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1. Introduction

Braids are a useful algebraic tool for studying knots and links, as all links can be
realized as the closure of some braid. Braids on n strands form a group Bn under
composition, and we can understand the structure of Bn via its representations.

The Burau representation of Bn, first introduced by Werner Burau [2] in 1935,
is a well-studied matrix representation of the braid group with connections to the
Alexander polynomial. It is well-known that the Burau representation of Bn is
faithful for n ≤ 3, and Bigelow [1] proved in 1999 that it is unfaithful for n ≥ 5.
Meanwhile, the case of n = 4 is a longstanding open problem.

In this paper, we prove faithfulness for n ≤ 3 before asking a more interesting
question for the n = 3 case: is the Burau representation ψ3 : B3 → GL2(Z[t, t−1])
still faithful when t is replaced with a real number? Such a map is called a
specialization of the Burau representation, and Theorem 5.2 states that it is faithful
for all t < 0 with t ̸= −1. Following Scherich [7], we give a self-contained proof
which takes a surprising detour into hyperbolic geometry!

We begin in Section 2 by introducing the braid group Bn and its connection to
links and the Alexander polynomial. We define the Burau representation of Bn in
Section 3 and show that it is faithful for n ≤ 3 in Section 4. Beginning in Section 5,
we discuss specializations of the Burau representation and reduce the question of
faithfulness to an application of the ping-pong lemma. In Section 6, we introduce
tools from hyperbolic geometry to complete the proof of faithfulness in Section 7.

Our main references are Ohtsuki [5] on the Burau representation, Scherich [7]
on specializations of the Burau representation, and Mangahas [4] on hyperbolic
geometry.
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2. Braid Groups

Intuitively, a braid is a collection of strands which weave around each other.
Formally, we present the below definition for completeness.
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Definition 2.1. A (geometric) braid is a union of n strands embedded in R2× [0, 1]
with boundary {1, 2, . . . , n} × {0} × {0, 1} such that no strand has a critical point
with respect to the vertical coordinate.

Up to isotopy, any braid on n strands is obtained by attaching vertically a
combination of σi’s and σ−1

i ’s for 1 ≤ i ≤ n− 1, where σi is a positive crossing of
the ith and (i+ 1)th strands, and σ−1

i is a negative crossing.

· · ·· · · · · ·· · ·

σi σ−1
i

Thus, isotopy classes of braids on n strands form a group under vertical composi-
tion, called the braid group Bn. The braid group is known to have the following
presentation.

Theorem 2.2. The braid group Bn is presented by generators σ1, σ2, . . . , σn−1 with
relations

σiσj = σjσi for |i− j| ≥ 2 (2.1)

σiσi+1σi = σi+1σiσi+1 for 1 ≤ i ≤ n− 2. (2.2)

There is a natural connection between braids and links, which we explain as
follows.

Definition 2.3. The closure of a braid is the link obtained by connecting each
lower end of the braid with its respective upper end, as shown in Figure 1.

b

...

...

...

Figure 1. The closure of a braid b.

Taking the closure of any braid forms a link, and the converse is also true by
Alexander’s theorem: any oriented link is isotopic to the closure of some braid.
However, note that this correspondence is not bijective.

3. The Burau Representation

In this section, we define the Burau representation of the braid group Bn. We
then further the connection between braids and links in Theorem 3.4, which derives
the Alexander polynomial from the (reduced) Burau representation.

Definition 3.1. An n-dimensional matrix representation of a group G is a homo-
morphism ρ : G→ GLn(k) for a field k.
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We slightly generalize matrix representations by working over the ring Z[t, t−1]
where t is an indeterminate. From the relations (2.1) and (2.2), our homomorphism
ψ : Bn → GLn(Z[t, t−1]) must satisfy

ψ(σiσj) = ψ(σjσi) for |i− j| ≥ 2 (3.1)

ψ(σiσi+1σi) = ψ(σi+1σiσi+1) for 1 ≤ i ≤ n− 2. (3.2)

Definition 3.2. The unreduced Burau representation ψ̃n : Bn → GLn(Z[t, t−1]) of
Bn is given on generators by

ψ̃n(σi) = Ii−1 ⊕

(
1− t t

1 0

)
⊕ In−i−1

for 1 ≤ i ≤ n− 1.

Omitted computation shows that ψ̃n indeed satisfies (3.1) and (3.2), and is thus
well-defined on Bn. The braid group Bn acts on Z[t, t−1]⊕n via the matrices from
ψ̃n, and one can verify that this action preserves the submodule

{(f1(t), . . . , fn(t)) ∈ Z[t, t−1]⊕n | f1(t) + · · ·+ fn(t) = 0}.

