18.965 Geometry of Manifolds |

William Minicozzi
Notes by Serena An

December 19, 2025

Contents

1 Smooth Manifolds 3
1.1 Topological spaces . . . . . . . . . L 3
1.2 Differentiable manifolds . . . . . . . . . e 3
1.3 Tangent spaces . . . . . . . . e e e )
1.4 Basis theorem . . . . . . . . e e e e 6
1.5 Differential of amap . . . . . . . ... e 8
1.6 Vector fields . . . . . . . . e e e 9
1.7 Tensor algebras . . . . . . . . L L e 10
1.8 Traces . . . . . . o e s 11
1.9 MetriCS . . . o o o o e e 12
1.10 Induced metrics on tensSoOrs . . . . . . . . ... e 12
1.11 Raising and lowering indices . . . . . . . . . . .. L L L e 13

2 Connections and covariant derivatives 14
2.1 Affine connections . . . . . . . . . . 14
2.2 Christoffel symbols . . . . . . . L 15
2.3 Levi-Civita connection . . . . . . . . . . . . e 15
2.4 Christoffel symbols in terms of the metric . . . . . . .. .. ..o 0oL 16
2.5 Parallel transport . . . . . . .. L e e 17
2.6 Killing fields . . . . . . . . e e e e 18

3 Curvature 19
3.1 Riemann curvature tensor . . . . . . . . . . .. e e e e 19
3.2 Riccicurvature . . . . . . . L e e e e e e 21

4 Submanifolds 22
4.1 Induced structure on submanifolds . . . . . . . . . .. ... 22
4.2 Gauss equation . . . . . . ... e 25
4.3 Codazzi equation . . . . . . . . .o 26
4.4 Umbilic submanifolds . . . . . . . . . 28

5 Geodesics 30
5.1 Geodesic definition . . . . . . . L e e e e e 30
5.2 Exponential map . . . . . ... 31
5.3 Gauss lemma . . . . . L e e e 33
5.4 Riemannian distance . . . . . . . . . L e e 34

Page 1 of 77



William Minicozzi (December 19, 2025)

10

5.5 Hopf-Rinow theorem . . . . . . . . . . . . . e

Variational theory of geodesics

6.1 Jacobiequation . . . . . . ..o L
6.1.1 Normal Jacobi fields on constant curvature spaces . . . . . . ... ... ... .....
6.2 Conjugate points . . . . . . . . L L e
6.3 Energy . . . . . .
6.3.1 First variation of energy . . . . . . . ..o
6.3.2 Second variation of energy . . . . . ... oL
6.4 Bonnet—-Myers. . . . . . . L
Laplacian
7.1 Harmonic functions and eigenvalues . . . . . . . . . ..o oo
7.2 Bochner formula . . . . . .. ..
7.3 Isomperimetric and Wirtinger inequalities . . . . . . . . .. ... L oo
7.4 Submanifolds . . . . . . ..
7.5 Spherical harmonics . . . . . . . L L

Minimal submanifolds

8.1 First variation . . . . . . . . . L e e e e
8.2 Regularity theory . . . . . . . . Lo
Laplacian comparison

9.1 Laplacian computations in Euclidean space . . . . . . . . .. .. ... ... ..
9.2 Distance function . . . . . . . . L L
9.3 Calabi’s barriers . . . . . . ...
9.4 Cut points . . . . . . . L
9.5 Bishop—Gromov . . . . . . ..
9.6 Dirichlet Poincaré inequality . . . . . . . . .. L oo

Gradient estimate and Liouville theorems

10.1 Gradient estimate . . . . . . . Lo
10.2 Harnack inequality . . . . . . . . . o L e
10.3 Mean value inequality . . . . . . . . . . e
10.4 Harmonic functions of polynomial growth . . . . . . ... .. .. .. ... ...

47
47
50
53
55
56

57
57
61

62
62
62
64
64
68
69

Page 2 of 77



September 4, 2025 Smooth Manifolds

1 Smooth Manifolds

1.1 Topological spaces

A topological space is a set X with a notion of open sets satisfying 3 properties:

1. X and @ are both open.

2. Any union (even infinite) of open sets is also an open set.

3. If U and V are open, then so is U NV (or any finite intersection).
An example is R", where a set U is open if Yy € U, 3§ > 0 such that Bs(y) C U, where

Bs(y) = {z € R" | Iy — 2I< 3}

A subset S C X is closed if X \ S is open. The closure of a set S is the intersection of all closed sets
containing S. A set is connected if the only subsets that are both open and closed are itself and ().
X is Hausdorff if for all points x1 # xo, there exist open sets U; > z1 and Uy 3 25 with Uy N Uy = (.

X is second countable if there is a countable basis of open sets. A basis is a collection B of open sets such
that for all U open and x € U, there exists V € B such that z € V C U. Every open set is thus a (likely
infinite) union of open sets in B.

Example 1.1

R™ is second countable by taking B to be all open balls with rational centers and rational radii.

A map f: X — Y is continuous if for all V. C Y open, f~1(V) C X is open. A map f is a homeomorphism
if it is a continuous bijection, and f~! is continuous. The identity map id: X — X is always continuous,
and so is any constant map.

1.2 Differentiable manifolds
Intuitively, a manifold is a topological space that is locally homeomorphic to subsets of R".

Definition 1.2 (manifold, chart, atlas). M is an n-dimensional (topological) manifold if
1. M is a second countable and Hausdorff topological space.
2. For all x € M, there exists an open set U > x and a homeomorphism ¢: U — V C R™.

Note that V' is open because homeomorphisms push open sets. The pair (U, ¢) is a chart, and a
collection of pairs is an atlas.

The open sets U in an atlas form an open cover of M. An atlas is not necessarily unique, as there can be
many open covers of a space. For R", there is an atlas with just one chart using the standard coordinates.

It does not make sense to say a map from M — R" is differentiable, because M may not have a differential

structure. We work around this as follows.

Definition 1.3 (differentiable manifold). M is differentiable if for any pair of charts (U1, ¢1) and (Ua, ¢2)
with Uy N Uy = W # (), the map

¢20 611 o1 (W) = d2(W)
is differentiable. Note that ¢1 (/') and ¢2(W') are open subsets of R".

The map ¢2 o ¢1_1 is called a transition map.
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We will work with smooth manifolds where the transition maps ¢20¢1_1 are smooth (infinitely differentiable).

Given a topological manifold, the question of if there exists a differential structure (or multiple) was the
beginning of the subject of differential topology.

Definition 1.4 (smooth map). For smooth manifolds M and N, a map F: M — N is smooth if for all

x € M, there exist charts (U, ¢) and (V) with z € U and F(x) € V such that o Fog™t: ¢(z) — (x)
is smooth.

M c N
¢ ! I\
L 4
) .
‘49& Y Fop™ _4 5‘“ :
R™

er\

We only need to find one pair of charts, because it will then be true for all pairs of charts by transition
functions.

Example 1.5 (smooth maps)
Letting N = R, we have smooth functions f: M — R, the set of which is denoted by C(M).

Letting M = I C R be an interval, we have smooth curves yv:I — N.

Definition 1.6 (diffeomorphism). A diffeomorphism F: M — N is a smooth bijection such that F~! is
smooth.
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1.3 Tangent spaces

The intuition for a bump function is that it is 0 in most places and positive on an interval. For example,
start with the smooth function ,
—1/z it
e z ifx>0
-]

0 itz <0

which is infinitely differentiable at 0 because the e~1/%* term dominates any polynomial terms from the
derivatives. Reflect horizontally and translate f(z) to the right to get some function g(z), and then the
product f(z)g(z) can be taken as a bump function. Note that bump functions can not be analytic (as it

would have to be 0 everywhere), but can be smooth.

/N

2ero 2ero

Lemma 1.7 (bump function)
Given & € M and U > z open, there exists a bump function u € C(M) on M such that

1. v =1 in an open set containing x.
2. The support of u is contained in U.

3. 0 <u <1 everywhere (i.e. the image of w is in [0, 1]).

We can modify the example with e~/ #®2 to make it 0 on z < 0, indeterminate for some time, and 1 after
some time, and extend it to R™ by rotation.

Definition 1.8 (tangent vector). A tangent vector V at p € M is an R-linear map V: C(M) — R which
satisfies the Leibniz rule

V(fg) = f(p)V(9) +9®)V ().
This property is being a derivation. Let T,,M denote the set of all tangent vectors at p.

R-linear means that V(f+g¢) = V(f)+V(g) and V(af) = aV(f) for alla € R and f,g € C(M). 1t is clear
T,M is an R-vector space, but we will see that it is n-dimensional when M is n-dimensional.

Example 1.9

Directional derivatives are tangent vectors in M = R".

There is always the zero tangent vector, and we will prove that there exists a nontrivial tangent vector.

Lemma 1.10
Suppose V' € T, M.

1. If u,w € C(M) are equal in a neighborhood of p, then V(u) = V(w). (Locality)
2. If u is constant, then V(u) = 0.

Proof. By R-linearity, V(0) = V(04 0) = V(0) + V(0), so V(0) = 0.
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1. Let n be a bump function with support in an open set where u = w, and n(p) = 1. Then the product
n(u—w) = 0, because either u —w = 0, or n = 0 when v —w # 0. Then V(n(u—w)) = 0, and applying
the Leibniz rule shows

because n(p) =1 and (u — w)(p) = 0. Thus, V(u) = V(w).
2. By the Leibniz rule,
Vi)=V(1-1)=1-V(1)+1-V(1),
so V(1) = 0. Then also V(c¢) = ¢V (1) = 0 for any constant function ¢ € R. O

1.4 Basis theorem

Lemma 1.11
Given a derivation V on R at 0, we have for all u € C'(R) that

In other words, V is a constant times the ordinary derivative, and that the space of derivations on R is
1-dimensional.

Proof. By Taylor expansion, we may write u(z) = u(0) + xw(z) for some w € C(R). Then by R-linearity,
V(u) = V(u(0)) + V(zw) = V(zw), since u(0) is a constant function. Then by the derivation property,
V(zw) = V(z)w(0) + x(0)V(w), but £(0) = 0 so we obtain V(u) = V(z)w(0). Note that v/(0) = w(0). O

What happens if V' is a derivation on R at p € R? An essentially identical proof works: write u(z) =
u(p) + (z — p)w(z) and apply V' to obtain V(u) = (z — p)(p)V(w) + w(p)V(z — p) = w(p)V(z — p). Once
again, §%(p) = w(p) & (x — p) = w(p), so V(u) = u'(p)V (z — p).

Lemma 1.12

Generalizing to a derivation V on R™ at p € R", we have for all u € C(R™) that

Vi) = Y Vi) D
=1

gﬁ‘i(p).

We see that 8%1- forms a basis for derivations on R™ at a point: they span by Lemma 1.12 with coefficients
V(z;), and they are linearly independent as a%i(a:j) = 0yj.
We next show the existence of nonzero vector fields in 7),M in general.

Definition 1.13 (coordinate system). An n-tuple of functions 1, ...,x, € C(M) is a coordinate system

at p € M if there is an open set U 3 p such that (z1,...,2,):U — R" is a diffeomorphism to an open
subset of R™.
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September 9, 2025 Smooth Manifolds

Definition 1.14. Let (U, ¢) be a chart with p € U and ¢(p) = 0, and pick a coordinate system z1, ..., z,
of R™. Corresponding to each x;, there is a tangent vector 0|, € T, M defined by

d(uogt)

0ilp(u) = T(O)-

g R

Note u o ¢! is a map R” — R. This is a derivation of p because % is and ¢~1(0) = p:

uv o -1
o) = 1220

(vod™)

_ 0
= (wos™)(0) =5
= u(p)Dilp(v) + v(P)OY] ().

Theorem 1.15 (Basis Theorem)
Any tangent vector V' € T,,(M) can be written as

n
V=) V(z:)0lp.
i=1
In particular, dim 7},(M) = n, and 0;|, for 1 <7 < n form a basis of T, M as an R-vector space.

Similar to before, J;, span by Theorem 1.15, and they are linearly independent as 0;|,(z;) = d;5. Strictly
speaking, we need V (z;n) where 7 is an appropriate bump function so that things are defined, but V' (z;n) =
V(z;) by locality (Lemma 1.10).

Proof (sketch). We first write a Taylor expansion

w(z) = w(0) + szwz(ac)
i=1
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Smooth Manifolds September 9, 2025

Let w = uo ¢! so that u = w o ¢. Then applying V to both sides yields
Vi(w) =V (w(0) + (i 0 9)(wi 0 6))
i=1
= (wi o ¢(p))V(wio )
i=1

=Y wi(0)V(w;o¢)
=1

(0),

ow
X

=Y V(ziog)
i=1 g
where the second line is by the Leibniz rule and z; o ¢(p) = z;(0) = 0. O

There’s a trick for showing this Taylor expansion exists. Fix x, and define a function F(t) = w(tx). Then

(1) — w(0) w(0)

=w(x) —
1
F
- [
o dt
1

so we can let w;(z) == 01 %(m) dt.

1.5 Differential of a map
Definition 1.16 (differential). A smooth map F: M — N induces a linear map
de: TpM — TF(p)N

at each p € M given by dF,(V)(u) = V(uo F). The map dF), is the differential of F at p.

m /F\, N
-
- R
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Lemma 1.17
Let z; be a coordinate chart near p € M and y; be a coordinate chart near F'(p) € N. Then

dFy(0s;lp) = Z (a(yé;F)(pO y; [P (p)-
j 7

(It’s the usual Jacobian.)

>l
5+

Definition 1.18 (tangent vector of curve). Let 7:1 — N be a differentiable curve where I C R is
parameterized by s. For each p € I, there is a natural tangent vector v/(p) € T, ()N by defining

Y @) () = (@) ) = 22T ).

Definition 1.19 (immersion, embedding). F' is an immersion if dF) is injective for all p.

F is an embedding it if is a one-to-one immersion and a homeomorphism onto its image.

Example 1.20
The figure 8 curve in R? is an immersion but not an embedding.

If ¢: M — N is an immersion, then dim M < dim N. The difference dim N — dim M is the codimension.

1.6 Vector fields

Definition 1.21 (vector field). A vector field V on M is a smooth choice of tangent vector V' (p) € T,M
for every p € M. (This is saying that V is globally defined, and the coefficients V' (z;) are smooth in
every chart.) Let I'(M) denote the space of vector fields on M.

Equivalently, a vector field V is a derivation V: C(M) — C(M), meaning that it is R-linear and satisfies
the Leibniz rule V(fg) = fV(g) + gV (f)-

The fact that these are equivalent is pset 1.5.
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Example 1.22

Let U be a chart and 0; be a coordinate vector field on U. If 7 is a bump function with support inside
U, then n0; is a vector field (that is 0 outside U).

Definition 1.23 (Lie bracket). Given two vector fields V,W € I'(M), the Lie bracket [V,W] € I'(M) is

[V, W](u) = V(W () = W(V(u)).

Intuitively, this measures how the vector field changes? It’s clear that [V, W] is R-linear, but it’s not obvious
that the Leibniz rule holds. It turns out that the second derivatives cancel:
V. Wi(f9) = V(W( 9) =WV (f9)
)+ gW () =W(fVig) +9V(]))

V(HW(g) + fV( (9)) + V()W (F) + g(V(W (/)
W(HV(g) =W V(g) —W(g)V(f) —gW(V(f))
(v<w<g>> W(V(g))) +g(VOV () - W)

Lemma 1.24
Given f € C(M) and X,Y € I'(M), we have

(X Y] =X, Y] - Y(f)X.

Proof. We have

[fX,Y](u) = FX (Y (u) = Y(f X (u))
= XY (u)) =Y ()X (u) = fY (X (u))
= JIX,Y](u) = Y (f) X (u). i

1.7 Tensor algebras

For a vector space V, its dual vector space is
V* = {linear maps 6: V' — R}.

If dim V is finite, then dim V' = dim V*, because the only choices for an element of V* are what it does to
basis elements of V. Letting v; be a basis for V, there is a dual basis 6; for V* given by 6;(v;) = d;;.

Definition 1.25 (1-form). A 1-form « is a C(M)-linear map a:I'(M) — C(M). The set of all 1-forms
is denoted I'™*(M).

Equivalently (more locally), let TyM = (T,M)* = {linear maps T,M — R}. We can define a 1-form «
to be a smooth family of a(p) € T, M as p varies.

In a chart, we have a basis d; for T, M, and let dz; be a dual basis for Ty M. We can write

n
o= g o;dx;
=1
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for some functions «; with a; = «(9;). Then applying o to V = > | V;0; (Theorem 1.15), we have by
C(M)-linearity that

a(V) =) Via(d) =>_ aVi. (1.1)
i=1 i=1
This is the basis theorem for 1-forms.

Definition 1.26 (tensor). An (r,s)-tensor A is a C(M )-multilinear map from r 1-forms aq,..., o, and
s vector fields Vi,..., Vs to C(M). The set of (r, s)-tensors is denoted by I'"*(M).

