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September 4, 2025 Smooth Manifolds

1 Smooth Manifolds

1.1 Topological spaces

A topological space is a set X with a notion of open sets satisfying 3 properties:

1. X and ∅ are both open.

2. Any union (even infinite) of open sets is also an open set.

3. If U and V are open, then so is U ∩ V (or any finite intersection).

An example is Rn, where a set U is open if ∀y ∈ U , ∃δ > 0 such that Bδ(y) ⊂ U , where

Bδ(y) = {z ∈ Rn | |y − z|< δ}.

A subset S ⊂ X is closed if X \ S is open. The closure of a set S is the intersection of all closed sets
containing S. A set is connected if the only subsets that are both open and closed are itself and ∅.
X is Hausdorff if for all points x1 ̸= x2, there exist open sets U1 ∋ x1 and U2 ∋ x2 with U1 ∩ U2 = ∅.
X is second countable if there is a countable basis of open sets. A basis is a collection B of open sets such
that for all U open and x ∈ U , there exists V ∈ B such that x ∈ V ⊂ U . Every open set is thus a (likely
infinite) union of open sets in B.

Example 1.1

Rn is second countable by taking B to be all open balls with rational centers and rational radii.

A map f :X → Y is continuous if for all V ⊂ Y open, f−1(V ) ⊂ X is open. A map f is a homeomorphism
if it is a continuous bijection, and f−1 is continuous. The identity map id:X → X is always continuous,
and so is any constant map.

1.2 Differentiable manifolds

Intuitively, a manifold is a topological space that is locally homeomorphic to subsets of Rn.

Definition 1.2 (manifold, chart, atlas). M is an n-dimensional (topological) manifold if

1. M is a second countable and Hausdorff topological space.

2. For all x ∈M , there exists an open set U ∋ x and a homeomorphism ϕ:U → V ⊂ Rn.

Note that V is open because homeomorphisms push open sets. The pair (U, ϕ) is a chart, and a
collection of pairs is an atlas.

The open sets U in an atlas form an open cover of M . An atlas is not necessarily unique, as there can be
many open covers of a space. For Rn, there is an atlas with just one chart using the standard coordinates.

It does not make sense to say a map from M → Rn is differentiable, because M may not have a differential
structure. We work around this as follows.

Definition 1.3 (differentiable manifold). M is differentiable if for any pair of charts (U1, ϕ1) and (U2, ϕ2)
with U1 ∩ U2 =W ̸= ∅, the map

ϕ2 ◦ ϕ−1
1 :ϕ1(W ) → ϕ2(W )

is differentiable. Note that ϕ1(W ) and ϕ2(W ) are open subsets of Rn.

The map ϕ2 ◦ ϕ−1
1 is called a transition map.
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We will work with smooth manifolds where the transition maps ϕ2◦ϕ−1
1 are smooth (infinitely differentiable).

Given a topological manifold, the question of if there exists a differential structure (or multiple) was the
beginning of the subject of differential topology.

Definition 1.4 (smooth map). For smooth manifolds M and N , a map F :M → N is smooth if for all
x ∈M , there exist charts (U, ϕ) and (V, ψ) with x ∈ U and F (x) ∈ V such that ψ◦F ◦ϕ−1:ϕ(x) → ψ(x)
is smooth.

We only need to find one pair of charts, because it will then be true for all pairs of charts by transition
functions.

Example 1.5 (smooth maps)

Letting N = R, we have smooth functions f :M → R, the set of which is denoted by C(M).

Letting M = I ⊂ R be an interval, we have smooth curves γ: I → N .

Definition 1.6 (diffeomorphism). A diffeomorphism F :M → N is a smooth bijection such that F−1 is
smooth.
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1.3 Tangent spaces

The intuition for a bump function is that it is 0 in most places and positive on an interval. For example,
start with the smooth function

f(x) =

{
e−1/x2

x if x > 0

0 if x ≤ 0

which is infinitely differentiable at 0 because the e−1/x2
term dominates any polynomial terms from the

derivatives. Reflect horizontally and translate f(x) to the right to get some function g(x), and then the
product f(x)g(x) can be taken as a bump function. Note that bump functions can not be analytic (as it
would have to be 0 everywhere), but can be smooth.

Lemma 1.7 (bump function)

Given x ∈M and U ∋ x open, there exists a bump function u ∈ C(M) on M such that

1. u ≡ 1 in an open set containing x.

2. The support of u is contained in U .

3. 0 ≤ u ≤ 1 everywhere (i.e. the image of u is in [0, 1]).

