our primary

reference is Bloemendal [Blo10]. In Theorem 3.1, we state the aforementioned main theorem, that

the eigenvalues in Dyson Brownian motion are equal in distribution to n independent Brownian

motions conditioned to never collide. In the remainder of Section 3, we present one proof following

Li [Li21] which uses clever algebraic identities and martingale properties. In Section 4, we outline

another proof by Sasamoto [Sas11] which uses a more general method with transition densities.

Finally in Section 5, we outline how Sasamoto [Sas11] uses this general method to construct Dyson

Brownian motion with a boundary at the origin.

2. Doob’s h-transform

2.1. Definitions. Informally, Doob’s h-transform is used to rescale the transition probabilities of

a Markov process in order to condition on an event. We can then study the conditioned Markov

process and compute its modified SDE.

Massachusetts Institute of Technology

E-mail address: anser@mit.edu.
Date: May 14, 2024.

1



2 DYSON BROWNIAN MOTION AS NONCOLLIDING BROWNIAN MOTION

Let pXtqtě0 be a Markov process on a state space pE, Eq with transition semigroup P tpx, dyq;

for our purposes, we will only use E “ Rn
. Let Pxr¨s denote Pr¨ | X0 “ xs, so that

P t
px, dyq “ PxrXt P dys.

Now consider a shift-invariant event A of positive probability, meaning that

PrpXt`sqsě0 P A | Xt “ ys “ PrpXsqsě0 P A | X0 “ ys (2.1)

for all t ě 0. We are interested the conditional probability

P̃ t
px, dyq :“ PxrXt P dy | As, (2.2)

which can be computed in terms of P tpx, dyq by Bayes’ theorem as follows. Letting hpxq “ PxrAs,

we have

P̃ t
px, dyq “ PxrXt P dy | As “

PxrA | Xt “ ysPxrXt P dys

PxrAs
“

hpyq

hpxq
P t

px, dyq, (2.3)

where the equality PxrA | Xt “ ys “ hpyq is from the shift-invariance of A.
Let Ẽ “ tx P E | PxrAs ą 0u denote the set of states from which A is accessible. Since for all

x P Ẽ we have
ż

Ẽ

P̃ t
px, dyq “

ż

Ẽ

PxrXt P dy | As “ 1,

P̃ tpx, dyq is a transition semigroup on Ẽ. Restated using (2.3), we have the following theorem.

Theorem 2.1 (Doob’s h-transform). pXtqtě0 is a Markov process on Ẽ with transition semigroup

P̃ t
px, dyq “

hpyq

hpxq
P t

px, dyq. (2.4)

More generally, Theorem 2.1 holds for the following class of functions h, for which integrating

P̃ tpx, dyq in (2.4) also yields a probability measure.

Definition 2.2. A harmonic function h satisfies P th “ h for all t ě 0; written out, that is

hpxq “

ż

E

hpyqP t
px, dyq

for all x P E.

Let H be a shift-invariant function so that H “ H ˝ θt, where θt : Xs ÞÑ Xt`s is the time shift.

One can show that hpxq :“ ExrHs is a harmonic function, and that all harmonic functions are

of this form [Blo10]. The aforementioned case of a shift-invariant event A “ θ´1
t A in (2.1) is the

special case H “ 1A.

In summary, Doob’s h-transform (2.4) can be thought of as reweighting transition probabilities

P tpx, dyq by some function hpyq, and dividing by a normalization factor hpxq. For the following

sections in which we condition a process to be confined to a certain region of Rn
, the key is to

find the appropriate harmonic function hpxq that has the correct behavior at the boundaries of

the region.
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2.2. Effect on an SDE. We now study the Markov process associated with P̃ tpx, dyq, deriving

its infinitesimal generator and SDE in terms of those for the original Markov process.

Recall the infinitesimal generator L is given by

Lfpxq “ lim
tÓ0

P tfpxq ´ fpxq

t
“ lim

tÓ0

ExrfpXtqs ´ fpxq

t
.