Example 1.27
e A (0,1)-tensor is a map I'(M) — C(M), which is a 1-form.

e A (1,0)-tensor is a vector field, with V' taking o to a(V).
e A (1,1)-tensor A locally takes V =", V9, and a = > j=1 @jdj, so

A(V, a) = A( i Vi&, i ajdxj> = Z A(@z, d.%'j)ViOéj.
i=1 j=1

1]

Let us define A7 :== A(8;, d;), so
A=) Aldz; ®0;,
irj
and dx; ® 0; is a “basis.”

e A (0,2)-tensor is a map from 2 vector fields to C(M), so in a chart we get >, gijdz; ® dz;.
e A (2,0)-tensor is amap H =3, . HY9; @ 0;.

1.8 Traces

Definition 1.28 (trace). In a chart, the trace of a (1, 1)-tensor B is
Tr(B) = Y  B(0;,dz;).
i=1

It turns out this does not depend on the chart! Let {y;} be an overlapping chart; we have

dl‘i = Z dxi(ayj)dyj, 8331 = Zaxl(yk)ayk
J k
by the dual basis and basis theorems. Then

0
> " B(8y,,dei) =Y B (ai"fayk,dxi(ayj)dyj)
i i,k !
ayk 8331‘
i%;ﬁ Yk J axz 8yj
= Z B(aij dyj)v

J

Page 11 of 77



Smooth Manifolds September 11, 2025

where the last equality is by the chain rule:

=0k
ox; 3y] 0y; J

Z Oy Ox; _ Oyk

We see that the trace of a (1,1)-tensor gives a (0,0)-tensor. In general, the trace of (7, s)-tensor gives an
(r —1,s — 1)-tensor (but you have rs choices for which indices to trace over).

1.9 Metrics

Definition 1.29 (metric). A metric g is a (0, 2)-tensor such that
1. g(V,W) = g(W,V) (symmetric).
2. g(V,V)(p) > 0, with equality if and only if V(p) = 0 (positive definite).

Definition 1.30 (Riemannian manifold). A Riemannian manifold (M", g) is a smooth manifold M" with
a metric g.

In a chart, we have g = Zij gijdr; @ dzj, where g;; = g(0;,0;). At each point p, the matrix {g;;(p)} must
be positive definite and symmetric (g;; = g;i).

Example 1.31

R™ with metric g;; = d;; is Euclidean space. The identity matrix is positive definite and symmetric.

Definition 1.32 (length). We can now define the length of a curve ~v:[a,b] — M by
b
— [ Vi) ds,
where g(7/(s),7/(s)) is the norm of the tangent vector.

Definition 1.33 (volume). For an open set U in a chart, we can define its volume by

vol(U) :/ \/|det gij| dxy - - - dzy,
H(0) ’

1.10 Induced metrics on tensors

Metrics can measure tensors too. For V e T'(M), define [V|* = ¢g(V,V). In a chart, we have

2 = ZgijViVj.
Y]
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For a € I'*(M), we similarly define
o] => " gy,
,J

where {g¥/} is the inverse matrix of {g;;}. It turns out this is a (2, 0)-tensor called g—! (pset 1.4).
For a (2,0)-tensor B, we define
BP = 3 BYBYg,g,
i,J:P4
which does not depend on the chart because it is the 4-time trace of the (4,4)-tensor B& B® g ® g.

Definition 1.34 (pullback metric). Let F: M — N be an immersion where N has a metric g. The
pullback metric F*g on M is given by

(F"g)(V, W)(p) = g(dF(V),dE(W))(F(p)).

1.11 Raising and lowering indices

Given a Riemannian metric g, there is a canonical 1-form ay € I'*(M) associated to each vector field
V € I'(M) given by
ay (W) = g(V,W).

In local coordinates, let V =", Vidg,, W= Zj Wjaxj, and g = Zk,e gredxy, @ dxy. Then
ay (W) = g(ZVia@, ijaxj)
( J
= V'Wig(0s,,0x))

Z‘?j

=Y ViWlgy,
i’j

as expected. Thinking of it as a tensor contraction of V@ W ® g is another way to see that it is well defined.

Remark 1.35. Technically, V¢ and W/ are not in C'(M) as they are only defined locally, so it is somewhat
illegal to use the C'(M)-linearity of g above. However, we can multiply them by bump functions so they
become C'(M) functions, as we are working locally. For the rest of the course, we will not mention this.

On the other hand from the basis theorem for 1-forms (1.1), we have
ay(W) =3 Way(d,,) = > W (av);,
J J

SO ‘
(av); =Y giV".
i
This process is called lowering the index.

The process of raising the index takes a 1-form ((0, 1)-tensor) to a vector field ((1,0)-tensor). An example
is the gradient V f which locally is

i Of
Vf= Zg ]aixiaxj
.7
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with jth coordinate

) L Of
) — g7
R T

We see that the norm is preserved after raising the index:

VP = g5VFVE
1,7

= > gzj(g“g;) (gjmﬁ)

1,7,6,m

N Z 5ﬂ(")xgg OTm,
jlm

_ ngm af 8f
— 0xy O,

= |df|*.

In general, we can go between any (r, s)-tensors as long as r + s is kept constant. The same proof shows
that raising or lowering indices in general preserves the norm.

Example 1.36

We know that every vector field on S? vanishes at some point (hairy ball theorem). Similarly, every
1-form must vanish at some point, because lowering the index preserves the norm.

2 Connections and covariant derivatives

2.1 Affine connections

Definition 2.1 (affine connection). An affine connection is a map Ve(e):I'(M) xIT'(M) — I'(M) sending
X, Y — VxY such that

1. VxY is C(M)-linear in X
2. VxY is R-linear in Y
3. Vx(fY) = fVxY + X(f)Y (Leibniz rule for Y).

Think of it as differentiating ¥ with respect to X. Note that if VxY were C(M)-linear in Y, then it would
be a (1,2)-tensor. Intuitively, multiplying Y by a function should have some Leibniz rule.

Lemma 2.2
If VeI (M), then V,V is a (1,1)-tensor with V4,V (W, a) = a(Vy V).

Proof. 1t is C(M)-linear in W € I'(M) by definition and in « € I'*(M) because « is C'(M)-linear. O

We can use the Leibniz rule to define V for all tensors. Given o € I'*(M), we want a 1-form V x« satisfying
X(a(V))=(Vxa)(V)+ a(VxV), so we define

(Vxa)(V) = X(a(V)) —a(VxV).
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September 16, 2025 Connections and covariant derivatives

Similarly given g € T%2(M), we define Vxg by
(Vxg)(V, W) = X(g(V,W)) = g(VxV, W) — g(V,VxW). (2.1)
For B(V,a) € TYY (M), we define Vx B by

(VxB)(V,a) = X(B(V,a)) — B(VxV,a) — B(V,Vxa).

2.2 Christoffel symbols

Definition 2.3 (Christoffel symbols). The Christoffel symbols are locally defined functions F ; satistying

Vo, 05 = Thop
k

Remark 2.4. The Ffj are only locally defined and depend on the choice of coordinates. They do not
vary algebraically (i.e. via some matrix multiplication) because partials are involved.

If we know the T

i then we can compute VxY locally:

VxY =) Vg (Y70))

= Z Xivai (Yjaj)
i,J

— ZXZ’ [YIV5,0; + 0:(Y7)0}]

—ZX’[YJ Zr D + 04 Y9)8]

where the second equality uses linearity in the bottom entry, and the third equality is by the Leibniz rule.

There is a dual identity with '
Vo, drj = — Z ngdxk.
k

This follows from
(Vo,dx;)(0k) = 05(dx;(Ok)) — d;(Vo,0k)
= —d.CEj ( Z kaae)
[
= Z 5jérfk
Tik»

where the first equality is by the Leibniz rule, and the second equality is from 0;(Id) = 0.

2.3 Levi-Civita connection

If we impose two additional conditions on V xY, there will be a canonical affine connection.

1. Metric compatibility: Vxg = 0 for any X. Then from (2.1), X (g(Y,2)) = g(VxY,Z) + g(Y,Vx Z).
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2. Symmetry: [X,Y] =VxY — VyX. In local coordinates, it is equivalent to Ffj = F;?Z» for all 4, j, k, as

= V0,0, — Vo,01

=> (T —T%)or.
k

Theorem 2.5 (Levi-Civita connection)

There exists a unique connection for each g, called the Levi-Civita connection.

From now on, let (X,Y) denote g(X,Y).

Proof. We will find a formula for VxY to show uniqueness. From metric compatibility, we get

X(Y, Z) = (VxV, Z) + (Y, Vx 2) (2.2)
Y(Z,X) = (VyZ,X)+ (Z,VyX) (2.3)
Z(X,Y) = (VzX,Y) + (X, VY). (2.4)

From (2.2) + (2.3) — (2.4), we have

XY, Z2)+Y(Z,X) - Z(X,Y) =(VxY, Z) + {(Z,Vy X) + (Y, VxZ - VzX) + (X, VyZ - VY)
=2VxY,Z) —(VxY,Z) + (Vv X, Z) + (Y, (X, Z]) + (X,[Y, Z])
=2VxY,Z) +(Z,[Y, X]) + (Y, [X, Z]) + (X, [V, Z])

so we know (VxY, Z) for all Z. As g is positive definite and in particular invertible, this uniquely determines
VyX.

It remains to check that this definition of VxY satisfies Definition 2.1, which is pset 2.2. O
2.4 Christoffel symbols in terms of the metric
Applying the formula from Theorem 2.5 with X = 0;,Y = 0;, Z = 0, yields
0i9ij + 0j9ik — Okgij = 2(Vo,0;, Ok)
- 2< S réon, ak>
¢
=2 Z Ffjggk.
¢

Multiplying by ¢"* and summing over k, we obtain

207 = ngk(aigjk + 0;9ik — Okgij)-
K

Example 2.6

On R", I = 0 because the metric is J;;.

Page 16 of 77



September 18, 2025 Connections and covariant derivatives

Remark 2.7. We will begin to use the which omits the summation
if there is an index variable appearing as an upper and a lower index. For example, we would write

U = g™ (Bigjk + Ojgix — Orgis)

Remark 2.8. Vector fields use upper indices, 1-forms use lower indices, and tensors use an appropriate
combination of upper and lower indices. When tracing over an index, it should appear in both upper
and lower indices.

2.5 Parallel transport

Let v be a curve with tangent vector 7. In local coordinates, v is given by its components +* for 1 < i < n.

Let 5
e =26, s = Yk,

Let V' be a vector field along the curve and write V = ) y V7(s)d;. We want to define a derivative along
the curve by

v,V Zvﬁva- (V79;)

—Z’ys (V)9 4+ VIV ,0;)

L Z V70, + ) AiVITS 0%

1,3,k

where

Vi(s) = - VI3(s))

Note V7 is only defined along the curve so terms like Vdi(Vj 0;) do not actually make sense, but this is the
motivation for the actual definition.

Definition 2.9 (derivative along curve). For a curve v and a vector field V', we define

Vv,V = ZVJ@ +§;fylwrk
2¥8

This function takes in a point on v and outputs a tangent vector at that point.

Definition 2.10 (parallel along curve). V' is parallel along v if V.,V = 0.

The parallel condition is a 1st order system of ODEs in s. Existence and uniqueness of ODEs implies that
each initial condition has a unique solution, called parallel transport along ~.

Example 2.11

On Euclidean space, parallel transport leaves the vector constant. From Fk = 0, we need VJ =0.

SRS
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Definition 2.12 (parallel). A tensor A is parallel if Vx A = 0 for any vector field X. A parallel vector
field A =V on the entire space is also parallel along any curve .

Claim 2.13 — The length |V|? is preserved under parallel transport.

Proof. By the chain rule, we have

LIVE (1)) =+ (VP) =2V V, V) = 2(0,V) =0,

2.6 Killing fields

Definition 2.14 (Lie derivative). For a vector field V' and an (r, s)-tensor A, we define the Lie derivative
Ly A, which is an (r, s)-tensor, as follows. Let Ly W = [V, W] and Ly f = V(f). Then we can define
Ly on any tensor by the Leibniz rule.

For example, the Lie derivative of a Riemannian metric g is

(Lvg)(X,Y) =V(X,Y) - (Ly X, Y) — (X, LyY)

=(VyX,Y)+ (X, VyY) —([V,X],Y) — (X, [V,Y]) (metric compatibility)
= (Vv X,Y) + (X, VvY) = (Vy X — VxVY) — (X, VyY = VyV) (symmetry)
= (VxV,Y) + (X,VyV).

Definition 2.15 (Killing fields). A vector field V is Killing if Ly g = 0. Equivalently,
(VxV)Y)+ (X, VyV) =0,

meaning that (VeV, e) is skew.

Example 2.16 (rotation)

0 1 :
1 O> by computing

On (R?, dij), consider the vector field V' = 2102 — 220;. Then Vy = <

<v81‘/7 81> = 07 <V82V, 82> - 07 <V81V7 82> - 17 <v82‘/7 al) - _]-7

so Vy is skew-symmetric.

The Killing field V' generates a one-parameter family of isometries (rotations) with

R(9) = <cos6 —sin9>.

sinf cos@

We have [ °° 0 —sinf) (z o 0 = xzsinf . Taking the derivative and restricting to ¢ = 0
sinf cos@ 9 1 8in 6 + x5 cos f
-(2)
6=0 1

0 T _ (—z1sinf — x5 cos b
%R(G) <x2> 9—0 a < 21 cosf — xosin 6

which gives V = —2901 + x105.

yields
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Pset 2.4 involves finding all Killing forms on Euclidean space (consider translations and rotations at least).
There will be few solutions because it is a first-order system.

3 Curvature

3.1 Riemann curvature tensor

Definition 3.1 (Riemann tensor). A Riemann tensor R is a (1,3)-tensor with R(X,Y)Z € I'(M) defined
by
R(X,Y)Z =VyVxZ -VxVyZ+VixyZ

It is canonically the same as a (0, 4)-tensor with
R(X,Y,Z, W) = (R(X,Y)Z,W).

We will prove that R is a tensor. It is clear that R is R-linear in each slot, but we need to show that it is
C(M)-linear.

We apply Lemma 1.24 which states [fX,Y] = f[X,Y] -Y(f)X.

R(fX,Y)Z = VyVixZ —VixVyZ +Vix 2
=Vy(fVxZ) = fVXxVyZ + Vixy-vnx(2)
=VY([)VxZ+ [VyVx = fVXVyZ + fVixy1Z - Y(f)VxZ
= fVyVx = fVxVyZ + fVixy)Z
— fR(X,Y)Z.
This shows C'(M)-linearity in X, and by skew-symmetry R(X,Y)Z = —R(Y, X)Z it is also C(M)-linear in
Y. Finally we check C(M)-linearity in Z:
R(X,Y)(fZ)=VyVx(fZ) = VxVy(fZ) + Vixy)(fZ)
=Vy(fVxZ+X(f)Z) - Vx(Y(£)Z+ fVyZ)+ [X,Y](f)Z + fVixvZ
=Y(f)VxZ+ fVyVxZ +Y(X(f))Z + X(f)VyZ
XY ())Z-Y(/)IVxZ - [VxVyZ = X(f)VyZ + X, YI(/)Z + fVix 1 Z
= fVYVxZ - fVXVyZ + fVixn 2
— [R(X,Y)Z.

The Riemann tensor has many symmetries in addition to skew-symmetry R(X,Y)Z = —R(Y, X)Z.

Lemma 3.2 (first Bianchi identity)
R(X,Y)Z + R(Y,Z)X + R(Z,X)Y = 0.

The key is showing that it equals the Jacobi identity [V, [X, Z]] + [X, [Z, Y]] + [Z, [Y, X]] = 0 from pset 1.
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Proof.

R(X,Y)Z+ R(Y,Z)X + R(Z,X)Y = Vy V7 - VxVyZ + Vixy|Z
+VVy X = Vy VX + Vg X
+VXV2Y = V2VxY + Vi xY
= Vy[X, Z] 4+ Vx[Z,Y] + V2]V, X]
+Vixy)Z + Viyg X + Vizx)Y
=Y, [X, Z]| + [X,[2, Y]] + 2, ]V, X]]
=0 O

Recall that the (0,4)-tensor R(X,Y, Z, W) from lowering an index is given by (R(X,Y)Z, W).

Lemma 3.3 (skew in last two)
R(X,Y,Z,W) = —R(X,Y,W, Z)

Proof. Using polarization, we just need to show that R(X,Y,V,V) =0 for all V.

RX,Y,V.V) =(VyVxV,V) = (VxVyV, V) +(Vixy1V, V)

= (VVxVV) = (T V.93 1)) = (X(TyV V) = (T3 V. V) ) + X, YV, V)
- %wa, vy — %XY(V, V) + %[X, YV, V)
=0
where we use metric compatibility. O

Lemma 3.4 (symmetry in pairs)
R(X,Y,Z,W) = R(Z,W,X,Y).