We can modify the example with e−1/x2
x to make it 0 on x ≤ 0, indeterminate for some time, and 1 after

some time, and extend it to Rn by rotation.

Definition 1.8 (tangent vector). A tangent vector V at p ∈M is an R-linear map V :C(M) → R which
satisfies the Leibniz rule

V (fg) = f(p)V (g) + g(p)V (f).

This property is being a derivation. Let TpM denote the set of all tangent vectors at p.

R-linear means that V (f + g) = V (f) + V (g) and V (af) = aV (f) for all a ∈ R and f, g ∈ C(M). It is clear
TpM is an R-vector space, but we will see that it is n-dimensional when M is n-dimensional.

Example 1.9

Directional derivatives are tangent vectors in M = Rn.

There is always the zero tangent vector, and we will prove that there exists a nontrivial tangent vector.

Lemma 1.10

Suppose V ∈ TpM .

1. If u,w ∈ C(M) are equal in a neighborhood of p, then V (u) = V (w). (Locality)

2. If u is constant, then V (u) = 0.

Proof. By R-linearity, V (0) = V (0 + 0) = V (0) + V (0), so V (0) = 0.
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1. Let η be a bump function with support in an open set where u = w, and η(p) = 1. Then the product
η(u−w) ≡ 0, because either u−w ≡ 0, or η ≡ 0 when u−w ̸≡ 0. Then V (η(u−w)) = 0, and applying
the Leibniz rule shows

0 = η(p)V (u− w) + (u− w)(p)V (η)

= V (u− w)

= V (u)− V (w)

because η(p) = 1 and (u− w)(p) = 0. Thus, V (u) = V (w).

2. By the Leibniz rule,
V (1) = V (1 · 1) = 1 · V (1) + 1 · V (1),

so V (1) = 0. Then also V (c) = cV (1) = 0 for any constant function c ∈ R.

1.4 Basis theorem

Lemma 1.11

Given a derivation V on R at 0, we have for all u ∈ C(R) that

V (u) = V (x)u′(0).

In other words, V is a constant times the ordinary derivative, and that the space of derivations on R is
1-dimensional.

Proof. By Taylor expansion, we may write u(x) = u(0) + xw(x) for some w ∈ C(R). Then by R-linearity,
V (u) = V (u(0)) + V (xw) = V (xw), since u(0) is a constant function. Then by the derivation property,
V (xw) = V (x)w(0) + x(0)V (w), but x(0) = 0 so we obtain V (u) = V (x)w(0). Note that u′(0) = w(0).

What happens if V is a derivation on R at p ∈ R? An essentially identical proof works: write u(x) =
u(p) + (x − p)w(x) and apply V to obtain V (u) = (x − p)(p)V (w) + w(p)V (x − p) = w(p)V (x − p). Once
again, ∂u

∂x(p) = w(p) ∂
∂x(x− p) = w(p), so V (u) = u′(p)V (x− p).

Lemma 1.12

Generalizing to a derivation V on Rn at p ∈ Rn, we have for all u ∈ C(Rn) that

V (u) =
n∑

i=1

V (xi)
∂u

∂xi
(p).

We see that ∂
∂xi

forms a basis for derivations on Rn at a point: they span by Lemma 1.12 with coefficients

V (xi), and they are linearly independent as ∂
∂xi

(xj) = δij .

We next show the existence of nonzero vector fields in TpM in general.

Definition 1.13 (coordinate system). An n-tuple of functions x1, . . . , xn ∈ C(M) is a coordinate system
at p ∈ M if there is an open set U ∋ p such that (x1, . . . , xn):U → Rn is a diffeomorphism to an open
subset of Rn.
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Definition 1.14. Let (U, ϕ) be a chart with p ∈ U and ϕ(p) = 0, and pick a coordinate system x1, . . . , xn
of Rn. Corresponding to each xi, there is a tangent vector ∂i|p ∈ TpM defined by

∂i|p(u) :=
∂(u ◦ ϕ−1)

∂xi
(0).

Note u ◦ ϕ−1 is a map Rn → R. This is a derivation of p because ∂
∂xi

is and ϕ−1(0) = p:

∂i|p(uv) =
∂(uv ◦ ϕ−1)

∂xi
(0)

= (u ◦ ϕ−1)(0)
∂(v ◦ ϕ−1)

∂xi
(0) + (v ◦ ϕ−1)(0)

∂(u ◦ ϕ−1)

∂xi
(0)

= u(p)∂i|p(v) + v(p)∂i|p(u).