The restriction of ψ̃n to this submodule is the reduced Burau representation ψn,
given explicitly by the following matrices.

Definition 3.3. The reduced Burau representation ψn : Bn → GLn−1(Z[t, t−1]) of
Bn for n ≥ 3 is given on generators by

ψn(σi) = Ii−2 ⊕

1 0 0
t −t 1
0 0 1

⊕ In−i−2

for 2 ≤ i ≤ n− 2, and

ψn(σ1) =
(
−t 1
0 1

)
⊕ In−3

ψn(σn−1) = In−3 ⊕

(
1 0
t −t

)
.

In the case of n = 2, we have ψ2(σ1) =
(
−t
)

.

For the remainder of this paper, we work with the reduced Burau representation
ψn. The following theorem connects ψn to the Alexander polynomial–see [5, Chapter
2.3] for a proof. It is especially useful for efficiently computing the Alexander
polynomial of a complicated braid on only a few strands, as the sizes of the matrices
involved depend on the number of strands rather than the number of crossings.

Theorem 3.4. [5] Let L be oriented link with n components, and let b be a braid
with closure isotopic to L. The Alexander polynomial ∆L(t) of L is determined by
the reduced Burau representation ψn:

∆L(t) ∼ 1− t
1− tn det(In−1 − ψn(b)),

where “∼” means equality up to multiplication by a unit of Z[t, t−1].



4 FAITHFUL SPECIALIZATIONS OF THE BURAU REPRESENTATION

Example 3.5. Consider b = σ1σ2 in B3, whose closure L is isotopic to the unknot,
as shown below.

Then ψn(b) =
(−t 1

0 1
)( 1 0

t −t
)

=
( 0 −t
t −t

)
, and det(In−1−ψn(b)) =

∣∣ 1 t
−t 1+t

∣∣ = 1+ t+ t2.
Indeed, the Alexander polynomial for the unknot is 1−t

1−t3 (1 + t+ t2) = 1.

4. Faithfulness of the Burau Representation

Representations of a group give us information about its structure. A natural
question is whether a given representation is injective, so that group elements can
be distinguished by their actions.

Definition 4.1. A representation is faithful if it is injective.

We prove the faithfulness of the Burau representation for n ≤ 3, following [6].

Theorem 4.2. The Burau representation ψn : Bn → GLn−1(Z[t, t−1]) is faithful
for n ≤ 3.

Proof. The n = 1 case is clear because B1 is the trivial group.
For n = 2, we note that B2 ∼= Z is freely generated by σ1. As ψ2(σ1) =

(
−t
)

, no
nonzero power of ψ2(σ1) equals I1.

In the n = 3 case, we have

ψ3(σ1) =
(
−t 1
0 1

)
, ψ3(σ2) =

(
1 0
t −t

)
. (4.1)

Substitute t = −1 to obtain the matrices a1 = ( 1 0
1 1 ) and a2 =

( 1 −1
0 1

)
. Now we

compute the kernel of the composite map

ρ : B3
ψ3−−→ GL2(Z[t, t−1]) t7→−1−−−−→ SL2(Z)

where σ1 7→ a1 and σ2 7→ a2, noting that kerψ3 ⊂ ker ρ.
The matrices a1, a2 in fact generate SL2(Z) [6, Theorem 3.7], and we can write

the presentations of B3 and SL2(Z) as

B3 ∼= ⟨σ1, σ2 | σ1σ2σ1 = σ2σ1σ2⟩

SL2(Z) ∼= ⟨a1, a2 | a1a2a1 = a2a1a2, (a1a2a1)4 = 1⟩.

We claim that the kernel of ρ : B3 → SL2(Z) is ⟨(σ1σ2σ1)4⟩. This will finish from
combining the facts

kerψ3 ⊂ ker ρ = ⟨(σ1σ2σ1)4⟩,

and ψ3((σ1σ2σ1)4) =
(
t6 0
0 t6

)
, so no nonzero power of ψ3((σ1σ2σ1)4) equals I2.
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It is clear from the presentation of SL2(Z) that (σ1σ2σ1)4 ∈ ker ρ. For the
reverse direction, suppose the expression p(σ1, σ2) ∈ B3 is in the kernel of ρ, so
p(a1, a2) ∈ SL2(Z) is the identity.