Proof. Using the first Bianchi identity, we have

0=R(X,Y,Z,W)+R(Y,Z,X,W)+ R(Z,X,Y,W) (3.1)
0=R(X,ZW,Y)+R(ZW,X,Y) + R(W, X, Z,Y) (3.2)
0=R(X,Y,W,Z)+ RY,W, X, Z)+ R(W,X,Y, Z) (3.3)
0=RY,Z,W,X)+ R(Z,W,Y,X)+ RW,Y, Z, X). (3.4)
Taking (3.1) - (3.3) and using Lemma 3.3, we get
0=2R(X,Y,Z,W)+ R(Y.Z. X, W)+ R(Z,X,Y,W) — R(Y,W, X, Z) —
Taking (3.2) - (3.4) and using Lemma 3.3, we get
0=2R(Z,W,X,Y)+ R(X,Z,W.,Y) + —R(Y,Z,W,X) — R(W,Y, Z, X).
The colored terms match up, so the remaining terms 2R(X,Y, Z, W) and 2R(Z, W, X,Y) are equal. O

We did the only thing that we could do to prove these identities.
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Lemma 3.5 (second Bianchi identity)
(VxR)(Y,Z)W + (VyR)(Z, X)W + (VzR)(X, Y)W = 0.
Recall VxR is defined by the Leibniz rule:

(VxR)(Y,Z)W = Vx(R(Y,Z)W) — R(VxY,Z) — R(Y,VxZ)W — R(Y, Z)VxW.

3.2 Ricci curvature

Definition 3.6 (Ricci tensor). The Ricci tensor is a (0,2)-tensor from tracing R in an orthonormal
frame:

Ric(X,Y) =Y R(X,e;,Y,e)
=l

where (e;, e;) = d;5.

There are three possible ways to trace, but R(X,Y, e;, ;) gives 0, and R(X,e;,e;,Y) is the negative. Note
Ric(X,Y) = Ric(Y, X) by symmetry in pairs (Lemma 3.4).

Definition 3.7 (Einstein). A manifold is Einstein if Ric = Ag for a constant \ € R.

We say Ric > X for A € R if Ric(V, V) > A |V|%. Ric > 0 is a common condition.

Example 3.8

Euclidean space is Einstein because R = 0 so Ric = 0.

Definition 3.9 (scalar curvature). Tracing the Ricci tensor gives the scalar curvature S € C(M) defined
by
n
S = ZRic(ei, )
i=1
where e; is an orthonormal frame.

In a general frame, S =Y "1, Z?:l g" Ric;, (raise an index and then trace, because we can’t directly
trace a (0, 2)-tensor).

Definition 3.10 (sectional curvature). Given orthonormal vectors V, W, the sectional curvature is

Kyw = R(V,W,V,W).

Lemma 3.11 (Schur)
dS = 2 div(Ric)

V Ric is (0, 3)-tensor, which we raise to get (1,2)-tensor, and then trace to get a (0, 1)-tensor, i.e. a 1-form.
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In an orthonormal frame,

div(Ric)(V) = ) (Ve, Ric)(e;, V)

=1

3

= (ei Ric(e;, V) — Ric(Ve,e5, V) — Ric(es, veiv)

-
Il
A

Il
.M:

(eiR(eia €5, V7 ej) - R(Veieia €5, V7 ej) - R(eiv €4, vei V7 e]))

1

.

J

|
.Mz

((vﬁiR)(eiv €5, ‘/7 e]) + R(eia Veieja ‘/7 e]) + R(€i> €5, V7 Veiej)>
1

.

)

2nd Bianchi says that (Ve, R)(e;, e5) + (Ve R)(ej, €i) + (Ve; R)(ei, €;) = 0.

4 Submanifolds

A circle in Euclidean space of radius R has curvature %.

Definition 4.1 (geodesic curvature). The geodesic curvature is kq(p) = j:% where the + is depending
on whether the circle is inside or outside.

P ‘l'max_v\\’ line

circie, '|'o\n Lnl' I'b
1_/\;! o/cJ-&/'

The intrinsic curvature of a curve viewed as a manifold is 0, but the extrinsic curvature when viewed as a
submanifold is more interesting.

4.1 Induced structure on submanifolds

Consider an immersion F: M™ < N™, which means dF is injective and m < n.

N
& My~

‘( M

T.M
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At each point p € F(M), we view T,M as a subspace of T,N and write
T,N = (T,M) & (T,M)*.

In particular, any V' can be written as
V=vT4+Vv+t

where VT € T,M is the tangential part and V+ € (T,M)* is the normal part.

The structure of N induces various structures on M. For now think of F' as the identity map, but these
definitions can be modified for any immersion F'.

e Induced metric: gy induces a metric gp; on M with
gu(V,W) = gn(dF(V), dF (V).
It also induces a metric on (7,M)*.
e Induced connections: An affine connection V on N induces an affine connection V on M by
Vv W = (VyW) T

for V, W vector fields tangent to M. To check that it is a connection, we first see that it is C(M)-linear
in the lower entry. Also for f € C(M), we have

Vv (fW) = (Vv (fW))"
= (fYvW+V(HW)T
= F(VvW)T +V(f)W.

e Induced connection on normal bundle: If X normal vector field (i.e. a vector field that is per-
pendicular at each point to T,M) and V is a tangent vector field, then we can define

VoX = (VyX)t
The normal part that we throw away in the induced connection is called the second fundamental form.

Definition 4.2 (second fundamental form). The second fundamental form is A(V,W) = (Vy W)+ for
tangent vector fields V, W.

Ais in T92(M) @ T(TM™') as it takes in two tangent vector fields and outputs a normal vector field.
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Example 4.3 (S! — R?)
Consider the embedding S* < R2. Then

Vo(cos6,sinf) = (—sin b, cosb).
Since the Levi-Civita connection on R? is the directional derivative, we have
Va,00 = (—cosf, —sin )
which is purely normal and equal to (Vg,0p)*. Then (Vg,0p)" = 0 and
A(0Dg,Dg) = (—cos b, —sinb),

so the second fundamental form is the inward-pointing vector.

For general V = f(60)0y, we have Vg, (f(0)0y) = f'(0)0s.

Proposition 4.4

The second fundamental form is symmetric: A(V, W) = A(W, V). (In the two tangent slots, although
it also has a normal slot.)

Proof. We have

AV, W) = AW, V) = (Vy W)+ = (Vi V)*

(
(

= (VyW =V V)*+

= (V. W)+

=0
where the last equation is by the general fact that if V, W are tangent to M then so is [V, W]. To show
this, work in a local coordinate chart and choose coordinates (z1,...,x,) on N such that M is given by
{Zm+1 =+ =2z, =0}. We can do this by implicit function theorem.
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Then V =3", Vig; and W = Z;”Zl Wi 0; are linear combinations of only 01, ..., 0,. We compute

=Y VIoi(Wiuj) =) VIOW )u; + VWl
— o
W(V(w)=> WI0;(Viu) =Y W0V )u; + VW,
— -

= Z Vl(alWJ)U] — Wj (@V‘)ul

(Here u; = 68 u.) Note that the u;; terms cancel, and we are left with just a linear combination of 01, . .., O,
implying that [V, W] is tangent to M. O

Since A is symmetric, all eigenvalues are real and are called principal curvatures. The sum of all principal
curvatures is the mean curvature.

Definition 4.5 (mean curvature). The mean curvature is the trace Tr A = H.

If H = 0 then it is called minimal.

4.2 Gauss equation

Lemma 4.6 (Gauss equation)

Let M C N be a submanifold, and let R and R be Riemann curvature tensors on M and N. Then for
any vector fields W, X, Y, Z tangent to M, we have

R(X,Y,Z,W) = R(X,Y, Z,W) + (A(X, Z), A(Y, W)) — (A(Y, Z), A(X, W)).

This is saying that the curvature is determined by the curvature R in ambient space and how M sits in the
ambient space via A.

Proof.
R(X,Y,Z,W) = (W,V(VXZ) = VX(Vy2) + Vx y2)

= (W, Vy(VXZ) = Vx(VyZ) + Vix ) Z)

= (W, Vy(VxZ - A(X,Z)) =Vx(VyZ = A(Y, Z)) + Vix v Z)

=R(X,V, Z,W) = (W, VyA(X, Z)) + (W,Vx A(Y, Z))
=R(X,Y,Z, W)+ (VyW,A(X,Z)) — (VxW, A(Y, Z))
= R(X,Y,Z,W) + (VsW, A(X, Z)) — (VxW, A(Y, Z))
= R(X,Y,Z, W)+ (A(Y, W), A(X, Z)) + (A(X, W), A(Y, Z)).

Since W is tangential, we can get rid of the T’s in the second equation. We use metric compatibility in the
fifth equation and add back the L’s in the sixth equation because A(e,e) is normal. O
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Example 4.7

Consider 8" < R™"*! where §” = {|Z]> = 1}. If V, W are tangent vectors to S™, then at the point z we
have
AV, W) = (VyW,2)T = —(W,VvZ)T

because A(V, W) is the normal part of ViyW. The second equation is by metric compatibility because
(W, Z) = 0.

The Euclidean space miracle is that V& = V for any vector V. For example in R?, taking the derivative
of the vector field (z,y) with respect to (a,b) gives

Viap) (T, ¥) = (Oa,p)T, Oap)¥)
= (a0zx + b0y, adyy + bOyy)
= (CL, b)

since 0,x = Oyy = 1, Oyx = 0,y = 1.

So from the above, we have
AV, W) = =W, V)Z.

Now by Gauss’s equation, we have
R(X,Y,Z,W) = (X, Z)(Y,W) — (Y, Z){X,W).
If V, W are orthonormal, then the sectional curvature is constant and equal to 1:

Kyw = R(V,W,V,W) = (V,V)(W, W) — (W,V)(V,W) =1-1-0-0=1.

Then Ric = (n — 1)g which is Einstein, and S = n(n — 1).

4.3 Codazzi equation

Lemma 4.8 (Codazzi)
If U,V,W € I'(M), then

(RU,V)W)* = (Vy AU, W) - (VuA)(V, W).

Proof. The LHS is
(R(UV)W)' = ViVyW = VEVY W + Vi W
= Vi (VuW + AU, W) = VE(Vy W + A(V, W) + A([U, V], W)
= A(V,NuW) 4+ VE(AWU, W) = AU, Ny W) = VEAV, W) + AU, V], W)
For the RHS, we use the Leibniz rule:
(VvA)(U,W) =Vy(A(UW)) - AVyUW) - AU, VyW)
= Vi (AU W) — AVyU, W) — AU, Yy W)
(VuA)(V,W) = Vi (AV. W) = ANV, W) — AV, V).

They are equal, noting that A([U, V], W) = A(VyV,W) — A(VyU,W) by symmetry (Section 2.3). O]
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The Codazzi equation is the most useful when the LHS is zero, such as when R = 0 in Euclidean space R".
Then B B

and VA is fully symmetric in U, V, W.

Example 4.9
Let © be an open subset of R? and consider the graph of u € C(R?)

Y ={(z,y,u(z,y)) : (z,y) € Q}.

For example, the upper hemisphere is u = /1 — 22 — 2.

On R?, we have local coordinate vector fields 9, d, (actually global in this case). The induced metric
from this immersion is

oz = 9(0z, 0x) = (dF (), dF(8z)) = 1+ u}
because dF'(0,) = (1,0, u,). Similarly dF'(d,) = (0,1, u,) so

Gzy = UgUy

Gyy = 1—i—u§.

The unit normal vector is a unit vector perpendicular to dF(0,) and dF(dy), so it is

(=t =y, L]

A/ 14 u2 4 ul

n=

Example 4.10

Intuitively, a path in R? with this metric has the same length as if we were going along the surface of
the sphere. Going from (0, 0) to (0, 1) should have length 7.

Consider the curve y(s) = (0, s) in R2. Since v/ = (0,1) = 9, we have

2
=gy = L+ uZ(O,s)

||
Since u = /1 — 22 — 92,
P
Y122 2
1— 2
— 1+u= :
Uy 1— 22 — o2
At (z,y) = (0, s), we have
72 - 1
h’ (S>_1_82

so the arc length is

L( ) /1 1 d . 1 T
= ————ds = arcsins| = —
v 0o V1—gs? 0 2

There are two ways to find the Levi-Civita connection for this g. The first way is to compute I} from the
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formula 217} =3, 9" (0:gj + 0;9ik, — Orgij). The second is using submanifold geometry:
VFzFx = va((la 0, ux)) = (Oa 0, uxm)
since F), is just moving in the x direction, and the second equality is by the chain rule. Then

(VFQDF‘QU)L = (anauawﬁ)L
= ((0,0, ugy), )7l

g, —1uy, 1
= <(0707U$I)7 ( ux, uy’ ) >T_i
A1+ u2 4 ul

Uy N

—N
1+ ui+ul

so we can compute the induced Levi-Civita connection Vg, F, = (Vp, Fx)T.

4.4 Umbilic submanifolds

Assume there is a unit normal 7 (existing locally). The shape operator S:T,M — T,M is defined by
(S(V), W) == (A(V, W), 7)
= (VyW,7)
= V(W,n) — (W, Vyi) (metric compatibility)
- <VV7 vVﬁ>)
where the last equation is because W is T and 7 is L. The RHS is some number because A(V,W) and 7
are both normal. Note that (Vy#,7) = £V (i1, i) = 0.

In particular if § = 0, then 7 is constant.

Corollary 4.11
Let M be a sub-n-manifold of R"*!. If A =0 and M is connected, then M is a hyperplane.

Proof. Taking p € M, there is a neighborhood around p where 7 is defined. Choose coordinates such that

7(p) = Opt1 and xp4+1(p) = 0 (rotate and translate). We claim that M C {x,+1 = 0} which implies equality.

The set M N {x,+1 = 0} is automatically closed (because x,41 is continuous) and nonempty (as p is in
there). By connectedness, it remains to show that is is also open.

Take a curve v in M with v(0) = p. Let

so f(0) = 1. By the chain rule,

f'(s) =+ (7i(v(5)), Ony1)

Y
= (Vyil, Ons1)
( 7, Op, (V ,n On+1)
=(Vy,0,,1) +0
—(1, V0, +1> (metric compatibility)
= = (i1, A(Y, 041))
Note in the fourth equation that V#,ﬁ = 0 because (V.7 7) = 0. O

+1) +
+1>
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S:TyM — T,M is a (1,1)-tensor that is “symmetric”, meaning

Thus it has real eigenvalues A1, ..., A\, which we call the principal curvatures.
Definition 4.12 (umbilic). An n-manifold M is umbilic if A = --- = A\, at every point.

In other words, S is multiplication by a constant at each point, but not necessarily the same constant.

Example 4.13

R™ and S™ are umbilic. It turns out that these are the only two examples.

Proposition 4.14
Umbilic implies flat in R™ for n > 3.

Proof. Since S is scalar multiplication (a diagonal matrix with the same entry along the diagonal), we can
locally find a function f such that S(V) = fV. Then

FV,W) = (S(V), W) = (i1, A(V, W)).

We compute the divergence
div(S) = Tr(V.S5)

which is a (0,1)-tensor (i.e. 1-form) because S is a (1,1)-tensor and the covariant derivative VoS is a
(1,2)-tensor.

Let S =Y, ,510; ®dr; and VoS =3 S§7k(8i ® dzj @ dry) where we write S;k for (V.S);k. Then

1,7 J 3,9,k

k= (Va,5)(dwi, 05)
= O0r(S(dz;,0;)) — S(Vo,dx;, 0;) — S(dzs, Vi, 05). (Leibniz rule)

To compute S(dx;,0;), we use
> Sigi = <ZS§@',6€> = (5(0;),0¢) = (Aje, 7).
Now multiply both sides by ¢‘* and sum over ¢ to get
Z g% (Ajg, ) = Z 9% S’ gie
¢ il

= duS]

_ ¢k

= sk,

SO

S(dzi, ;) = Zg Ao, 7t

Taking O, some terms cancel with S(Vg,dx;, 0;) and S(dmz, V,0;), and we end up with

§7k_zg jﬁka
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Ajoy is fully symmetric in j, ¢, k by the Codazzi equation.
We now compute div(S)(V) in two ways. On one hand,

div(s Z %
- Z Ve, S(e))(V) = S(Ve,ei) (V)
_ Z (Fe)(V) = F(Vee (V)
= Z(veiﬁei(w

—V(f).
On the other hand,
div(S)(V) = Z(VVS)(ei)(ei)
= Z(Vv(fei) — fVvei)(e:)

= Z V(f){ei ei)
= (n - DV(f)
Assuming n > 2, this means V' (f) =0 for all V', and f is constant. There are two possibilities:

e If f =0, then A =0 which implies A is flat.
o If f =\ for A # 0, then define a map ¢: ¥ — R" by

For any tangent vector V, we have

1 1
V()= VX + Vyii =V — 5(V) =0

from assuming S(V') = AV. This implies ¢ is constant, there is some fixed point p = ¢(x) for all x.
Then ¥ has to be contained in the (n — 1)-sphere with radius o /\‘ and center p.