We may compute the conditioned generator L̃ in terms of L as follows:

L̃fpxq :“ lim
tÓ0

ExrfpXtq | As ´ fpxq

t

“ lim
tÓ0

1

t

ˆ
ż

E

fpyqP̃ t
px, dyq ´ fpxq

˙

“ lim
tÓ0

1

t

ˆ
ż

E

fpyq
hpyq

hpxq
P t

px, dyq ´ fpxq

˙

“
1

hpxq
lim
tÓ0

1

t

ˆ
ż

E

fpyqhpyqP t
px, dyq ´ fpxqhpxq

˙

“
1

hpxq
Lfhpxq. (2.5)

Let us now consider specifically the case of an n-dimensional diffusion process X t satisfying

dX t “ µpX tq dt ` dBt (2.6)

for Bt an n-dimensional Brownian motion. For such a process, Itô’s formula yields

Lfpxq “ xµpxq,∇fpxqy `
1

2
∆fpxq.

We wish to explicitly compute the conditioned generator L̃ for (2.6) as well, using (2.5). A fact

that simplifies the computation is the following: for harmonic functions h satisfying P th “ h, we
have by the definition of L that

0 “ Lhpxq “ xµpxq,∇hpxqy `
1

2
∆hpxq.

Now we compute that

L̃f “
1

h
Lfh

“
1

h

ˆ

xµ,∇pfhqy `
1

2
∆pfhq

˙

“
1

h

ˆ

xµ, p∇fqh ` fp∇hqy `
1

2
pfp∆hq ` 2x∇f,∇hy ` p∆fqhq

˙

“ xµ,∇fy `
1

h
x∇h,∇fy `

1

2
∆f

“ xµ ` ∇ log h,∇fy `
1

2
∆f.

Written out in entirety, the conditioned generator L̃ for (2.6) is

L̃fpxq “ xµpxq ` ∇ log hpxq,∇fpxqy `
1

2
∆fpxq,
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which corresponds to the diffusion process

dX̃ t “ pµpX̃ tq ` ∇ log hpX̃ tqq dt ` dBt. (2.7)

Comparing (2.6) and (2.7) shows that Doob’s h-transform adds a drift term ∇ log hpX̃ tq dt.
The resulting SDE in (2.7) is nice in terms of the function h, but oftentimes h will be intractable.

Fortunately, Doob’s h-transform will work nicely in the following sections because the functions

h we consider will have special structures and clean partial derivatives.

3. Dyson Brownian Motion as Noncolliding Brownian Motion

The main theorem in this section is an alternate characterization of Dyson Brownian motion as

n independent Brownian motions conditioned to never collide.

Theorem 3.1. Let pX1, . . . , Xnq be a Dyson Brownian motion with initial conditions satisfying
X1p0q ă ¨ ¨ ¨ ă Xnp0q. Then for independent standard Brownian motions pB1, . . . , Bnq with the
same initial conditions, we have the following equality in distribution:

pX1, . . . , Xnq
d
“ pB1, . . . , Bnq | A,

where A denotes the event that the Bi never intersect.

The proof in the remainder this section follows Li [Li21]. Since A has probability 0, we cannot
use the construction in (2.3) with hpxq “ PxrAs “ 0. However, we introduce the following

definition to write A as the limit of events with positive probability, in order to use Doob’s

h-transform.

Definition 3.2. For x “ px1, . . . , xnq P Rn
, the Vandermonde determinant Vnpxq is defined as

Vnpxq “
ź

1ďiăjďn

pxj ´ xiq.

The initial condition in Theorem 3.1 implies that VnpB0q ą 0. Furthermore, we have VnpBtq ą 0
for all t ě 0 if and only if the Bi never intersect. This motivates defining for c ą 0 the events

Ac “ tVnpBtq hits c before 0u,

which satisfy

A “ lim
cÑ8

Ac.

We now show that VnpBtq is a martingale, so the h-transform hcpxq :“ PxrAcs can be easily

calculated from the optional stopping theorem: the probability that a martingale VnpBtq started

from VnpB0q “ Vnpxq hits c before 0 is Vnpxq

c
.

Lemma 3.3. VnpBtq is a martingale.

Proof. By Itô’s formula, we have

dVnpBtq “
1

2

n
ÿ

i“1

BiiVnpBtq dt ` ∇VnpBtq ¨ dBt,

where the second term is a martingale. We will compute that the coefficient of dt above is in fact

0, so VnpBtq will be a true martingale.
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For x P Rn
, we compute

BiVnpxq “
ÿ

j‰i

Vnpxq

xi ´ xj

,

BiiVnpxq “
ÿ

j‰i

ÿ

k‰i,j

Vnpxq

pxi ´ xjqpxi ´ xkq
.