Let Fa1,a2 denote the free group generated by a1, a2. For a subset S of a
group G, let ⟨⟨S⟩⟩ denote the the smallest normal subgroup of G containing
of S. From the presentation of SL2(Z), we have by definition that SL2(Z) ∼=
Fa1,a2/⟨⟨a1a2a1a

−1
2 a−1

1 a−1
2 , (a1a2a1)4⟩⟩. Then p(a1, a2) viewed in Fa1,a2 lies in

⟨⟨a1a2a1a
−1
2 a−1

1 a−1
2 , (a1a2a1)4⟩⟩. Since the relation σ1σ2σ1σ

−1
2 σ−1

1 σ−1
2 is already

in B3, we can thus assume p(σ1, σ2) ∈ ⟨⟨(σ1σ2σ1)4⟩⟩ in B3. Upon verifying the
relations

(σ1σ2σ1)2σ1 = σ1(σ1σ2σ1)2

(σ1σ2σ1)2σ2 = σ2(σ1σ2σ1)2,
(4.2)

we see that (σ1σ2σ1)2 commutes with both σ1 and σ2, so (σ1σ2σ1)4 does as well.
Then ⟨⟨(σ1σ2σ1)4⟩⟩ = ⟨(σ1σ2σ1)4⟩ and p(σ1, σ2) ∈ ⟨(σ1σ2σ1)4⟩, as desired. □

5. Specializations of the Burau Representation

In the previous section, we showed that the Burau representation ψ3 of B3

is faithful. As an intermediate step, we evaluated the output of ψ3 at t = −1;
although the resulting representation had a nontrivial kernel, upon returning t to
an indeterminate, the representation became faithful. This leads to the natural
question: for which real numbers t will the resulting representation still be faithful?

Definition 5.1. A specialization ρ of the Burau representation ψ3 is a composition

ρ : B3
ψ3−−→ GL2(Z[t, t−1]) τ−→ GL2(R),

where τ is the evaluation map sending t 7→ t0 for some fixed t0 ∈ R.

The proof of Theorem 4.2 implies the specialization ρ is faithful for all tran-
scendental t ∈ R. A complete classification of the faithful specializations can be
found in [7]. We prove the following illustrative case which nicely utilizes hyperbolic
isometries, to be introduced in Section 6.

Theorem 5.2. The specialization of ψ3 is faithful for all t < 0 except t = −1.

We use the following key lemma which gives a condition for a representation of
Bn to be faithful.

Lemma 5.3. [3] Let ρ : Bn → GL(V ) be a representation, and suppose N ◁ Bn is
a normal subgroup which is nontrivial and noncentral. If ρ|N is faithful, then ρ is
faithful, except possibly on the center of Bn.

To apply Lemma 5.3, we use the following facts about B3; the proofs are omitted,
but they are standard exercises in group theory. Let F2 denote the free group on
two generators.

Lemma 5.4.
(1) The center of B3 is ⟨(σ1σ2)3⟩.
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(2) The subgroup N = ⟨σ−1
1 σ2, σ2σ

−1
1 ⟩ of B3 is normal and isomorphic to F2.

Remark 5.5. In (4.2), we checked that (σ1σ2)3 = (σ1σ2σ1)2 lies in the center of B3.
See Figure 2 for a visual interpretation of this computation: σ1σ2 twists the three
strands by one notch counterclockwise, and (σ1σ2)3 twists the three strands such
that they return to their original positions. Intuitively, this twist can be done before
or after any braid.

Figure 2. The element (σ1σ2)3 in B3.

Now in light of Lemma 5.3 and Lemma 5.4, we need to show that ρ|N is faithful
and that ρ is faithful on the center of B3. The latter is easy: using (4.1), ρ sends

(σ1σ2)3 7→

(
t3 0
0 t3

)
,

and no power of
(
t3 0
0 t3

)
equals I2 when t < 0 and t ̸= −1 (in fact for all t ̸= 0, 1,−1).

It remains to show that ρ(N) = ⟨ρ(σ−1
1 σ2), ρ(σ2σ

−1
1 )⟩ is isomorphic to F2 inside

of GL2(R), so ρ|N is faithful. We will apply the following trick for showing that a
group is free of rank 2. There is a generalization for free groups of any rank n, but
we only need the case n = 2 in this paper.

Lemma 5.6 (Ping-pong lemma). Let ⟨a, b⟩ be a group acting on a set X. Suppose
there exist disjoint nonempty subsets Xa and Xb of X such that ak(Xb) ⊂ Xa and
bk(Xa) ⊂ Xb for all integers k ̸= 0. Then ⟨a, b⟩ is isomorphic to F2.