O

5 Geodesics
5.1 Geodesic definition

Definition 5.1 (geodesic). A curve v:[a,b] — M is a geodesic if V., = 0.

Corollary 5.2
The length |4/| is constant.
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Proof. The derivative of |/|? is

d 2
dt V|7 =2(V,+,7) = 2(0,7') = 0. 0

Locally, write () = (v'())1<i<n so that o/ = 3, 7i0; (where 7} = £+*). Then
Vv =Y Ve, (119;)
i’j
=Y 7i0i(:)05 + 1 V,05)
i’j
=D 05 + D Thon,
J .5,k

which must equal 0 for a geodesic.

Example 5.3

In Euclidean space, we need fytjt = 0 for all j, so the geodesics v are straight lines parameterized at
constant speeds.

In general, a geodesic is a second order system. Being given an initial position and velocity determines the
geodesic.

Consider a curve v in M which is a submanifold of N. Then
R A
0= Vﬂ/’y
= Vﬁ,/’yl — V#,’y’

SO
Vo' =AW, A).

Example 5.4

Let M = S™ be the unit sphere, so A(v,7') = — |v/|> . Spherical geodesics have to satisfy vy — = BARE
where || is constant by Corollary 5.2. If || = 1 (unit speed), then each component of v has v/, = —/,
and the functions that satisfy this are sin and cos. Geodesics in S™ are great circles (see pset).

5.2 Exponential map

Given p € M, we define a map exp,: T,M — M with exp,(0) = p as follows. Let v(p,V,t) be the geodesic
with
7(p7V70) =D, ’Yt(p7v70) :V
By existence and uniqueness of ODEs, this is defined for |¢| < C for some constant C. Note for a > 0 that
v(p, V,at) = y(p,aV,t)
if y(t) is a geodesic, then o(t) := v(at) is also a geodesic (drawing ~y at a faster speed). Alternatively from

the original equation, we see V,avy' = aQVW/ =0.

Definition 5.5. The map exp,: T,M — M is defined by exp,(V) = ~(p, V,1).
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Example 5.6
In R™, the geodesic is y(p, V,t) = p +tV, and the exponential map is exp,(V) =p+ V.

Given initial conditions v(0) = p and 7/(0) =V € T, M, we get v:[0,t9] — M. We call v by 7, v to show
the initial conditions.

"
° (
odesic
?x,,v
T.M

Given V, a solution 7, exists up to some time tg. Using 7, v (at) = 7,4y (t) and setting a = o, then
Yp,av (1) is defined. For [V] < ¢ fixed, exp, (V) is defined.

We determine the differential (dexp,)y of the exponent map. Since the tangent space of T, M is itself, the
map exp,,: T, M — M induces
(d expp)V: T,M — Texpp(V)M'

We first consider V' =0, so (dexp,)o is a map T, M — T, M.

Lemma 5.7
(dexp,)o = Id.

Proof. Let a be a curve with a(s) = sV. Consider :[0,1] — M given by o(s) = exp,(sV) = ypsv (1) =
Yp,v (8). By the chain rule, we have

0'(0) = (dexpp)o(da(9s)) = (dexpp)o(V).

Also explicitly, o/(0) = v, 1,(0) =V, so (dexp,)o(V) = V. H

« exp
—:)—I— - } -
! «(s)=sv °
ToM M

The inverse function theorem implies exp,, is a diffeomorphism in some ball Bs(0), called a normal neigh-
borhood. For a set U C M, a totally normal neighborhood is a ball Bs(0) in which exp, is a diffeomorphism
for all g € U.
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5.3 Gauss lemma
Definition 5.8. For V., W € T, M perpendicular, define F: R? — M by

F(s,t) = exp,(t(V + sW)).

When only ¢ varies, it is a geodesic. When only s varies, it traces out different geodesics. There are two
nice vector fields along the image, namely Fs = dF(0s) and F; = dF(0y).

By the chain rule (the s derivative of ¢(V 4 sW) is tW, and the ¢ derivative is V + sW),
Fi(s,t) = (dexpp)ivrsw) (tW)
Fi(s,t) = (dexp,)yvisw)(V + sW).
At t =0, (dexp,)o = Id so
Fy(s,0) = Id(0W) = 0
Fi(s,0) =1d(V + sW) =V 4 sW.

Lemma 5.9 (Gauss)
(a) |Fi(s,t)]> = V" + 82 [W[* = |(dexp,)eqv-rsm) (V + sW)[".
(b) (Fs(0,¢), F(0,t)) = 0 = ((dexpy)ev (V), (dexp,)ev (W)).

Proof. We can check that (a) is true for ¢t = 0 by using Fi(s,0) = V 4+ sW, and cross terms disappear
because V, W orthogonal. Also (b) is true from F,(0,0) = 0. Now we consider the derivatives of both sides.
We use these facts:

(i) [Fs, Ft] = 0 because it equals dF'([0s,0:]) = dF(0) = 0.
(ii) Vg, (F;) =0 for any (s,t) because the image of F} is a geodesic.
(iii) As a consequence of (i), 8; | F;|* = 0 for any geodesic (Corollary 5.2).
Now (a) is obvious from (iii). To prove (b), We know (Fj, F;) = 0 at t = 0. Differentiating, we get
dF (O (F, Fr)) = Fy((Fy, F1))

= (Vg Fs, Fy) + (Fs,V, Fy) (metric compatibility)
= (VR Fs, )

= (Vg F, F}) (using (i))
= %as |Fy?

— W (using (2))
=0, (s=0)
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as desired.

Corollary 5.10
(Z,X)

O

Given any vector fields Z, X € T,,M, we decompose Z as the part ¥ = XX X along X, and the normal

part Z —Y. Then

|(dexp,)x(2)|* = |(dexp,)x (Y)|* + |(dexp,)x(Z — V)|’
= |Y\2 + |(dexpp)X(Z - Y)‘2 .

We can make the radial part V and the angular part W, and then apply Gauss.

z
'\ /’*é-‘nvQ
IS

X _A-x-pert

5.4 Riemannian distance

Definition 5.11 (Riemannian distance). For points p,q € M connected, define
d(p,q) = inf L(v)

as -y ranges over curves from p to ¢ that are piecewise smooth (finitely many breaks).

3, ¥

To check this is a metric, we need to check that it is
e Symmetric: d(p,q) = d(q,p).
e Positive definite: d(p,q) > 0 with equality if and only if p = q.
e Triangle inequality: d(z, z) < d(z,y) + d(y, 2).

Symmetric follows by going along the curve backwards. The triangle inequality follows from pasting two
curves together. Positive definiteness is not obvious—although each curve has positive length, there could be

curves with length converging to 0.

We want to find a positive lower bound for L(y) for v:p — ¢ with p # ¢. By the Hausdorff condition,
there exists some open neighborhood (2 of p not containing g. There exists some § such that exp, is a
diffeomorphism in Bs(0), and the image exp,(8B5(0)) is contained in € and isomorphic to S"~*. Note

q ¢ exp,(Bs(0)). If v is any curve from p to g, it must pass through exp,(9Bs(0)).
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Lemma 5.12
Suppose that exp,, is a diffeomorphism on B5(0). Let 0 <7y <ry < ¢ and o be a curve in T, M. Given

that o(0) € B,,(0), 0(1) € 8B,,(0) and 0 C B,,(0) \ By, (0) then L(exp,(c)) > ry —r1.

Equality holds if and only if o is a monotone ray, meaning o /|o| is a constant vector and |o| is monotone.

The first part of the lemma implies ¢ is a lower bound. Later we’ll see why monotone ray part is useful.

Proof. For Z,X € T,M, we decompose Z as the part Y = <<)Z(§>>X along X, and the normal part Z — Y.

As in Corollary 5.10, we have by the Gauss lemma on Y and Z — Y that

(dexp,)x(2)]* = [(dexp,)x(V)|* + |(dexp,) x (Z — V)|
= Y+ |(dexp,)x (Z - YV)|*
(Z,X)*
X2
. (2, X)*
T |xP

+|(dexp,)x(Z - V)|

with equality if and only if (dexp,)x(Z —Y) =0, or Z =Y if exp, is a diffeomorphism. The first equation
is by Gauss lemma (b) which says the cross term is 0, and the second equation is by Gauss lemma (a).
Let v = exp,(0). Applying the above inequality to Z = ¢’ and X = o, we obtain

Y [* = [(dexpy)om (@)

(o', 0)?

Z 3
o]
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_ (o)
ER

with equality if and only if ¢’ o. Integrating yields

The third line is by
I d 2 !
2|ol|o[ = —|o(t)|” = 2(c", 0),

(/)

!/ . .
so |o|" = T (As a concrete example, we can compute the derivative of |z|.)

The second inequality is sharp if and only if o is monotonic. The first inequality is sharp if and only if

<U,’g>0, which we claim is equivalent to |l constant. Geometrically, it’s clear you should stay along

ol ol

the ray from that equation if it’s a multiple of the ray pointing to the origin. Algebraically,

o =

!
<O‘ )’_ o olo “7"7/_‘7(70’? B lo|? o’ — o(o’, o)
= = 2 = 3

=0

o]

using ¢/ = ao for a € R. O

Definition 5.13. A curve v:[a,b] — M is (length) minimizing if L(vy) = d(y(a),y(b)).

It is not necessarily unique, e.g. on a sphere between two antipodal points. It also may not exist, e.g. on a
disk missing a point.

Corollary 5.14 (of Lemma 5.12)

If v is length minimizing, then we can (monotonically) reparameterize v such that it is a geodesic.

Proof. We know that any subcurve of v is also minimizing, and that « is monotone. Reparameterize + such
that the speed |7/| = 1 is constant, which is still length minimizing because reparameterizing doesn’t change
the length.

¥(a)
v()
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By compactness, we can cover y by a finite collection of totally normal neighborhoods. In each totally
normal neighborhood (centered at p), the inverse image of v in exp, must be a monotone ray, so v must be
a monotone geodesic ray. (We are using the fact that in a normal neighborhood, a length minimizing curve
is a geodesic.) In the regions where two geodesics overlap, it is the same curve and with the same speed, so
v is a geodesic. O

5.5 Hopf-Rinow theorem

Theorem 5.15 (Hopf-Rinow)
Let M be a connected manifold with Riemannian distance d. TFAE:

1. There exists p € M such that exp,, is defined on all of T}, M.
2. Any subset of M that is closed and bounded is also compact.
3. (M,d) is complete (every Cauchy sequence converges).
4. M is geodesically complete (for all p € M, exp,, is defined on all of T, M).
Any of these imply that for all p,q € M there exists a length minimizing geodesic v from p to q.

Lemma 5.16
Let x € M such that exp, is a diffeomorphism on Bg (0) for ¢’ > §. For y ¢ Bs(x),

1. There exists z € 9Bs(x) such that d(z,y) = inf,cop; () d(w,y).
2. Any such z satisfies d(z,y) = d(z, z) + d(z,y) = 6 + d(z,y).

'3
closesh

oy

Proof. 1. 0Bs(x) = exp,(0Bs(0)) is the image of a sphere so it is compact. The distance function is
Lipschitz by the triangle inequality and has a minimum on the compact set 9Bj(x).

2. The fact that d(z, z) = 0 for z € 0Bs(x) is by the Gauss lemma. For the first equality, the < direction
is by the triangle inequality. For the > direction, any curve v from x to y must hit the boundary
OBs(z), say at z/. Then L(vy) > d(z,2') + d(2',y) > 0 + d(z,y). Taking the infimum over all v yields
d(z,y) >0 +d(y, z). O

Proposition 5.17

Condition 1 in Theorem 5.15 implies for all ¢ that there exists a minimizing geodesic v from p to q.
This implies exp,, is onto.

Proof. By Lemma 5.16, choose zyp € 0Bs(p) which minimizes the distance to q. Choose a geodesic v such
that |7y/| =1, v(0) = p, and 7(d) = 2¢. This ~ is defined for all time ¢ by condition 1.
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evps'(2)

4
.

/ _N
/ 2o C( nJe("
K by

ﬁs[o) V\D/‘V"\J

exp,

T M

Let r = d(p, q) and we show that v(r) = ¢. Define
A= {te 0] v > t+dy(t), )}

To see that r € A, we note
e 0 A
e A is closed.

o Ift € Aand s <t, then s € A. By the triangle inequality, we have

d(v(s),q) < d(y(t),7(s)) + d(v(¢), q)
<(t—s)+(r—t)

e Aisopen. Sayt € [0,7)is in A so that d(y(t),q) <r—t. In fact d(v(t),q) = r —t because the reverse
inequality is the triangle inequality.

Choose 0 < §; < r —t such that Bys, (7(¢)) is a normal neighborhood. Let z; € 9Bs, ((t)) be closest
to ¢q. (Note this image is misleading because z; and ¢ will be on ~, but we don’t know that yet.)

Bs, (Y1)

S

2\

Lemma 5.16 part 2 says d(v(t),q) = 61 + d(21,¢). Then
r—t=01+d(z1,q) = d(z1,q) =r—(t+01).
Then by the triangle inequality,
r=d(p,q) <d(p,(t)) +d(y(t),21) + d(z1,q) =t + o1+ (r—t+61) =,

so d(p,z1) = t + 61. The curve p — ~(t) — 21 is length minimizing and has to be a geodesic by
Corollary 5.14. Uniqueness of ODEs says that it has to be v because they agrees up to time ¢. Thus
~(t + 01) = 21, which implies ¢t + 6; € A. O

Recall that the metric is d(p,q) = inf{L(y) | v:p — ¢}. The Gauss lemma showed that given exp, is a
diffeomorphism on B;(0), if ¢ = exp, (V) with [V| < 6, then d(p,q) = |V| and any 7:p — ¢ of length |V is
a “monotone ray.”
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Proof of Theorem 5.15 (Hopf-Rinow). 4 = 1: This is clear.
1 = 2: Let p € M be the point for which exp, is defined on all of T,M. (2 being closed and bounded

means there exists R such that d(p,r) < R for all x € 2. By Proposition 5.17, Q C exp,(Br(0)) since any

x €  has a geodesic leaving p to x with length d(p,r) < R. Bg(0) is compact in T, M ~ R" and exp, is

continuous, so exp,(Br(0)) is compact. Since 2 is a closed subset of exp,(Bg(0)), {2 is compact.

2 = 3: A Cauchy sequence (p,) is bounded, so it lies inside a compact set by our assumption. Then there
exists a convergent subsequence, which implies convergence for a Cauchy sequence.

3 = 4: We are given that (M, d) is complete. We show that a geodesic v starting at p € M can be extended
for all time ¢. By the normal neighborhood, we can do this for ¢ € [0, d]. Let

A= {t €[0,00):7(t) is defined}.

A is automatically open, as we can consider a normal neighborhood around ~(t) (e.g. consider a geodesic
from the origin to the surface of the unit ball).

It remains to show that A is closed: given that ~y(t) is defined for all ¢ € [0,7"), we wish to extend it to 7.
Let t; be an increasing sequence converging to 7. The sequence ~(t;) is Cauchy because

d(v(t:),7(t5)) = L) < || 1t — til < || €

when |t; — t;| < e. By completeness, y(t;) converges to some 2 € M. Looking at a totally normal neighbor-
hood about x, we have (T") = x by uniqueness of ODEs. O

To find the length of a curve in a metric space, we partition the curve at points t;, consider > d(v(t;), v(ti+1)),
and take the size of the partition to 0.

//1\
Example 5.18

Consider partitioning the perimeter P of the circle. Given that 7 is the area of the circle, the area of

1 e oo 1 ~1.1.P =
oneNsectorlsNNQbh~2 1 N.ThenP—27r.

T\
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6 Variational theory of geodesics

Recall that a curve 7: [a, b] — M is a geodesic if V.,y" = 0. These have constant speed |7'|. A curve o: [a, b] —
M is minimizing if L(o) = d(o(a),o(b)). We showed that such a o is a monotone reparameterization of a
geodesic.

6.1 Jacobi equation

Definition 6.1 (variation, proper). Given a curve 7: [a,b] — M, a variation of v is a continuous (usually
piecewise smooth) map F: (—¢,€) X [a,b] — M such that F(0,t) = v(t).

A variation F' is proper if the endpoints are fixed, meaning F'(s,a) = y(a) and F(s,b) = (b) for all s.

For F, there are two natural vector fields along the image:
o F, =dF(0s), called the variation vector field.
e [} = dF(0;), which gives the tangent along each curve for each s.

At s =0, F; =+ = . If F is proper, then Fy = 0 at the endpoints.

Corollary 6.2
VFsttFt = VFtVFth —|- R(Ft, Fs)Ft.