Then by the identity

1

pxi ´ xjqpxi ´ xkq
`

1

pxj ´ xiqpxj ´ xkq
`

1

pxk ´ xiqpxk ´ xjq
“ 0 (3.1)

for distinct xi, xj, xk, we have

n
ÿ

i“1

BiiVnpxq “ Vnpxq

n
ÿ

i“1

ÿ

j‰i

ÿ

k‰i,j

1

pxi ´ xjqpxi ´ xkq

“ 0,

as desired. □

Proof of Theorem 3.1. By Lemma 3.3 and the optional stopping theorem, the h-transform corre-

sponding to the event Ac is

hcpxq :“ PxrAcs “
Vnpxq

c
.

Now we may explicitly compute the Bi log hcpxq term that appears in the conditioned SDE (2.7):

Bi log hcpxq “ Biplog Vnpxq ´ log cq

“
1

Vnpxq
BiVnpxq

“
ÿ

j‰i

1

xi ´ xj

. (3.2)

Returning to the theorem statement, we begin with a standard Brownian motion pB1, . . . , Bnq

which satisfies dBt “ dBt. From (2.7) and (3.2), the process conditioned on Ac satisfies

dB̃i “
ÿ

j‰i

dt

B̃i ´ B̃j

` dBi, (1 ď i ď n)

which is the SDE for a Dyson Brownian motion pX1, . . . , Xnq. Observing that the conditioned

SDE is independent of c, we may take c Ñ 8 to obtain pX1, . . . , Xnq
d
“ pB1, . . . , Bnq | A. □

The proof of Theorem 3.1 in this section uses only the special case of Doob’s h-transform from

(2.2) with the events of positive probability Ac. It also relies on almost-magical properties of the

Vandermonde determinant for Lemma 3.3 to hold and give a clean closed form to PxrAcs. In

the next section, we outline a more reliable proof method that uses the full generality of Doob’s

h-transform from (2.4).
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4. Transition Densities

In this section, we outline the computations that Sasamoto [Sas11] uses to prove Theorem 3.1

via transition densities. By the Kolmogorov backward equation, the transition density p`
t px, yq

for Dyson Brownian motion satisfies

B

Bt
p`
t “

1

2

n
ÿ

i“1

B2

Bx2
i

p`
t `

n
ÿ

i“1

ÿ

j‰i

1

xi ´ xj

¨
B

Bxi

p`
t . (4.1)

On the other hand, the Karlin-McGregor formula [KM59] gives the transition density ptpx, yq

of n noncolliding Brownian motions as the determinant

ptpx, yq “ det
´

1?
2πt

e´pxi´yjq2{2t
¯

1ďi,jďn

where each entry is a 1-dimensional Brownian transition density. We remark that ptpx, yq satisfies

the heat equation

B

Bt
pt “

1

2

n
ÿ

i“1

B2

Bx2
i

pt, (4.2)

since each 1-dimensional Brownian transition density in the determinant expansion satisfies the

heat equation.

The function we use for Doob’s h-transform is, unsurprisingly, the Vandermonde determinant:

hpxq :“
ź

1ďiăjďn

pxj ´ xiq.

One can show that h is harmonic via an integral computation [Sas11]. Then Theorem 3.1 can be

rephrased as follows.

Theorem 4.1. The h-transformed transition probability

hpyq

hpxq
ptpx, yq

satisfies (4.1) in place of p`
t px, yq.

We color-code groups of expressions in the following proof for ease of verification. The key to

the computation is the fact that

n
ÿ

i“1

˜

´
B2

Bx2
i

log hpxq ´

ˆ

B

Bxi

log hpxq

˙2
¸

“ 0 (4.3)

for this particular function hpxq.

Proof of Theorem 4.1. Writing

ř

j‰i
1

xi´xj
as

B

Bxi
log hpxq, the equation we wish to show is

B

Bt

ˆ

hpyq

hpxq
ptpx, yq

˙

“
1

2

n
ÿ

i“1

B2

Bx2
i

ˆ

hpyq

hpxq
ptpx, yq

˙

`

n
ÿ

i“1

B

Bxi

log hpxq ¨
B

Bxi

ˆ

hpyq

hpxq
ptpx, yq

˙

.