Proof. Consider an element in ⟨a, b⟩ of the form ai1bi2ai3 · · · bim−1aim for some
nonzero exponents i1, . . . , im. Applying this element to any x ∈ Xb, we see that first
aim(x) ∈ Xa, then bim−1(aimx) ∈ Xb, and so on until finally ai1(bi2 · · · aimx) ∈ Xa.
As Xa and Xb are disjoint, this action is nontrivial and ai1bi2ai3 · · · bim−1aim does
not equal the identity. Furthermore, any nonempty expression in ⟨a, b⟩ is conjugate
to an element of that form, upon conjugating by a sufficiently large power of a, and
thus does not equal the identity. □

The name “ping-pong” comes from the alternating nature of the sets Xa and Xb.
We do a simple example of the ping-pong lemma to demonstrate its effectiveness.

Example 5.7. We use the ping-pong lemma to show that the subgroup generated
by a = ( 1 2

0 1 ) and b = ( 1 0
2 1 ) inside SL2(Z) is isomorphic to F2. By induction, we

have ak = ( 1 2k
0 1 ) and bk = ( 1 0

2k 1 ) for all integers k. Consider the disjoint subsets of
R2 given by

Xa = {( xy ) ∈ R2 | |x| > |y|}, Xb = {( xy ) ∈ R2 | |x| < |y|}.
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We check that ak(Xb) ⊂ Xa for all integers k ̸= 0: from ( 1 2k
0 1 )( xy ) =

(
x+2ky
y

)
, if

|x| < |y| then |x + 2ky| ≥ |2ky| − |x| > |2ky| − |y| ≥ |y| for all integers k ̸= 0.
Similarly, one can verify that bk(Xa) ⊂ Xb for all integers k ̸= 0, so ⟨a, b⟩ ∼= F2.

However, it is challenging to find by inspection two appropriate ping-pong sets in
R2 for the generators of ρ(N)

ρ(σ−1
1 σ2) =

(
t−1
t −1
t −t

)
, ρ(σ2σ

−1
1 ) =

(
− 1
t

1
t

−1 1− t

)
, (5.1)

especially when t is an arbitrary real number. Instead of working with R2, we turn
to techniques from hyperbolic geometry to find the right subsets Xa and Xb for this
problem.

6. Hyperbolic Geometry

We introduce the concepts from hyperbolic geometry needed to prove Theorem 5.2.
Our goal is to find a set on which the matrices from (5.1) can act.

Definition 6.1. Let Ĉ = C ∪ {∞} denote the extended complex plane. A Möbius
transformation is a map Ĉ → Ĉ of the form z 7→ az+b

cz+d for a, b, c, d ∈ C with
ad− bc ̸= 0.

Remark 6.2. The condition ad− bc ̸= 0 ensures that the map is nonconstant. One
can verify that Möbius transformations form a group under composition.

It is a fact that Möbius transformations are precisely the bijective conformal
maps Ĉ→ Ĉ, meaning that they preserve oriented angles between line segments; in
particular, they send generalized circles to generalized circles.

Definition 6.3. Let n be a positive integer and k be a field. The projective special
linear group PSL(n, k) is the quotient SL(n, k)/{In,−In}.

Proposition 6.4. There is an isomorphism between PSL(2,C) and the group of
Möbius transformations given by(

a b

c d

)
←→ z 7→ az + b

cz + d
.

Although this proposition is a starting point, we wish to work with matrices
over R instead of C. To obtain a similar theorem with PSL(2,R), we introduce the
hyperbolic plane H2. We present two equivalent definitions, first using the upper
half-plane model U, and then the Poincaré disk model D.

Definition 6.5. Let U = {x+ iy ∈ C | x, y ∈ R, y > 0} denote the upper half-plane.

We put a metric on U given by

(ds)2 = (dx)2 + (dy)2

y2

which allows us to compute lengths: the length of a path f(t) = x(t) + iy(t)
parameterized by t ∈ [0, 1] is thus∫ 1

0

1
y(t)

√(
dx

dt

)2
+
(
dy

dt

)2
. (6.1)
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Note that at each point x+ iy ∈ C, the metric on U is a scalar multiple of the
Euclidean metric

√
(dx)2 + (dy)2. Intuitively, when y is close to 0, the length of a

path under this metric is much larger than with the Euclidean metric, and conversely
as y increases.

Definition 6.6. A geodesic is a shortest path between two points. An infinite
geodesic is an infinite path such that any finite subpath is a geodesic.

For two points with the same real coordinate in U, their unique geodesic is the
vertical line segment between them, so that the quantity (dxdt )2 in the length formula
(6.1) is minimized. In general, the unique geodesic between two points of U is the
arc along the circle with center on the real axis which passes through the two points.
This can be shown by using an appropriate Möbius transformation and the fact
that Möbius transformations are conformal.

Now we are ready to state the desired theorem involving PSL(2,R).