Theorem 1.15 (Basis Theorem)

Any tangent vector V ∈ Tp(M) can be written as

V =
n∑

i=1

V (xi)∂i|p.

In particular, dimTp(M) = n, and ∂i|p for 1 ≤ i ≤ n form a basis of TpM as an R-vector space.

Similar to before, ∂i|p span by Theorem 1.15, and they are linearly independent as ∂i|p(xj) ≡ δij . Strictly
speaking, we need V (xiη) where η is an appropriate bump function so that things are defined, but V (xiη) =
V (xi) by locality (Lemma 1.10).

Proof (sketch). We first write a Taylor expansion

w(x) = w(0) +
n∑

i=1

xiwi(x).
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Let w = u ◦ ϕ−1 so that u = w ◦ ϕ. Then applying V to both sides yields

V (u) = V
(
w(0) +

n∑
i=1

(xi ◦ ϕ)(wi ◦ ϕ)
)

=

n∑
i=1

(wi ◦ ϕ(p))V (xi ◦ ϕ)

=

n∑
i=1

wi(0)V (xi ◦ ϕ)

=

n∑
i=1

V (xi ◦ ϕ)
∂w

∂xi
(0),

where the second line is by the Leibniz rule and xi ◦ ϕ(p) = xi(0) = 0.

There’s a trick for showing this Taylor expansion exists. Fix x, and define a function F (t) = w(tx). Then

F (1)− w(0) = w(x)− w(0)

=

∫ 1

0

dF

dt
dt

=

∫ 1

0

n∑
i=1

xi
∂w

∂xi
(tx) dt

=

n∑
i=1

xi

∫ 1

0

∂w

∂xi
(tx) dt,

so we can let wi(x) :=
∫ 1
0

∂w
∂xi

(tx) dt.

1.5 Differential of a map

Definition 1.16 (differential). A smooth map F :M → N induces a linear map

dFp:TpM → TF (p)N

at each p ∈M given by dFp(V )(u) = V (u ◦ F ). The map dFp is the differential of F at p.
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Lemma 1.17

Let xi be a coordinate chart near p ∈M and yj be a coordinate chart near F (p) ∈ N . Then

dFp(∂xi |p) =
∑
j

(
∂(yj ◦ F )
∂xi

(p)

)
∂yj |F (p).

(It’s the usual Jacobian.)

Definition 1.18 (tangent vector of curve). Let γ: I → N be a differentiable curve where I ⊂ R is
parameterized by s. For each p ∈ I, there is a natural tangent vector γ′(p) ∈ Tγ(p)N by defining

γ′(p)(u) := dγp(∂s)(u) =
∂(u ◦ γ)
∂s

(p).

Definition 1.19 (immersion, embedding). F is an immersion if dFp is injective for all p.

F is an embedding it if is a one-to-one immersion and a homeomorphism onto its image.

Example 1.20

The figure 8 curve in R2 is an immersion but not an embedding.

If ϕ:M → N is an immersion, then dimM ≤ dimN . The difference dimN − dimM is the codimension.

1.6 Vector fields

Definition 1.21 (vector field). A vector field V on M is a smooth choice of tangent vector V (p) ∈ TpM
for every p ∈ M . (This is saying that V is globally defined, and the coefficients V (xi) are smooth in
every chart.) Let Γ(M) denote the space of vector fields on M .

Equivalently, a vector field V is a derivation V :C(M) → C(M), meaning that it is R-linear and satisfies
the Leibniz rule V (fg) = fV (g) + gV (f).

The fact that these are equivalent is pset 1.5.
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Example 1.22

Let U be a chart and ∂i be a coordinate vector field on U . If η is a bump function with support inside
U , then η∂i is a vector field (that is 0 outside U).

Definition 1.23 (Lie bracket). Given two vector fields V,W ∈ Γ(M), the Lie bracket [V,W ] ∈ Γ(M) is

[V,W ](u) = V (W (u))−W (V (u)).

Intuitively, this measures how the vector field changes? It’s clear that [V,W ] is R-linear, but it’s not obvious
that the Leibniz rule holds. It turns out that the second derivatives cancel:

[V,W ](fg) = V (W (fg))−W (V (fg))

= V (fW (g) + gW (f))−W (fV (g) + gV (f))

= V (f)W (g) + fV (W (g)) + V (g)W (f) + g(V (W (f))

−W (f)V (g)− fW (V (g))−W (g)V (f)− gW (V (f))

= f
(
V (W (g))−W (V (g))

)
+ g

(
V (W (f))−W (V (f))

)
= f [V,W ](g) + g[V,W ](f).