Proof. Recall that [Fy, F;] = 0 because [0s,9;] = 0 in R? and dF preserves the Lie bracket. Then

Ve VEF = R(F, F)Fy + VEVEF — Vg p)
= R(F;,F5)Fy + Vi VEFs

where [F;, F5] = 0 and symmetry implies Vg, F} = Vg, Fs. O
If F} is a geodesic, then Vg, F; = 0, and we get that the RHS above is 0.
Definition 6.3 (Jacobi field). Let v be a geodesic. A vector field J along v is a Jacobi field if
VyVyd +R(H,J)Y =0.

If t — F(s,t) is a geodesic for every s, then Fy is a Jacobi field.

Example 6.4

On R", geodesics v are straight lines. Since R =0, J is a Jacobi field if and only if V.,,V.,J = 0. Let
€1,...,en—1,e, = 7 be a parallel orthonormal frame along v. Writing J = > " | fi(t)ei(t), we have
Voyd =370 fl(t)ei(t) and V.,V J = 3, f/'(t)ei(t) because the e; are parallel. Thus, J is Jacobi
when f;(t) is affine for all i, i.e. f;(t) = a; + b;t for constants a;, b;.
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Jacobi fields are supposed to be infinitesimal generators of nearby geodesics, so it makes sense that they are
linear on R".

Lemma 6.5
Let +: [a,b] — M™ be a geodesic. Then

1. The space of Jacobi fields along « is 2n-dimensional and is uniquely determined by J(a) and
J'(a) = (V4 J)(a).
2. If J(a) =0, then J(t) = (dexp,y(a))(t a)y(a )(tjl( a)).

Proof. 1. The Jacobi equation is a 2nd order ODE, so it is determined by J and J’ at a. There are n
choices for the coefficients of J(a), and similarly for J'(a).

2. Define a variation

F(s,t) = expy (o) ((t = 0)(7'(a) + 57'()))

where 7/(a) is a fixed constant vector. For s fixed, this is a geodesic. Then F|s—¢ is a Jacobi field.
Note that Fy(s,a) = 0.

What is VFt(F5|5:0) = VFth?

F (07 t) = (dexpfy(a))(tfa)'y’(a)((t - a) J/(a))
= (t - a) (d expw(a))(t—a)w’(a) (J/(CL)) .

When we compute V. of this at t = a, the term with (¢ — a) after the chain rule vanishes, and the
other term is

th (dexpv )t a)'y’(a)(‘]/(a))|t:a
= (dexp,(q))o(J'(a))
= J'(a)
at s = 0 and t = a, using (dexp,(q))o = Id by Lemma 5.7. The uniqueness in part (a) implies that
Fo=J. OJ

Example 6.6

There are always two simple Jacobi fields
e J =1/, because V.,V.,v =0 and R(y',7')y =0 (R is skew).
o J =1ty because V.,V (t7") =V (t'y +tVyy') = Vv =0 and R(y,ty)y = 0 (pull out ¢ by
linearity).

We show that the other 2n — 2 Jacobi fields must be normal.

Proposition 6.7
If J is a Jacobi field with J(0) and J’(0) normal to 4/(0), then J is normal to ~' for all ¢.
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Proof.
() = {J'7) + (V)
= (J'.7)
= 0{{(J,7) = ()
= <V’Y/V'Y’J7 7,>
= —(R(", IV, ") (Jacobi equation)
= —R(+, 7,77)
=0 (Lemma 3.3)

Then (J,+') = a + bt for some a,b € R. As J and J’ are both perpendicular to 4" at 0, we must have
a=0b=0. Then (J,7) =0. O

6.1.1 Normal Jacobi fields on constant curvature spaces

Suppose M has constant sectional curvature k. Assume |y/| = 1. If V' is a parallel normal vector field along
v (so V.,V =0), then fV is a Jacobi field if and only if

0=V, Vy(fV)+ R, fV)
= f"V+ fR(Y, V) (VyV =0)
=f"V+rfV
= (f"+ KNV
For the third equation, recall that R(X,Y,Z, W) = c((X, Z)(Y, W) — (X, W)(Y, Z)) for all tangent vectors
X,Y,Z W (pset 3.3). Then (R(v', V), W) = x(V,W) for all W, so R(v',V)y' = kV.
This is a differential equation that we can solve:
e If x =0, then f” =0 and f = a + bt.
e If k=1 (e.g. S"), then f" = —f and f = asint + bcost.
e If K = —1 (e.g. hyperbolic space) then f” = f and f = acosht + bsinht.

6.2 Conjugate points

Geodesics on S™ get farther apart until they get to the equator, then they get closer together until they
coincide at the antipode. In hyperbolic space, then initially grow linearly, but then exponentially.

Definition 6.8 (conjugate points). Let v be a geodesic. Then v(a) and 7(b) are conjugate if there exists
a nonzero Jacobi field J such that J(a) = J(b) = 0.

Conjugate points correspond to places where exp is not a diffeomorphism? There are no conjugate points

in R" asif f = a+bt =0 and f' = 0 then a = b = 0. There are also no conjugate points in hyperbolic
space. However, antipodal points are conjugate on S™.

6.3 Energy

Definition 6.9 (energy). The energy E() of a curve v:[a,b] — M is

b
E(v) =/ | (2) d.
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If it were || instead of |7/|?, that would be the length of the curve.

Lemma 6.10

‘We have
d(v(a),y(0))> < L(7)* < (b—a)E(y)

with equality if and only if v is a minimizing geodesic for both L and E.

Recall the Cauchy—Schwarz inequality

([o)<([&)([ )

with equality if and only if u, v are multiples of each other. It comes from the L?-norm inequality
(u,0)72 < [ull2 [Jv]|72

which is always true in an inner product space. A special case is that

(/ablul)zg (/abl)(/abu?):(b_a)/abuz

with equality if and only if u is constant.

Proof. The first inequality is by the definition of d. The second inequality is by Cauchy—Schwarz:

L(y)* = (/;M)Q < (/abl)(/abh’f) = (b—a)E(y).

If the first inequality is an equality, then v is a monotone reparameterization of a length minimizing geodesic
by Corollary 5.14. The second equality implies |y/| is constant, so 7 is a length minimizing geodesic. O

There are too many choices for curves that minimize length, so we consider one with minimal energy. Given
a length minimizing curve, we can reparameterize it to be energy minimizing. A length minimizing geodesic
is the same as an energy minimizing curve.

Remark 6.11. Historical aside: Poincaré asked when given a complete manifold, whether there is
always a closed geodesic (a map from S' — M). For example on the sphere, we can take an equator.
For surfaces with genus > 1, we can take a nontrivial loop and find a variation that minimizes energy,
which will then be a geodesic.

On simply connected surfaces such as the sphere, this doesn’t work because all loops are null homotopic.
Birkhoff used sweepouts, or a family of curves which start and end at a point curve. He considered a
curve with maximal length, which turned out to be a geodesic.

Page 43 of 77



Variational theory of geodesics October 23, 2025

6.3.1 First variation of energy

Let 7:[a,b] — M be continuous and piecewise smooth with breaks at a =t < t; < -+ <t < tg11 = b.
Let v/(t;) be the incoming tangent vector, and let 7/(¢]") be the outgoing tangent vector.

Let F(s,t) be a proper, piecewise smooth, continuous variation so F(s,a) = y(a) and F(s,b) = ~(b) for all
s. We compute the variation %, where E(s) is the energy of F(s):

b tit1
E(s):/ |Ft(s,t)|2dt:Z/ Fy(s, )| dt.
a i t;

Differentiating,

Es)=Y" /t o F,(Fy, Fy)dt

%

tit1
=2 Z/ (Vi Fy, Fy) dt (metric compatibility)
iVt
tit1
= 22/ (VR F, Fy)dt ([Fs, Fy] = 0 and symmetry)
i Yt
tit1
= 22/ (Fi(Fs, Fy) — (Fs, Vi, Iy)) dt (metric compatibility)
i Yt

t;

b
t“ —2/ (Fy, Vi F)dt (FTC)

b
=<2 [ (B VB dt+ 23 (B () ~ (Fu R)ED)
b
_ _2/ (o Vi By dt+2 3 (Fo () — Fi(t)) (6.1)
The last sum would telescope if v were smooth to yield

E'(s) = —2 /b<Fs, Vi) dt + 2(F,, Fy(b) — Fi(a)). (6.2)

Proposition 6.12

7 is a smooth geodesic if and only if E'(0) = 0 for all proper variations of ~.

Proof. (=) The first term in (6.1) vanishes because Fs = 0 for a geodesic, and the second term vanishes
when ~ is smooth.

(<) Every vector field V' on « gives a variation F'(s,t) = exp,)(sV (t)), where Fy(0,t) = V(¢).
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We first show that «y is a broken geodesic. We let V' be 0 at the breakpoints, so the summation term in (6.1)
is 0. Then the integral term is 0, but Fy can be arbitrary so Vg, F; = 0.

Next we show that v is smooth. If 4 has a break point at t;, then we let V jump at t;, so F5(0,¢;) =
Fy(t;) — F(t]), and Fy(0,¢;) = 0 for all j # i. Then there would be a nonzero contribution in the second
term, which is a contradiction. O

6.3.2 Second variation of energy

Proposition 6.13
If v:[a,b] - M is a smooth geodesic, then

1 b
350 = [ (VRRP - R, F BB dr
a

Note that Vg, Vg, Fs + R(F;, Fs)F; is the Jacobi operator and equals 0 when F; is a Jacobi field.

Proof. We have

L) = - /bFS(<Fs,VFtFt)) dt

2
b
= _/ <VF5F87 VFtFt> + <F57 VFsttFt> dt
b
= - / (Fy, ViV Fy) dt
ab
= —/ (F,, V5,V Fs + R(F, F,)F) dt (Corollary 6.2)
b
- _/ <F87ththFs> +R(Ft7F87Ftan) dt
b
. / FA(Fo, Vi Fy) — (Vi By, Vi Fy) + R(Fy, Fy, Fy, Fy) dt

b b
= (F,, Vi Fy) +/ Vi, Fs|* — R(F,, Fy, Fy, F,) dt
a a

b
_/ \Vi Fy|* — R(F}, Fy, Fy, Fy) dt.
a
The third equation is because Vg, F; = 0 at s = 0 since + is a geodesic. Ul
The RHS f; |VFth\2 — R(F, Fy, Fy, Fy) dt = I(Fs, Fy) is called an index form.

Definition 6.14. An index form I satisfies
b
I(V,V) = / \VEV|? - R(F, V, F;, V) dt.

This motivates Bonnet—Myers, which says that a length minimizing geodesic can not be too long.
Recall that if « is a minimizing geodesic, then

0<I(V,V) = / IV VP = RO, V,A, V)

for all V' along ~ that vanish at the endpoints.
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6.4 Bonnet—Myers

Theorem 6.15 (Bonnet—Myers)
Suppose (M™, g) is complete and Ric > ¢ for some constant ¢ > 0. Then
2

diam(M)? < (n — 1)7%

As a corollary, M is compact.

Proof. By Hopf-Rinow, there is a minimizing geodesic between any two points. It then suffices to show for
2
s

any minimizing geodesic v of length L that L? < (n —1)T-.

Say |7'| =1, so 7:[0, L] — M. Choose a parallel orthonormal frame e1,...,e,_1,e, = along ~; note ' is
parallel because V. = 0. Define
. 7t
V; = sin (f) €j,

which makes V; = 0 at the endpoints ¢ = 0, L. Then

0 < f(vg,v>

t
— sin? (%) R(v, e, ej)dt

R(+/, e, v, e;)dt

<.
Il
—

(
=(n— 1)7;; /L cos? <7Tft) dt — /OL sin? (%t) Ric(v',~") dt
<(n-— 1)LZ /LC082 (%t) dt — c/oLsin2 (%) dt.

The summation equals Ric(y’,7’) because the missing term is R(7',7',7',v) = 0. The two integrals are
equal, so dividing out yields

:1

71,2

c<(n—1)L2 O
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Remark 6.16. Taking V = sin(%t)e; results in the optimal bound. If V = fe; with f = 0 at the
endpoints and « = 1, then

0<I(V,V)
i
= [ 0= PR s e
i
- [(@r-ra
0
We want to minimize the Raleigh quotient

L
Jo (f)?dt
h :
Jo f2dt
Letting L = 7 for simplicity and writing the Fourier series f = Y 7 | a, sin(nz), the quotient becomes

EOO_ a2 n?

which is minimized when a1 =1 and a9 = a3 =--- =0.

Remark 6.17. Cheng’s maximal diameter theorem states that if equality occurs, then M is a round
sphere.

Example 6.18

There is no complete metric on R? with Ric > ¢ > 0 because it is not compact.

Corollary 6.19
If (M™,g) is complete with Ric > ¢ > 0, then (M) is finite.

Proof. Let M be the universal cover of M. M is also complete and satisfies the same diameter bound
because it has a natural metric by lifting the metric on M. By Bonnet-Myers, M is compact, so w1 (M) is
finite. O

Example 6.20

T? = S x S! has no such metric, because 71 (T?) = Zy x Zs is infinite.

7 Laplacian

7.1 Harmonic functions and eigenvalues

Let u € C(M) be a function.
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Definition 7.1 (gradient). The gradient of u is the vector field obtained by raising the index:

Vu = Zgijujf)xi.
1]

Definition 7.2 (Hessian). The Hessian of u is a (1, 1)-tensor and the covariant derivative of w:

Hessu = V(Vu).

Definition 7.3 (Laplacian). The Laplacian of u is the trace of the Hessian:

Au = TrV(Vu).

Example 7.4
On R", Vu = u;, V(Vu) = u;j5, and

n
0%u 0%u
A = s s = — .o _—
! ;“ﬂ o2 T B2

Definition 7.5 (divergence). The divergence of a vector field V' is the function
divV =TrVV.

Note that Au = div(Vu). In an orthonormal frame e;, we have
n
divV => (V. V,e).
i=1

In local coordinates, the divergence of V.= > g V39 is
divV =Y "9,V'+y 1LV
i .\

By the Leibniz rule, we have [V(uV)]E = ujVi + uVji, SO

div(uV) => (V' +uVf) = udivV + V(u) = udivV + (Vu, V).

Applying this when V = Vv, we have
div(uVv) = uAv + (Vu, Vo).

Theorem 7.6 (Riemann divergence)
Let Q C M be a domain with boundary 9€2. Then faa FluxV = fQ divV.

Corollary 7.7
If M is compact (no boundary), then [, Au =0 for any u.
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Corollary 7.8
If u,v = 0 on 912, then

/QuAv_/QvAu_—/Q<w,vu>.

The Laplacian is self-adjoint.
Definition 7.9 (harmonic). A function u is harmonic if Au = 0.

Example 7.10

On R2, some harmonic functions are
2 2 .3 2 .3 2
z,y,xy, r° —y°,x° — 3xy°,y° — 3y, . ...

In general, Re(z + yi)* and Im(z + yi)* are harmonic by the Cauchy-Riemann equation.

Lemma 7.11
Suppose Au =0 on 2 and v =0 on J). Then

/|V(u+v)|2:/ |Vu|2—|—/ Vol
Q Q Q

In other words, the energy of u + v is the sum of the energies of u and v. In particular, a harmonic function
u minimizes the energy across all functions that are the same as u on 9f).

Proof. The difference between the two sides is
2/<Vu, Vu) = 2/ div(vVu) — vAu
Q Q
=0

because vVu = 0 on 012, and Au = 0. O

Lemma 7.12 (Reverse Poincaré inequality)

Let u be a harmonic function and ¢ be a cutoff function (i.e. compact support). Then
/yvu\%ﬂ < 4/u2 Vol

Proof. Since ¢ has compact support, div(¢?uVu) integrates to 0. This evaluates to
GPulu + ¢* | Vul® + 20u(Vé, Vu),

SO

/¢2 |Vul* = —2/¢u<V¢>, Vu).
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Then by the absorbing inequality (AM-GM) 2ab < ea? + % with € = £, a = ¢ |Vu|, and b = u|V¢|, we have
[ & 1vut <2 [ louve,va)
1
<5 [ FIvul 2 [a? oo

= /¢2 IVul? < 4/u2 IVo|?. O

Corollary 7.13 (Yau)

An L?-harmonic function on a complete (connected) manifold must be constant.

Proof. Fix any point p € M. Let ¢; be a sequence of cutoff functions with ¢; =1 on the ball B; that cuts
off on Bj;1 \ Bj linearly in distance:

1 d(z,p) <j
¢j(r) =K j+1—d(z,p) j<d(x,p)<j+1.
0 d(z,p) > j+1

Applying the reverse Poincaré inequality on ¢;, the LHS converges to [ \Vu|2, while the RHS converges to
0 (because u is in L? and the dominated convergence theorem). O

7.2 Bochner formula

For a function u € C(M), recall that
e The gradient Vu is a (1,0)-tensor, and the differential du is a (0, 1)-tensor.
e The Hessian VVu is a (1, 1)-tensor, and Vdu is a (0, 2)-tensor.
e The Laplacian Au = Tr(VVu) = div(Vu) is a function.