From (4.2), we know that the left hand side equals

B

Bt

ˆ

hpyq

hpxq
ptpx, yq

˙

“
1

2

n
ÿ

i“1

hpyq

hpxq
¨

B2

Bx2
i

ptpx, yq. (4.4)
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For the last term on the right hand side, applying the product rule and the fact that

B

Bxi

1

hpxq
“

1

hpxq
¨ ´

B

Bxi

log hpxq (4.5)

yields

B

Bxi

ˆ

hpyq

hpxq
ptpx, yq

˙

“ ´
B

Bxi

log hpxq ¨
hpyq

hpxq
ptpx, yq `

hpyq

hpxq
¨

B

Bxi

ptpx, yq. (4.6)

Using (4.5) and (4.6), we also obtain the equation

B

Bxi

hpyq

hpxq
¨

B

Bxi

ptpx, yq “ ´
B

Bxi

log hpxq ¨
hpyq

hpxq
¨

B

Bxi

ptpx, yq

“ ´
B

Bxi

log hpxq ¨

ˆ

B

Bxi

ˆ

hpyq

hpxq
ptpx, yq

˙

`
B

Bxi

log hpxq ¨
hpyq

hpxq
ptpx, yq

˙

.

Then we compute the second partial derivative by the product rule on (4.6):

B2

Bx2
i

ˆ

hpyq

hpxq
ptpx, yq

˙

“ ´
B2

Bx2
i

log hpxq ¨
hpyq

hpxq
ptpx, yq ´

B

Bxi

log hpxq ¨
B

Bxi

ˆ

hpyq

hpxq
ptpx, yq

˙

`
B

Bxi

hpyq

hpxq
¨

B

Bxi

ptpx, yq `
hpyq

hpxq
¨

B2

Bx2
i

ptpx, yq

“
hpyq

hpxq
¨

B2

Bx2
i

ptpx, yq ´ 2
B

Bxi

log hpxq ¨
B

Bxi

ˆ

hpyq

hpxq
ptpx, yq

˙

(4.7)

`

˜

´
B2

Bx2
i

log hpxq ´

ˆ

B

Bxi

log hpxq

˙2
¸

hpyq

hpxq
ptpx, yq.

One may verify that

´
B2

Bx2
i

log hpxq ´

ˆ

B

Bxi

log hpxq

˙2

“ ´2
ÿ

j,k‰i

1

pxi ´ xjqpxi ´ xkq
,

so upon summing from 1 ď i ď n, this term disappears by the identity (3.1). Comparing the right

hand sides of (4.4), (4.6), and (4.7) yields the desired equation. □

This technique of considering partial differential equations satisfied by the transition densities

of certain processes will also be applied in the next section when considering Dyson Brownian

motion with a boundary at the origin.

5. Dyson Brownian Motion with a Boundary

In this section, we outline how Sasamoto [Sas11] uses Doob’s h-transform to construct Dyson

Brownian motion of types C and D, which can be thought of as Dyson Brownian motion with a

wall at the origin that is absorbing or reflecting, respectively. Their SDEs are as follows.

Definition 5.1. In Dyson Brownian motion of type C , the stochastic dynamics of the particles

0 ă X1 ă X2 ă ¨ ¨ ¨ ă Xn are described by the stochastic differential equations

dXi “ dBi `
dt

Xi

`
ÿ

j‰i

ˆ

1

Xi ´ Xj

`
1

Xi ` Xj

˙

dt.

for 1 ď i ď n.
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Definition 5.2. In Dyson Brownian motion of type D, the stochastic dynamics of the particles

0 ď X1 ă X2 ă ¨ ¨ ¨ ă Xn are described by the stochastic differential equations

dXi “ dBi `
1

2
1ti“1udLt `

ÿ

j‰i

ˆ

1

Xi ´ Xj

`
1

Xi ` Xj

˙

dt

for 1 ď i ď n, where Lt denotes the local time of X1 at the origin.