Theorem 6.7. Every Möbius transformation that preserves U is an isometry of U
with its hyperbolic metric. The group of such Möbius transformations is isomorphic
to PSL(2,R).

The proof involves showing that such a Möbius transformation
(
a b
c d

)
must

preserve the extended real line R ∪ {∞}, implying that a, b, c, d ∈ R; then U is
preserved if and only if ad− bc > 0 by considering where z = i is sent.

We now introduce a second model of the hyperbolic plane which will help us
visualize the ping-pong lemma in our eventual proof.

Definition 6.8. The Poincaré disk model D is the image of U under the Möbius
transformation z 7→ i−z

i+z .

This maps the extended real line R ∪ {∞} to the unit disk in C, and the upper
half-plane into the interior. As Möbius transformations are isometries under the
hyperbolic metric, the geodesics in U are mapped to the geodesics in D. Consequently,
the infinite geodesics in D are the circles and lines orthogonal to the unit circle at
two points, as illustrated in Figure 3.

0 11
2

∞

0

1−1

1
2

Figure 3. Examples of infinite geodesics in U and D.

Finally, we need to understand how Möbius transformations act on D. The
isometries of H2 from by Möbius transformations can be classified into three types:
elliptic, parabolic, and hyperbolic.
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Definition 6.9. A hyperbolic isometry fixes exactly two points on the boundary of
D.

A hyperbolic isometry has an axis, which is a (unique) geodesic in D on which
it acts as a translation. It is a fact that the Möbius transformation z 7→ az+b

cz+d is
hyperbolic if and only if |a+ d| > 2.

7. Faithfulness of the Specialization

We are now ready to prove the faithfulness of the specialization in Theorem 5.2
using the ping-pong lemma and tools from hyperbolic geometry.

Proof of Theorem 5.2. Let

a := ρ(σ−1
1 σ2) =

(
t−1
t −1
t −t

)

b := ρ(σ2σ
−1
1 ) =

(
− 1
t

1
t

−1 1− t

)
.

We show that ⟨a, b⟩ ∼= F2 by applying the ping-pong lemma to the action of ⟨a, b⟩
on D. We see that that a and b are hyperbolic isometries on D, because both of
their traces are 1− t− 1

t ≥ 3 by AM-GM (using t < 0).
For the remainder of this proof, refer to Figure 4 for a visual. From the compu-

tations a(0) = 1
t and a(1) = ∞, the action of a on D sends the infinite geodesic

connecting 0 and 1 to the infinite geodesic connecting 1
t to ∞. Let X−

a and X+
a

denote the interiors of the two regions bounded by these geodesics respectively. By
the definition of a hyperbolic isometry, a maps D \X−

a inside X+
a . Conversely, a−1

maps D \X+
a inside X−

a .
Similarly, from the computations b(∞) = 1

t and b(1) = 0, the action of b sends
the infinite geodesic connecting 1 and ∞ to the infinite geodesic connecting 0 and 1

t .
Defining X−

b and X+
b analogously, b maps D \X−

b inside X+
b , and b−1 maps D \X+

b

inside X−
b .

In particular, the sets Xa = X+
a ∪ X−

a and Xb = X+
b ∪ X

−
b are disjoint and

satisfy the ping-pong lemma by the above computations: ak(Xb) is contained in
X+
a if k > 0 or X−

a if k < 0. Similarly, bk(Xa) ⊂ X+
b ∪X

−
b for all k ̸= 0. □

∞

0

11
t

X+
b X−

a

X+
a X−

b

Figure 4. The ping-pong sets in the proof of Theorem 5.2.



10 FAITHFUL SPECIALIZATIONS OF THE BURAU REPRESENTATION

Remark 7.1. In addition to the hyperbolic isometries, another special aspect of
the t < 0 case is that 1

t < 0, so we obtain the nice picture in Figure 4 of four
nonintersecting geodesics. Otherwise, the regions Xa and Xb, as we defined them,
would intersect.

The full classification by Scherich [7] compares | tr(a)| = | tr(b)| = |1− t− 1
t | to 2

to determine whether a and b are elliptic, parabolic, or hyperbolic isometries. The
specialization is faithful in the the parabolic case of t = 3±

√
5

2 and the hyperbolic case
of t < 3−

√
5

2 or t > 3+
√

5
2 (except at t = 0,−1). The only unfaithful specializations

come from the elliptic case of 3−
√

5
2 < t < 3+

√
5

2 .
The faithfulness of these specializations is a much stronger result than the

faithfulness of the Burau representation ψ3 alone. The study of the specializations of
B3 has led to constructions of unfaithful specializations of B4 [7], providing insight
on the question of faithfulness for the Burau representation of B4.
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