Lemma 7.14 (Bochner)
FA |Vu|? = [Hessy|* + (Vu, VAu) + Ric(Vu, V).

The formula is most useful when Au = 0, so the middle term vanishes.

Corollary 7.15
If Au =0 and Ric > 0, then A [Vu|? > 0.

The Bochner formula is an equality of functions, so choose coordinates to make the computation easier.

Definition 7.16 (geodesic normal coordinates). Geodesic normal coordinates about a fixed p € M satisfy
e g;j(p) = 0, so the 0; are orthonormal at p.

o Ffj(p) =0, so Ve0;(p) =0 and Vedz;(p) = 0.
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exp, mn
— - Ux,,.., %)
P gxPP"
JiFko
Uuem normel TFM

e on. 3,3(,,) inTPM

We show that such a coordinate system exists. Let e; be an orthonormal of T, M. Let x; denote the ith
coordinate of V' under this basis. Then y; = z; oexp, l'is a coordinate system in some neighborhood U C M
of p. They are orthonormal (only) at p because (dexp,)o = Id and the e; are orthonormal by construction.

The curve v(t) = t(a1, ..., a,) for some constants a; is a geodesic. Then from ' = >, a;0;, we have
0=V~ fZalVa (a;0; Za,a]vaa fZaZaJFUak
03,k

At p, this implies

0= Zalaj i () Ok

.5,k
for any a;, so Ffj (p) =
This implies V9;(p) = 0 and Vdx;(p) = 0, because they can be written in terms of Ffj (p).

Proof of Lemma 7.14. The facts we will use are
1. Symmetry of the Hessian: (VyVf, W)= (Vw V[, V).

The LHS is V(Vf, W) — (Vf,VyW), while the RHS is W(Vf, V) — (Vf, Vi V). Recalling that
(Vf, W) =W(f), the difference is V(W (f)) — W(V(f)) — (Vf,[V,W]) = 0.

2. At p, Af(p) = > ;(Va, V1, 0i)(p) = >, 0i(Vf,0;)(p). The first equality is the definition of trace,
and the second equality is by metric compatibility and how Vy,0;(p) = 0 by the geodesic normal
coordinates.

3. Vo, Vv Vu = R(Vu, 0;)Vu + Vv, Vau — Viyy ) Vu by the definition of R.

4. If f = L|Vul?, then (Vf,V) = V(f) = 3V(Vu, Vu) = (VyVu, Vu) = (Vg,Vu, V), where the last
equality is by the symmetry of the Hessian.
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Now we compute

Af(p) =D 0iVf.0) (by 2)
= Z 8;(VyuVu, 0;) (by 4)
= i(VainUVu, 0i) (metric compatibility, VO;(p) = 0)
= Z R(Vu,0;, Vu,8;) + (Vvu Vo,V — Vigua, Vi, 0;) (by 3)
= Rlic(Vu, Vu) + Y Vu(Ve,Vu,d;) — > (Vo Vu, [Vu,di]) (by 1)

= Ric(Vu, Vu) + Y Vu(Vy,Vu,8) + > (Vo,Vu, Vo, Vu)

= Ric(Vu, Vu) + Z Vu(Vy, Vu,d;) + |Hess,|*

where [Vu, ;] = =V, Vu because V40; = 0 at p.
It remains to show that (Vu, VAu) =Y. Vu(Vs,Vu, 0;) at p, which is true because

(Vu, VAu) = Vu(Au)
= Vu ( Z dxi(VaiVu))

= Z(Vdea:i)(VaiVu) + dx;(Vvu Vs, Vu) (Leibniz rule)

= i 0+ (VvuVo,Vu, 0;)

= i Vu(Vy,Vu,0;). (metric compatibility, V;(p) = 0)
The first term in the third line is 0 at p, and applying dz; is the same as applying (e, 9;) at p. O
The following theorem gives a lower bound for eigenvalues of the Laplacian.

Theorem 7.17 (Lichnerowicz)
If M™ is complete, Ric > ¢ > 0, and Au = —\u for some A € R\ {0} with [u? =1, then \ >

cn
n—1"

Example 7.18

On a sphere we have ¢ = n — 1, so any eigenvalue A must be at least n. It turns out that coordinate
functions u attain this bound and that Lichnerowicz’s theorem holds only for the sphere.

Proof. In general,
1 1
iAuz = div <V§u2> = div(uVu) = |Vul* + uAu

Then in our case,
1
EAUQ = |Vul? — M.
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By the divergence formula, [ Av = [ Flux = 0 because the Flux is across a boundary that does not exist.
Integrating the above equation,
/|Vu2:)\/u2:)\.

In particular, A > 0.
By the Bochner formula,

1
54 \Vul? = [Hess,|* + (Vu, V(=Au)) + Ric(Vu, Vu),

SO
0:/|Hessu\2 —)\/\VUIQ—F/RiC(Vu, Vu)
> / |Hessu|2 A2 4 el
where [ Ric(Vu, Vu) > ¢ [ |[Vu|* by assumption. Then
M e > /|Hessu|2.
Given a symmetric n x n matrix S, we have Tr .S = § - ;; (R”2 dot product), so by Cauchy—Schwarz,

TrS” = |5 - 65" < S |851* = n S|,

so (Au)? < n|Hess,|*. Integrating yields

2 2
)\2—0)\2/|Hessu221/(Au)2:/\/uzz)\,
n n n

which rearranges to what we want: A > =& O

7.3 Isomperimetric and Wirtinger inequalities

Theorem 7.19 (Isoperimetric inequality)

For Q C R2, we have

Area(92) <

1
L(OQ)2 ~ 4x

with equality if and only if €2 is a circle.

Proposition 7.20 (Wirtinger inequality)
1. If f:[0, 7] — R satisfies f(0) = f(mw) = 0, then

/Oﬂ fA< /Oﬂ(f’)?

Equality holds if and only if f(x) = sinz.
2. If f is a C* function on S' = [0,27] and [g f =0, then

/51 fQS/Sl(f’)?

Equality holds if and only if f(z) = asinz + bcos x.
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Note that ff(j;/f is not dimensionless. Taking F'(x) = f(Ax), we have ff(}; = \2 ff(j;Q .

Proof. Let g(x) = f(z)?<%Z which is smooth and equals 0 at the endpoints because f(x)? vanishes to order

s x

2 while sin x vanishes to order 1. By the FTC,

s 2
02/ g'daj:/ 2f flont 2 220 T
0 0

S x sSm- x

Then

T ™ 2
/ f2dx:/ 2f front _ p220 T gy
0 0

SN T SN~ T
= [[r ()
< /O ()2 da.

__ (sinz)’
sinz

For equality, we need fT so f is a multiple of sin . O

Proof of Theorem 7.19. We can assume that {2 is connected because it suffices to prove the inequality on
each connected component. Also 0f) is connected, because otherwise filling in any holes of €2 increases the
area and decreases the boundary. WLOG suppose L(0f2) = 27, so we wish to show that Area(2) < 7.

Let 0 be given by a map v: S' — R? where |y/| = 1. Writing v = (71,72), we can translate Q such that
fSl Y1 = fsl ~v2 = 0. By the Wirtinger inequality (Proposition 7.20),

/ﬁé/ (1)
S St

and same for v5. Adding these inequalities yields

/Ws/ Wz/ 1=2m.
St St St

Since |7'| = 1, we can reparameterize [y [z|° = [4 [7]* < 27 where z = (z1,22). OnR?, dive = 89“ +g§§ =
2. Then letting n be the outward unit normal,

2Area(Q):/divx
Q

= / T-n (divergence theorem)

(/Q |$|2 ) : ( /89 |n|2 )é (Cauchy—Schwarz)
(27)2

)7 (21)7
2

IN

IA

where |n]2 = 1 pointwise. For equality in the Cauchy—Schwarz inequality, we need |ac|2 to also be constant
on Of). O
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7.4 Submanifolds

Let ¥ < M be a submanifold, so the induced connection is Vu = V'u. Then Hess, = VVu, and for any
tangent vectors V and W,

Hess, (V, W) = (V{:V "u, W)
= (VyVTu, W) (W tangent)
= (Vi (Vu — Vi), W)
essy(V, W) — (VyViu, W)
essy(V, W) + (Vtu, VW) (metric compatibility V=4u L W)
essy (V, W) + (A(V, W), Vu).

(

H
H
H

Tracing,

Au = Z Hess,(€;, €;) + (Vu, H)
i=1
= Au+ (Vu, H)

where e; is an orthonormal frame for 3, and H is the mean curvature.

Theorem 7.21 (Minkowski)

Let © C R™"! be a compact subset of dimension n with smooth boundary 9. Let 7 be the outward
unit normal on 0f).

L [ooz, @) = (n+ 1) Vol(Q).
2. [0z, A)(H, @) = — [, n = —n Area(0Q).

A consequence of 2 is that ) can never be minimal, because then the integrand and integral are 0.

Proof. 1. This follows from dive = n + 1 on R*+!.

2. We apply the divergence theorem to ' on 0. Letting e; be an orthonormal frame on 052,

divz") =D (Ve e)

=n-+ Z<~’UL7 Vé ei) (metric compatibility)

Integrating gives the claim.

Page 55 of 77



Laplacian November 6, 2025

7.5 Spherical harmonics

We specialize to the case of S™ < R™"*!. Let x be the unit normal, so we know that

AV, W) =—(V,W)z, k=1, Ric=(n-1)g, H=-nz

Lemma 7.22

The z; are eigenfunctions with Ax; = —nz;.

Note this is the equality case of the Lichnerowicz theorem (Theorem 7.17).

Proof. Since Hess,;, = 0 (the second derivatives of x; are 0), Az; = 0. Then

Az; = (Va;, H) = (0;, —nx) = —nz;. ]

Definition 7.23 (homogeneous). A function u is homogeneous on R"*1 of degree d if u(sz) = su(x)

for all s € Ryy.

Taking the s derivative yields
(Vu(sz),z) = ds®Tu(z).

Differentiating again yields
Hess, (2, z)(sz) = d(d — 1)s? 2u(z).

Plugging in s = 1 results in
(Vu(z), z) = du(z)
Hess,(z,z) = d(d — 1)u(x).

Now consider the sphere S™ < R"*!. Let ey, ..., e,, z be an orthonormal frame of R"*! (z is normal), so

Au = Z Hessy(ei, ;) — n(Vu, x)
i=1
= Au — Hessy(z,z) — n(Vu, x)
=Au—d(d—1)u —ndu
=Au—d(d+n-1)u.

Note the second equality is because tracing Hess, over all n + 1 directions yields Auw.

Theorem 7.24 (Spherical harmonics)

Suppose u is a function on R™! that is homogeneous of degree d and Au = 0. Then on S™,
Au=—d(d+n—1)u,

so u is an eigenfunction with eigenvalue d(d +n — 1).

e For d =1, we get the coordinate functions x;, with eigenvalue A =1(1+n —1) =n.

e If n = 1, then A = d?, which will yield 7%sindf and r¢ cosdf (we haven’t proven this).
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8 Minimal submanifolds

8.1 First variation

We show that there exist energy-minimizing curves. Consider the space of curves v on [0, L] with v(0) = p
and y(L) = q. We want to show there is a subsequence that converges. To apply Ascoli-Arzeld, we need
equicontinuity (we already have uniform boundedness):

ld(y(),v(y) < L(v

/h \dt |
(L) ()

< cv/]xr —yl.

This argument can be used in 2 dimensions but fails for 3+ dimensions.
Let ¥ < MY be a submanifold. Consider a variation
F:¥x (—e,e) > M
where (—e¢, €) is parameterized by s, and let Fs = dF(0s) which is a variation vector field. A proper variation
means that Fs = 0 on the boundary.

Let dv denote the induced volume element from M onto ¥ x (—¢,¢€).

Lemma 8.1 (First variation formula)
8sdv = (Tv(ET) - (FL,H)) do

Proof. Let z1,...,x, be local coordinates, and let F; = dF(0,,). As before, we have [Fs, F;] = 0, and
[Fi, Fj] = 0. The 1nduced metric is g;; = (Fj, Fj), and the volume element is dv = /det g,; dz. Then
0s9;; = Fs(Fy, Fy)
= (VR F, Fj) + (F;,V,Fj)
= (Vg Fs, Fj) + (Fs, Vi F)

where
(Vi Fs, F}) = (Vi F), F}) + (Vi Fi, Fj)
= (VrF, F) = (F, VFF>
= (VR F Fj) = (F, Vi, Fj)
= (Vi F/], F) - <F$,A(Fi,Fj)>-
Analogously, (F, Vi, F;) = (Vg F,l, Fj) — (Fi-, A(F;, F)), s

059,; = (Vi F, , F}) + <vFjFS,Fi>—2<F$,A(Fi,Fj>>.

Fl's

By Lemma 8.2,

0s4/detg;; = 9s(det g;;)

1
21 / det gz]

1 _ A
= ————detg;; Tr(g 1asgij)'

21 / det gw
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Next, we compute that

ST 0g,) = 5 T (7 (VR ED B + (Ve Pl F)) = T (57T AR )

= div(F, ) — (F+ H).

since Tr(g~1A4;;) = H. All together,

Os[det gy = \fdet g, (AV(F) - (FH H))

which implies the desired result. O

Lemma 8.2
Let B and C be n X n matrices with B invertible. Then

ds|s=odet(B + sC) = (det B)(Tr B~1C).

Proof. We have
det(B + sC) = det Bdet(I + sB~'C).
Differentiating yields

Oy|s—odet(B + sc) = (det B) (as det(I + sB_lC)|s:0) — (det B)(Tr B~10). O

To see the last equality, we do an example:

det <1 + sai1 Sa12

=1 2 B '
sa21 1+ sa22> + s(a11 + ag2) + s”(a11a22 — a12a21)

The derivative at s = 0 is the trace a1 + a22. Then we can prove it inductively on n.

Definition 8.3 (Vol). Given Q C ¥ compact, let Volg(s) be the volume of the image of €2 at time s:

Volg(s / dv.

Corollary 8.4
If ¥ is minimal (so H = 0), then Volg,(0) = 0 for all compact subdomains 2 C 3.

Proof. By the first variation formula,
Os|s=o Vol (s) = / div(F,") dv — / (F-,H) dv
Q Q
- [
Q

because the first term is 0 when Fs has compact support (proper variation). The second term is also 0 when
H=o0. O
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Corollary 8.5

If ¥ < RY minimal, and x; are the coordinate functions of RY, then
2. Alz|* = 2n.

2
— VT|$2 27‘L|IEJ‘
3. le( n‘ = n+i .

=l E

Proof. 1. We have Ax; = Az; + (Vax;, H) = 0 because both terms vanish.

2. Let ey,...,e, be an orthonormal frame for ¥. On RN, we have V |z|* = 2z. Then V' |z|* = 22" =
22 — 22+, Then
Alz)? = div(2z — 2z7)
n
= 22<Vei (x —zb), e) (Ve,x = €;)
i=1
n
=2n—2 Z(Veiarj‘eﬁ
=2+ Z ,Vee;) (this is H)
= 2n.
3. By the Leibniz rule, we have
v’ Vg = 2 =
div ( | ||m| ) = | ||xn\ +(V|z]*, ¥V |z|™™) (Leibniz rule)
x
V _ _
|=|"
2 2
= in +2n |:1c|7("+2) ’xT‘
|z|
_ 2n(jal” ~ |27
- |x’n+2
2n ‘:cJ-‘Q
|x’n+2 0

Theorem 8.6 (Monotonicity)

If X7 — RV is minimal, then for any r; < ra,

Vol(B,, n%) _ Vol(B,, %)
il = 7y '

Equality holds if and only if 2 = 0 between r; and 72, where x is a position vector (same thing as x
is tangent to X at every point, i.e. being conical).
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On R™, we have A |z|> = 2n too. Also,

2n Vol(Bpg) = Az
Br

= v |z|? - ha (divergence theorem)

9Bx |z|
_ / 9p. &

8BRr |z
= 2R Area(0BR)

5 1s . . 2 . 4 3
It’s like how integrating 47r= gives s7r~.

Definition 8.7 (critical, regular value). Recall for a smooth function f: M — R, if Vf(y) =0, then y is
a critical point and f(y) is a critical value. The set of reqular values is im(f) \ {critical values}.

(cJ\JG’ yols
¢ribicad f-
velues
~¢
AN B
cribheal Ph

e The implicit function theorem says that the inverse image of a regular value is a smooth submanifold.

e Sard’s theorem says that the set of critical values has measure 0.

Proof of Theorem 8.6. Case 1: r; and ro are regular values of the function |z|: ¥ — R.