By the Kolmogorov backward equation, the transition densities p`
t px, yq and q`

t px, yq for Dyson

Brownian motion of type C and type D satisfy, respectively,

B

Bt
p`
t “

1

2

n
ÿ

i“1

B2

Bx2
i

p`
t `

n
ÿ

i“1

˜

1

xi

`
ÿ

j‰i

ˆ

1

xi ´ xj

`
1

xi ` xj

˙

¸

¨
B

Bxi

p`
t (5.1)

B

Bt
q`
t “

1

2

n
ÿ

i“1

B2

Bx2
i

q`
t `

n
ÿ

i“1

ÿ

j‰i

ˆ

1

xi ´ xj

`
1

xi ` xj

˙

¨
B

Bxi

q`
t . (5.2)

On the other hand, a consequence of the Karlin-McGregor formula described by Grabiner

[Gra99] is that the transition densities ptpx, yq and qtpx, yq for n noncolliding Brownian motions

on the regions tx P Rn | 0 ă x1 ă x2 ă ¨ ¨ ¨ ă xnu and tx P Rn | 0 ď x1 ă x2 ă ¨ ¨ ¨ ă xnu are,

respectively,

ptpx, yq “ det
´

1?
2πt

e´pxi´yjq2{2t
´ 1?

2πt
e´pxi`yjq2{2t

¯

1ďi,jďn

qtpx, yq “ det
´

1?
2πt

e´pxi´yjq2{2t
` 1?

2πt
e´pxi`yjq2{2t

¯

1ďi,jďn
.

The functions we will use for Doob’s h-transform are

hpCq
pxq :“

n
ź

i“1

xi

ź

1ďiăjďn

px2
j ´ x2

i q

hpDq
pxq :“

ź

1ďiăjďn

px2
j ´ x2

i q.

After a computation to verify that they are harmonic [Sas11], we have the following theorem.

Theorem 5.3. The h-transforms

hpCqpyq

hpCqpxq
ptpx, yq and

hpDqpyq

hpDqpxq
qtpx, yq

satisfy (5.1) and (5.2) in place of p`
t px, yq and q`

t px, yq, respectively.

Proof. We may rewrite (4.1) in the more general form

B

Bt
p`
t “

1

2

n
ÿ

i“1

B2

Bx2
i

p`
t `

n
ÿ

i“1

B

Bxi

log hpxq ¨
B

Bxi

p`
t ,

such that replacing hpxq by hpCqpxq and hpDqpxq yield (5.1) and (5.2), respectively. The proof then

becomes identical to the proof of Theorem 4.1, with hpxq replaced by hpCqpxq and hpDqpxq. In

particular, a straightforward computation shows that hpCqpxq and hpDqpxq also satisfy (4.3). □
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This section demonstrated the versatility of Doob’s h-transform to describe Dyson Brownian

motion in the presence of a boundary. For Dyson Brownian motion in Theorem 3.1, we implicitly

considered the region of Rn
given by

tx P Rn
| x1 ă x2 ă ¨ ¨ ¨ ă xnu,

while for Dyson Brownian motion of types C and D in Theorem 5.3, we considered the regions

tx P Rn
| 0 ă x1 ă x2 ă ¨ ¨ ¨ ă xnu

tx P Rn
| 0 ď x1 ă x2 ă ¨ ¨ ¨ ă xnu.

Conditioning n independent Brownian motions to stay within such a region for all time corre-

sponded to the respective harmonic functions used for Doob’s h-transform.

6. Conclusions

In this paper, we discussed Doob’s h-transform and proved in two ways that Dyson Brownian

motion is equal in distribution to n independent Brownian motions conditioned to never intersect.

We also considered Dyson Brownian motion with an absorbing or reflecting boundary, adapting

our previous proof to show that Doob’s h-transform yields the desired SDEs.

There are many more interesting examples of Doob’s h-transform applied to Brownian motion

and other Markov processes, as given by Bloemendal [Blo10]. Additional properties of Brownian

motion related to boundaries or non-intersection are described by Sasamoto [Sas11] and Grabiner

[Gra99]. For example, Sasamoto [Sas11] uses similar techniques to prove that interlacing n ` 1
particles between an n-particle Dyson Brownian motion yields an pn`1q-particle Dyson Brownian

motion.
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