If r is a regular value, then X, := B, N Y is smooth with smooth boundary 0%, C 9B,. We can then
compute the volume of X, as

2n Vol(%,) = / Alz)? (Corollary 8.5)
Xy

- / ¥ |22, 7)
)
= 2/ <xTaﬁ>
)=

L T . .
where 71 = |5”—T| is the unit normal vector. Let
x
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SO
T - T -
x| 7 x' 7
nf(rs)~2af(r) =2 [ Do [ LD
0%, || os,, |7l
T
s / div(xn
2ro\Zry ||
7"
=92 = (Corollary 8.5)
S\ 2]
> 0.

Case 2: Suppose at least one of ri,ry is not regular. Find a decreasing sequence {r1;} — 1 of regular
values and an increasing sequence {rs ;} — 7o of regular values. We can assume that r1 ; < ro; for all j.
By the regular case, we have f(r1;) < f(ra;). Also

Example 8.8

On Euclidean space, the inequality is an equality: we claim that % is constant if and only if

ln—l Br . B'r - 2—n
VOT,(?) is constant. We have ‘ran,ﬂ = 7 o= b Vl;_ln

theorem, this equals 52— [ B, div(V |z[*~™) which is a constant.

- 17 for @ normal. By the divergence

interior

8.2 Regularity theory

Recall that ¥ < R¥ is minimal if H = 0 (mean curvature). For geodesics, it’s simple: any energy-
minimizing curve between two points is a smooth geodesic. The next case is surfaces in R3. Take a curve v
and consider the spanning surface X of least area. The questions are does ¥ exist, and is it smooth?

Example 8.9 (classical plateau problem)
Minimize the area of F: By — R? where By C R? is such that F(0B;) = v.

Remark 8.10. A function is a linear functional on Cg,,, (smooth functions with compact support),
because a function f determines a map ¢ — [ f¢. Now consider the more general space D of linear
functionals on Cgy,, . An example of another element of D is ¢ — ¢(0).

If Af = g, then we should have for all ¢ that [ g¢ = [ ¢Af = [ fA¢, so [ fA¢ = [ g could be taken
as the definition of Af = ¢ in the distributional sense.

In geometric measure theory, we think of submanifolds as functionals on functions f on R3. There are curves
in R? that don’t have a minimal surface, such as knotted curves, with the simplest being the trefoil.
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9 Laplacian comparison

9.1 Laplacian computations in Euclidean space

Question 9.1. What is A |z| on R™\ {0}?

We first note that

2

Al =A@? 4 + 22

By the product rule,

) =2n.

Alzl* = A(ja] - a]) = 2|2] Afz] + 2|V [2]*.

By the chain rule,

20 =V |z|> =2|z|V|z| = V]z|=

so |V |z|| =1 for z # 0. All together,
on=Alz]?=2z|Alz| +2 =

on R™\ {0}.

||

X

9

Alz] ="

-1

||

In general on M™ with Ric > 0, defining d(z) := d(p, z) for a fixed p, we have Ad < =L

Remark 9.2. We can similarly compute Hess|,|. We know that Hesslx‘z = 205, SO

P
U= 9 0,

- aii(aij |x|2>

20.

0 0 |z|
= 2 _—
0*|z| 0|z 0]x|
=5 2
|x’ 8%1 a$j + 8%2 al‘j
_ o 0% |z| i;
N sz 81'J ‘:L’z‘ ‘.%'J‘
In particular,
1
rldp—1 0

1

has eigenvalues of — (multiplicity n — 1) and 0 (multiplicity 1). The trace is the Laplacian T

||

9.2 Distance function

n—1

Let p € M™ be fixed, and define d(z) := d(p,z). Note that d is 1-Lipschitz by the triangle inequality. By

Rademacher’s theorem, d is differentiable almost everywhere.

Proposition 9.3 (Laplacian comparison at smooth points)

If M™ satisfies Ric > 0, and ¢ is a smooth point of d, then Ad < ”T_l at q.
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Proposition 9.4

Let L = d(p,q). Suppose 7:[0,L] — M is a unit-speed minimizing geodesic with v(0) = p,y(L) = g,
and that d is smooth in a neighborhood of every point in im~ \ p. Then

1. Vd(y(£) = '(8).
2. Hessy has rank at most n — 1 along v and is 0 along 7/ itself.

In R™, think about how along a ray from the origin to a point, the gradient is exactly the tangent to the
geodesic (1). The rank of Hess was n — 1, and the kernel was in the radial direction (2).

Proof. 1. We have d(~(t)) = t because 7 is a minimizing unit-speed geodesic. Differentiating with respect
to t yields (Vd(~(t)),~/(t)) = 1. Both Vd(v(t)) and ~'(¢) are unit vectors, so we need Vd(y(t)) = ~'(¢).

2. Differentiating (Vd(vy(t)),~/(t)) = 1 again,
0= (VyVd(y(1),7) +(Vd, V)
= <V7/Vd,'y'>
= <H€SSd(’7/, 7/)a 7,>

which implies 4’ is in the kernel of the Hessian. O

Proof of Proposition 9.3. We know \Vd]Q = 1 along v, and in a neighborhood of each point on . This
means we can take A |[Vd|?>. The Bochner formula (Lemma 7.14) says

1
=54 IVd|* = |Hessq|* + (Vd, VAd) + Ric(Vd, Vd) > |Hessg|> 4+ 2(Vd, VA).

For an n x n symmetric rank < n — 1 matrix A, we have (Tr(A))2 < (n — 1) |A|*. Letting A = Hess,, then
(Ad)? < (n — 1) [Hessq|?. Then
1
n J—
= L (ADP+ (A0
n—1
1
= 1(Ad)2 + (Ad)'.

n —

- (Ad)? + (7, VAd)

Define f(t) = (Ad)(y(t)). We have shown that f’ < —nf—_zl and will be done by the following lemma. O

Lemma 9.5
. 2
If f:]0, L] — R satisfies f' < —%, then f(L) < 271

Proof. We can assume that f > 0, since f is nonincreasing and would then satisfy f(L) < 0 < %=L, We

L
can set u(t) = f(lt) sou = ]J:— > L FTC says that u(L) — u(e) > —25(L — €). Since u(e) > 0, we have
u(L) > == (L) < . Since thls is true for all € > 0 arbitrarily small, we have f(L) < 271 O
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9.3 Calabi’s barriers

Suppose f,g are continuous functions at p. We give a new definition of Af > g even when we can not
necessarily take second derivatives of f.

Definition 9.6 (barrier sense). For f, g continuous functions, we say “Af > ¢” in the barrier sense if
for every e > 0, there exists a C?-function h. and a neighborhood U, of p such that

1. he < f in U, with equality at p.

2. Ahe > g — € at p.

‘.\L\E +E

N{ \\5 A,

& |

P P

Note that f — he has a local minimum at p. If f is indeed C?, then at p we have Vf = Vh,, and the 2nd
derivative test yields A(f —he) > 0. Then Af > Ah.>g—¢€. Soat p, Af >g—ecforalle >0,s0 Af > g.

Definition 9.7 (viscosity sense). We say that “Af > ¢” at p in the viscosity sense if for every open set
U > p and C?-function ¢ on U with f < ¢ and equality at p, then A¢(p) > g(p).

@ =

The viscosity sense is weaker than the barrier sense: if ¢ > h. with equality at p, then ¢ — h. has a local
minimum at p. Then A¢ > Ah. > g — € at p.

Theorem 9.8 (Laplacian comparison)

If M™ is complete with Ric > 0, then we have Ad < "Tfl in the barrier sense (and thus in the viscosity
sense).

Corollary 9.9

We have Ad? < 2n at every point in the barrier sense.

9.4 Cut points

Let M™ be a complete manifold with no boundary, and fix p € M.
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Definition 9.10. For each V € S7~! C T,M, there is a unit speed geodesic v with v(0) = p and
7/ (0) = V. Define

V)= igg{t Ld(v(t) = t},

i.e. for how long the geodesic is minimizing. If (V) < oo, then y(T'(V)) is a cut point. Let Cut(p) be
the union of all cut points as V' varies.

Example 9.11
Note that d(y(t)) =t holds at least when ¢ is within the normal neighborhood.

e On S" 1 T(V) =x for all V, so Cut(p) = {antipode of p}.
e On R", T(V) = o0, so Cut(p) = 0.

Lemma 9.12

If ¢ ¢ Cut(p), then there exists a unique minimizing geodesic from p to q.

Proof. By Hopf-Rinow (Theorem 5.15), there exists a minimizing geodesic 7. Suppose there is a second
minimizing geodesic 7, which must have the same length from p to ¢. Extending v past ¢, it can no longer
minimizing because there is a piecewise geodesic with the same length following 7. This implies ¢ is a cut
point. O

¥
r >
1

Lemma 9.13
If ¢ € Cut(p), then at least one of the following hold.
1. q is the first conjugate point to p along ~.

2. q is the first point where there are distinct minimizers from p.

The sphere satisfies both 1 and 2, while the cylinder satisfies only 2 (it does not have conjugate points).

Proof. The reverse direction is straightforward, so consider the forward direction. Let ¢ € Cut(p), and v be
a geodesic of unit speed with L = d(q), so y(L) = ¢q. Let V =~/(0) be the initial direction. By definition,
e ~ is minimizing on [0, L] i.e. d(y(t)) = ¢ for t < L (it is true for ¢t < L, and being minimizing is a closed
condition).

o d(y(t)) <tfort> L.

Take a decreasing sequence t; — L. There is some minimizing geodesic v; # v from p to y(t;) = exp,(t;V)
with unit speed, so let W; = ~/(0) € S"~!. Note W; # V by uniqueness of ODEs. Define s; < t; by
Yi(si) = v(ti)-

Because S"~! is compact, there is a subsequence W; — W € S"~1. Let o be a unit speed geodesic with
a'(0) =W, so v; — 0. We have s; — L by the squeeze theorem and then o(L) = ¢ by continuity.
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If o # v, then this is 2. If ¢ = 7, then W = V. Since exp,(s;W;) = exp,(t;V'), both sides converge to ¢
as ¢ — oo. However, notice that s; < ¢;, so s;W; and t;V are two distinct points in T, M. Since they go
towards the same point under exp,, this means exp,: 7, M — M is not injective in a neighborhood of LV,
so (dexp,)Lv is not invertible. Let U be the tangent vector such that (dexp,)r v (LU) = 0. By Lemma 6.5,
there is a Jacobi field J(t) = (dexp,),) (tU) with J(0) = J(L) = 0. Then 7(0) = p and (L) = q are
conjugate points. 0

s Liv
L
4 Y &Pe(siwg)
n

/Y\-/"‘Ff (kv)

1

P "

expp(Lv)
T, M M

Corollary 9.14
If ~ is a minimizing geodesic from p to ¢, then there are no cut points before ¢ along ~.

Corollary 9.15

Cut(p) is closed and has measure 0.

Proof. It has measure 0 because along each ray in 7),M there is at most one point which maps to a cut
point.

To show that it is closed, intuitively, the two conditions in Lemma 9.13 are closed. Rigorously, consider
q; € Cut(p) with ¢; — ¢ € M, and we must show that ¢ € Cut(p). Let ¢; = d(g;), 7; be the minimizing
geodesic from p to g;, and ¢ = d(q). By continuity of d, we have ¢; — ¢. Choose t; > ¢; with t; — £. By the
definition of a cut point, there exist geodesics o; from p to v;(¢;) of length s; < t;.

By the compactness of S"~! implies that o; — o and y; — v for some geodesics 0,7 from p with o(¢) =
v(€) = q. If o # v then 2 in Lemma 9.13 is satisfied. If o =, then like before, exp,, is not invertible and p
and g are conjugate points. O

Remark 9.16. Consider a set A C R", § > 0, and p > 0. We say that the measure Hg(A) < K if there
exists a countable collection of balls By, (z;) with r; < § such that A C |J; By, (x;) and Y ;7 < K. If
p = n, then 7" is essentially the volume of the balls. The limit lims_,o #§(A) exists (may be co) and is
called the p-dimensional Hausdorff measure HP(A).

Proposition 9.17 (smoothness away from cut points)
If ¢ ¢ Cut(p), ¢ # p, and d(q) = ¢, then
1. d is smooth in a neighborhood of q.

2. There exists a unique minimizing geodesic 7 from p to ¢ with unit speed such that Vd(y(t)) = +/(t)
for all ¢t < /.
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Proof. 1. Let Q = exp, '(M \ (Cut(p) U{p})). In other words, it is rays of T,M that go to up until the
cut points. Since (2 is starshaped, it is naturally like R", and exp,, is a local diffeomorphism on €2 that
maps it to M \ Cut(p). So for any ¢ ¢ Cut(p) U {p}, there exists x € Q such that exp,(z) = ¢. Then
d(p,q) = d(p,exp,(x)) = |z|, so d is smooth at g.

N

-

\/

2. For any ¢ ¢ Cut(p) U {p}, there exists a unique unit speed geodesic v with v(0) = p, v(d(p,q)) = ¢,
and |7/(0)] = 1. Fix V € T,M. Let o be a unit speed curve with ¢(0) = ¢ and ¢/(0) = V. For s
sufficiently small, o(s) is not a cut point because Cut(p) is closed and ¢(0) = ¢ is not a cut point.
Then there exists a unique geodesic 7, from p to o(s). By the first variation formula (Equation (6.2)),

(V,Vd)(q) = %d(U(S)) T E'(0) = (V,7)(a)-

Since this holds for any V', we have Vd(q) = +/(q). O

Proof of Theorem 9.8. We want to prove that Ad < ”Tfl at ¢ € Cut(p), which means (c.f. Definition 9.6)
for all € > 0, there exists a C?-function h. (near q) such that

1. d < h, with equality at g,
2. Ahe < ”T_l—l—eat q.
Let 7:[0,¢] — M be the unit speed minimizing geodesic from p to ¢. Given § > 0, define

h(w) = d(3(6),2) + 6.
If 6 = 0, then h(z) = d(x). Note that h(q) = ¢ = d(q). In general, we have by the triangle inequality that
d(x) = d(p,x) < d(p,~(0)) + d(7(0),2) = 6 + d(v(6), ) = h(x),

so d < h with equality at ¢, giving condition 1.

For condition 2, first note that ¢ ¢ Cut(y(d)). If ¢ € Cut(v(9)), then v(5) € Cut(g) because being a
cut point is a symmetric condition, but continuing v past v(J) would no longer not be minimizing. Then
by smoothness away from cut points (Proposition 9.17) and and Laplacian comparison at smooth points

(Proposition 9.3), n—1 n—1 n—1

for § sufficiently small. O

Remark 9.18. We also just showed that Ad? < 2n, and similarly for other powers d®. At smooth
points,
—1
Ad® = 2dAd + 2|Vd|* < 2d - ”T+2 = 2n.

At cut points, use hZ.
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9.5 Bishop—Gromov

Theorem 9.19 (Bishop—Gromov)

Vol(B . . . .
For M™ with Ric > 0, the volume ratio M is nonincreasing as 7 increases.

This is the opposite direction as for minimal submanifolds (Theorem 8.6). In particular, minimal submani-
folds can not have nonnegative Ricci curvature.

Corollary 9.20 (Bishop 1964)
Vol(B,(p)) < Vol(B, C R™).

Corollary 9.21 (volume doubling)
Vol(Bay () _
Vol(B,(p)) —

Volg%)rn(ﬁ)) < VOMBJ () 0

Proof. Rearrange

Fake proof of Theorem 9.19. A fake proof is that |Vd|2 = 1 almost everywhere, and Ad? < 2n.
The coarea formula (“slicing”) says that for any s € R and functions f,g € C(M),

Jromn=. / o

Define V (r) := Vol(B,(p)) and A(r) := Area(0B,(p)) = V'(r). The fact that A(r) = V'(r) follows from the

coarea formula, because

V() :/d< v (1Vd| = 1 ae.)

/ / o (coarea formula)
- [ 4w

Vi) = [ v
_ [ v
-

_ 1 2
=5 V|

and then FTC. Then

(Vd?, conormal)
= — Ad? (divergence theorem)

< — 2n (Remark 9.18)
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This shows V' < 2V, so (r™"V) = -2V + 1 - <o. O

The flaw in this “proof” is that we can’t apply the divergence theorem, because it requires the boundary to
be smooth.

Real proof of Theorem 9.19. For each V € "1 C T,M, let

(V)= stliﬁ){t | d(exp,(tV)) =t} € RT U {oo},

which is the last point where the geodesic from 0 to exp,(tV') is smooth. Define 2 C T, M to be

= U lJ

Vesnr—1¢€[0,T(V))

For example, on R", @ = T,M = R", while on S", Q = B,(0). We can show that (2 is open, and that
exp,, is injective and a local diffeomorphism on (2. Thus exp, is a global diffeomorphism onto its image
Im(Q) = M \ Cut(p).

Since M is complete, we have B, (p) = exp, (2N B;(0)) up to cut points, so
V(r) == Vol(B,(p)) = Vol(exp, (2N B;)).

By changing variables, we get

Vi(r) :/ det(dexpp) :/ / det(angular part) ds,
QN B, (0) 0 JoaBsno

where the last equality is by switching to polar coordinates where there is a radial part and an angular part.
Gauss’s lemma (Lemma 5.9) says that d exp,, looks like a 1 on the radial part and an (n—1) x (n —1) matrix
on the angular part.

Let a(s, 0) be the Jacobian determinant for each 6 € 9B, NQ, s0 V(r) = [ [ycop.nq @(5,0) ds. By the proof
of Lemma 8.1, we know how to differentiate the area factor:

CLI

— = mean curvature of the level set
a
= div(unit normal)

= div(Vd) =

Incomplete proof in class. O
9.6 Dirichlet Poincaré inequality
This is a generalization of the Wirtinger inequality. Let M™ be complete with Ric > 0 and no boundary.

Theorem 9.22 (Dirichlet Poincaré inequality)
There exists a constant ¢, such that if f € C(M"™) with f =0 on 0B, (p), then

/ £ < 2/ V2.
r(p) B (p)
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Lemma 9.23
Fix a point ¢, and let d(x) = d(q,z). Then Ad~" > 2nd "2

Proof. Chain rule and Laplacian comparison. O

Proof of Theorem 9.22. Pick any point ¢ such that d(p,q) = 2r. Define w := d(q,z)™". Lemma 9.23 says
Aw > 2nd(q,z)™""2 > 2n(3r) "2

On the other hand,

on B, (p).
The function f2Vw is 0 on dB,(p), so the divergence theorem says

i 3 2
0= /B7.(p) div(f“Vw)
_ / F2Aw + 2 (Vf, V)
Br(p)
> / on(3r) "2 + 2f(V f, V).
Br(p)
Then

2n(3r)"2 / <2 / IV F] [Vl
Br(p) B (p)

2n /
< — LfIIVf]
()

1 1
= Tz:il(/Br(p) f2> 2 (/Br(p) Wf|2 ) 2

1
by Cauchy—Schwarz. Rearrange to get ?Z,L_Q(IBT@) f2> ’ < (fBr(p) ]Vf\2> , SO

B:(p) Br(p)

where ¢,, = 32n+4, O

D=

10 Gradient estimate and Liouville theorems

10.1 Gradient estimate

Recall that a function u is harmonic if Au = 0. Liouville’s theorem on R™ says that if Au =0 and v > 0
on all of R, then u is constant.

In this section, we always assume M" is complete and connected with Ric > 0.
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Theorem 10.1 (Cheng—Yau gradient estimate)

If u e C(M) satisfies Au =0 and u > 0 on Bgr(p), then |Vlogu| < % on Bp/s(p), for some constant
C), depending only on n.

An estimate like this will blow up near the boundary of Br(p).

Corollary 10.2 (Yau's Liouville theorem)
If Au=0 and u > 0 on all of M, then u is constant.

Proof. Then |Vlogu| < % holds for every R, and % — 0. O

Note that Au = 0 and u > L for any L € R implies u is constant by Liouville’s theorem on v — L. The same
is true if |u| < L.

Corollary 10.3
If Au =0 on Br(p), then

3C,
sup  [Vu(z)] < sup [u()].
z€BR/2(p) z€BR(p)

In other words, we can control the derivative on a smaller ball by controlling the values on a larger ball.

Proof. Set L = supg, ) |u| and w = u+ 2L, so w > 0 on Bg(p). By the gradient estimate (Theorem 10.1),

JZ;'L = |Vlogw| < ¢ on Bpr/a(p), so |Vu| < Co(u+2L) < $2(3L). O
Lemma 10.4

For v € C(M) with Au = 0, the function w = log u satisfies
1. Aw = — |Vu)?
2. 1A |Vw)? > L |Vu|* — (Vw, V |Vw]?).

Proof. 1. Aw = div(Vw) = div(%2) = 8u _ V4P _ g2,

u u

2. By the Bochner formula,
1
iA IVw|* = [Hessy|? + (Vw, VAw) + Ric(Vw, Vw) > [Hess,|? — (Vw, V |[Vw|?).
Cauchy—Schwarz (Tr A)2 < n|A|* on the n x n symmetric matrix A = Hess,, implies (Aw)? <
n [Hessy|?. Then [Hess,|? > 1- IVw|*)? = 1 IVw|*, and combine with the above inequality.
O
At an interior maximum of F, the first derivative test says that VF = 0. The second derivative test says

Hessp < 0, so tracing yields AF < 0.

At an interior maximum of V [Vw|?, by 2 we would have V |[Vw|? = 0 and A |Vw|* < 0. Then by 2, we
would have |[Vw|* = 0 = Vw = 0, which is suspicious. The problem is that |Vw|? may not have an
interior maximum, but we will use a cutoff function 7.
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Proof of Theorem 10.1. Define n > 0 with

R? —d(p,z)? if x € Br(p)
n(x) = :
0 else

Define F := n?|Vw|* which does have an interior maximum. Choose y € Bgr(p) with F(y) = max F. We
will show that F(y) < Cj,R?, which will imply that C;,R*> > F(z) for any . Then if 2 € Bg/s(p),

9
LR > F(z) = [Vul (@)P(z) > 1B [Vul? (@),
Dividing by R? yields the gradient estimate.
Assuming that F(y) < CJ,R? for now, at a maximum y for F, the first derivative test says

_[Vwl vy

0=VF =2 |Vw>V+ 20’V |Vu|* = V|Vu|* = ;

(10.1)
The second derivative test says

1 1
0> SAF = §A(n2 IVw|?)

1 A |Vuw)?
= ivulan? 200 4w v v

1
—onR? |Vuwl|® + 772(g IVl — (Vw,V wa|2>) oV, V|Vw]?)  (Lemma 10.4(2))

v

2 Vuw[’V Y
= —2nR? |Vuw|? + % [Vw|* + 772<Vw, |w7|]77> — 277<V77, w|7777> (by (10.1))
Dividing by ]Vw|2 and rearranging yields

V 2
2nR? > n2|;u| +n(Vw, V) — 2|Vn[?

Vw2
> 2V ) (o) - 2o
1
= —F = VF|Vn| = 2|Vn|°
1 1 n 2 2
> _F — (| —F + — -2 AM-GM
> =P — (= F+ 5 |Val* ) = 2|V (AM-GM)

We know Vn = —2d + Vd where Vd < 1, so |Vn| < 2R, and An = —Ad? > —2n by Laplacian comparison.
Rearranging and using |V77|2 < 4R?,

F < 2n2R? —i—n(g 1 2)1%22 — CR?

where C' = ©(n?). O

10.2 Harnack inequality

Theorem 10.5 (Harnack)
If Au=0 and v > 0 on Bg(p), then

sup u<(C, inf wu
Bra(p) Bry2(p)

for some C), depending only on n.
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Proof. Take any q € Bg/y(p) and let v be a minimizing geodesic from p to ¢, which is contained in By (p).
Let f(t) = logu(~(t)), so

(Cauchy—Schwarz and |y/| = 1)

(gradient estimate Theorem 10.1)

Then FTC implies
d(p,q) .
llog u(p) — log u(g)| = /0 F(t) di

which implies u(p) < u(q)e€n/2, and the inequality holds with C), = ¢n. O

d(p.a) C’ C!
< / |f'(t)] dt < S dlp,a) < 5
0

Remark 10.6. By a limiting argument with v + € and € — 0, this inequality is also true for u > 0.

Corollary 10.7
For o <1, we have supp_,,) u < Coinfp_ () u where Cq — 00 as a — 1.

Proof. One way to prove this is with a stronger gradient estimate: for all ¢ € Bor(p), |V 1ogu(q)| < (1—03)}2'
Another way is to use Harnack’s inequality and iterate. O
Lemma 10.8 (Kato's inequality)
At any point where |Vu| # 0, |V |Vu|| < [Hess,|.
Proof. First note
2|Vu| V |Vu| = V |Vu|® = 2(V,Vu, Vu) = 2Hess, (Vu, o),
so dividing by 2 |Vu| implies V |Vu| = Hessu(%, o). Choose an orthonormal frame ey, ..., e, such that
el = ‘g—zl. Then
n n n
IV |Vu||* = Z(V |Vu|,e)? = Zu%l < Z u?z = |Hess,|* . O
i=1 i=1 ij=1

Next we give an easier proof of another version of Corollary 10.3, in the case of R™.

Theorem 10.9

Let M™ be a manifold (not necessarily Ric > 0) and u € C(M) satisfy Au = 0. Then there exists a
constant C' = (), such that

e
x€BR/2(p)

sup |u(z)].
z€BR(p)

= Q
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Proof. WLOG let p = 0. Consider the cutoff function 1 := R? = |#|® which vanishes on dBr. We want to
bound 7?2 |Vu|?. Recall that

An=—-2n
An? = 2nAn+2|Vn|* > —4nn > —4nR?
[Vl = 2n.

Kato’s inequality says
A |Vul? = 2 [Hess,|* + 2(Vu, VAu) > 2|V |Vul]?.

Then

A? [Vul?) = n?A |Vul? + |Vul> An? + 2(V |Vul*, Vi?)
> 2% |V |Vu||? — 4nR? |Vul? + 4(Vn?, |V |Vu|| |Vul|)
> 2% |V |Vul|? — 4nR? |Vul® — 8 [Vn| |V [Vu|| |Vl
> 22 |V |Vu|[? — 4nR|Vul> — 16Ry |[Vu| |V |Vul| (IVn| < 2R)

By the absorbing inequality, 167 |Vu| |V [Vu|| < 20 |V [Vau||® + 32 |Vu|? R?,s0
A(n? [Vul?) > —(4n + 32)R* |Vul*,

Since Au? = 2ulAu + 2|Vul®> = 2|Vul?, we get
A |Vul? + (2n + 16)R*u?) > 0.

By the maximum principle, 72 |[Vu|? + (2n + 16) R2u? has its maximum on the boundary. However, n = 0
on the boundary, so the maximum value is at most (2n + 16) R? sup Br(p) |u|>. Then

(2n4+16)R? sup |u(x)|® > n(z)? |Vu(z)]> + (2n + 16)2R>u(x)?

z€BR(p)
> n(x)? V()|
9R* 9
> T
> 2 |u(@)P,
which implies the result, where C' = ©(n). O

10.3 Mean value inequality

Theorem 10.10 (Mean value inequality)
Suppose Ric > 0, and let v € C(M) satisfy v > 0 and Av > 0 on Byr(p). Then

fB v?
su v2<0n74R(p) .
Baby " Vol(Bir(p))

In other words, the mean value can be compared to the maximum.

Proof. Let ¢ be a cutoff function such that ¢ = 1 on Bag(p), ¢ = 0 on 0B4r(p), and |V¢| < ﬁ. Reverse
Poincaré (Lemma 7.12) says

/ Vo2 §4/ 2|V = Vo2 < 12/ o2 (10.2)
Bar(p) Bar(p) Bar(p) R JByr(p)
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Now we solve for u such that Au = 0 in Bogr(p) and u = v on dBagr(p). Note that A(v —u) = Av > 0, so
v — u has its maximum on the boundary 0Bsg(p). However, v — u = 0 on 0Bar(p), so v < u inside Baog(p).

By Lemma 7.11, we have [, |V(u+w)|* = [, |Vul* + [, [Vw[*. Then by (10.2),

1
wf o[ = mPeve-oPz [ §a-
R Byr(p) Bar(p) Bar(p) Bar(p)

By Dirichlet Poincaré (Theorem 9.22), u — v = 0 on dBsg(p) implies

/ (= )2 < C’1R2/ V(u— ) < 01/ o2,
Bar(p) Bar(p) Bar(p)

Since u is harmonic and u > 0, the Harnack inequality (Theorem 10.5) says v? < u? < C'inf Br(p) u?. Then

sup v? < sup u? < C inf u?
Br(p) Br(p) Br(p)

< C/ w2
~ Vol(Br(p)) JBr»)

C
: Vol(Br(p)) /132R(p) v
2C
= VO](BR(p)) </B2R(p) v " /B2R(P)(u N U)2>

2C / 92 / 2
< — ve+C v
VOl(BR(p))( Bur(p) ' Bir(p) )

2.4n.c(1+01)/ 2
< v
Vol(Byr(p)) Bur(p)

where the last line is by Bishop—Gromov (Theorem 9.19). O

10.4 Harmonic functions of polynomial growth

Recall Liouville’s theorem says that any bounded harmonic function is constant. There is also a stronger
result: if Au =0 and supp,,) [u| < C'R" for some a < 1, then the easier gradient estimate says that

sup |Vu| < ¢ sup u.
Bgry2(p) Br(p)

So if Au =0 and |u| < C’, then u is constant. On R", u = x; grows like this.

Definition 10.11 (space of harmonic functions). Define H¢(M) as the space of harmonic functions that
grow almost like degree d. In other words, there exist p € M and C € R such that

[u(z)] < C(1 +d(p, z))".
In particular, M™ with Ric > 0 implies H¢(M) = {0} for d < 1.
Example 10.12
On R, we can show that H%(R") is finite: if Au = 0 then g—; is harmonic too, and the gradient

estimate implies % € HY(R™). Do this d times to get a constant, which implies u is a polynomial
with degree < d. Then dim H%(R") = O(n?).
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Theorem 10.13 (Colding—Minicozzi 1997)

If Ric > 0, then dim H%(M™) is finite dimensional. It is also true for (M,g) if Ricy > 0 and g,g are
bi-Lipschitz.

In 1998, they furthermore showed that dim H¢(M™) < Cd™ .

Theorem 10.14
There exists a constant C,, such that if ui,...uy are harmonic, LQ(BQT)—orthonormal, and f B, uZQ >
a>0,thenN§%.

Theorem 10.15

If vy,...,v9, € HYM™) and are linearly independent, then there exist R > 0 and ug, ..., u, in the span
of the v;’s such that

1. [, wiuj = &;; (L*(Ba2g)-orthonormal).

2. [, uf >274dtn),
Together, these imply N < C244t") 5o dim HH(M™) < oco.

Lemma 10.16
Given € By, there exists y € SN~ satisfying w = Y.~ | yiu; has 32, ui(2)? = w(x)?.

Proof. Let
(@), un(@) .

Vi ( )2+ +un( )2

Y=

Proof of Theorem 10.14. Fix x € B,, and choose w as in the above lemma, so

nu‘xzzwa ¢ w2 R
2wl = wle)” < g ) /Bzrm = Vol(B, ()

by the mean value inequality and [ w? = 1.
Since B, (p) C Bar(x), Vol(B;(p)) < Vol(Ba,(x)) < 2" Vol(B,(x)) by Bishop—Gromov. Thus

c2am
Z“ = Vol(B, (1))

where the RHS does not depend on z. Integrating over B,(p) yields Na < fBr(p) S ud(x) < 027 O

1=

Polynomial growth means that if F(r) = r¢, then F((r)) =24,
Lemma 10.17
If F:[1,00) — R satisfies 0 < F(r) < Cr? for all 7, then for any € > 0, there exist infinitely many k¥ € N

such that F(Z( )) <

Page 76 of 77



December 9, 2025 Gradient estimate and Liouville theorems

Proof. FSOC there exists ko € N such that for all k > ko, F'(2¥1) > 24+¢F(2%). This implies
F(2kotmy > (gdteym pr(ghoy,

n the other hand, 0 < 0 1mplies 0) < 0 . Dividin 1elds
On the other hand, F(2Fo+m) < C(2k0+m)d implies 29m+em f(2ko) < C(2F0+™)d, Dividing by 29™ yield

C
2em < kod
— F(2ko)

This is a contradiction because as m — oo, the LHS goes to infinity while the RHS is constant. O

Proof of Theorem 10.15. Let A; = span{vi,...,vj_1} C HYM). Fix r, and let wj, be the L%*(B,)-
orthogonal projection of v; onto A;. Define

fin= | (1w < / (=)’

for any w € A, v; — wj, is perpendicular to A;. Note that
1. The independence of the v; implies there exists r; such that f;(r;) > 0.
2. By letting w = 0, we have f;(r) < [, B, 2 <Cj r24+7 for some constant C; depending only on j.
3. We have f;(r1) < fj(r2) for ri <o because

fi(r) = /B (vj —wjry)* < /B (vj — wjry)? < /B (v — wj)* = f(r2).

1 1 T2

Now define F(r) = Hzn fj(r). By 1, we have F'(r) > 0 for > max{r;}. By 2, we have F(r) < C (r2d+n)2N,
By, Lemma 10.17, there exists some R = 2¥ such that F((2 R)) < 2(@+n)2N - Eyery f; is nondecreasing, so

2N
% < 20d+mAN which implies at least N of the f;’s satisfy % < 24(d+n)  For each such i, set
i=1Ji o

Vi — Wi 2R
U = —F/——
V fi(2R)

which are orthonormal by Gram—Schmidt. Finally,

/ — Wy, 2R 2
Br
Z / Vi — Wj, R
= f 2R — Wwj R)2
fz(QR)
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