Lemma 1.24

Given f ∈ C(M) and X,Y ∈ Γ(M), we have

[fX, Y ] = f [X,Y ]− Y (f)X.

Proof. We have

[fX, Y ](u) = fX(Y (u))− Y (fX(u))

= fX(Y (u))− Y (f)X(u)− fY (X(u))

= f [X,Y ](u)− Y (f)X(u).

1.7 Tensor algebras

For a vector space V , its dual vector space is

V ∗ = {linear maps θ:V → R}.

If dimV is finite, then dimV = dimV ∗, because the only choices for an element of V ∗ are what it does to
basis elements of V . Letting vi be a basis for V , there is a dual basis θj for V ∗ given by θj(vi) = δij .

Definition 1.25 (1-form). A 1-form α is a C(M)-linear map α: Γ(M) → C(M). The set of all 1-forms
is denoted Γ∗(M).

Equivalently (more locally), let T ∗
pM = (TpM)∗ = {linear maps TpM → R}. We can define a 1-form α

to be a smooth family of α(p) ∈ T ∗
pM as p varies.

In a chart, we have a basis ∂i for TpM , and let dxi be a dual basis for T ∗
pM . We can write

α =
n∑

i=1

αidxi
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for some functions αi with αi = α(∂i). Then applying α to V =
∑n

i=1 Vi∂i (Theorem 1.15), we have by
C(M)-linearity that

α(V ) =

n∑
i=1

Viα(∂i) =

n∑
i=1

αiVi. (1.1)

This is the basis theorem for 1-forms.

Definition 1.26 (tensor). An (r, s)-tensor A is a C(M)-multilinear map from r 1-forms α1, . . . , αr and
s vector fields V1, . . . , Vs to C(M). The set of (r, s)-tensors is denoted by Γr,s(M).

Example 1.27

• A (0, 1)-tensor is a map Γ(M) → C(M), which is a 1-form.

• A (1, 0)-tensor is a vector field, with V taking α to α(V ).

• A (1, 1)-tensor A locally takes V =
∑n

i=1 V
i∂i and α =

∑n
j=1 αjdxj , so

A(V, α) = A
( n∑

i=1

V i∂i,
n∑

j=1

αjdxj

)
=

∑
i,j

A(∂i, dxj)V
iαj .

Let us define Aj
i := A(∂i, dxj), so

A =
∑
i,j

Aj
idxi ⊗ ∂j ,

and dxi ⊗ ∂j is a “basis.”

• A (0, 2)-tensor is a map from 2 vector fields to C(M), so in a chart we get
∑

ij gijdxi ⊗ dxj .

• A (2, 0)-tensor is a map H =
∑

i,j H
ij∂i ⊗ ∂j .

1.8 Traces

Definition 1.28 (trace). In a chart, the trace of a (1, 1)-tensor B is

Tr(B) =
n∑

i=1

B(∂i, dxi).

It turns out this does not depend on the chart! Let {yj} be an overlapping chart; we have

dxi =
∑
j

dxi(∂yj )dyj , ∂xi =
∑
k

∂xi(yk)∂yk

by the dual basis and basis theorems. Then∑
i

B(∂xi , dxi) =
∑
i,j,k

B

(
∂yk
∂xi

∂yk , dxi(∂yj )dyj

)
=

∑
i,j,k

B(∂yk , dyj)
∂yk
∂xi

∂xi
∂yj

=
∑
j

B(∂yj , dyj),
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where the last equality is by the chain rule:∑
i

∂yk
∂xi

∂xi
∂yj

=
∂yk
∂yj

= δjk.

We see that the trace of a (1, 1)-tensor gives a (0, 0)-tensor. In general, the trace of (r, s)-tensor gives an
(r − 1, s− 1)-tensor (but you have rs choices for which indices to trace over).

1.9 Metrics

Definition 1.29 (metric). A metric g is a (0, 2)-tensor such that

1. g(V,W ) = g(W,V ) (symmetric).

2. g(V, V )(p) ≥ 0, with equality if and only if V (p) = 0 (positive definite).

Definition 1.30 (Riemannian manifold). A Riemannian manifold (Mn, g) is a smooth manifoldMn with
a metric g.

In a chart, we have g =
∑

i,j gijdxi ⊗ dxj , where gij = g(∂i, ∂j). At each point p, the matrix {gij(p)} must
be positive definite and symmetric (gij = gji).

Example 1.31

Rn with metric gij = δij is Euclidean space. The identity matrix is positive definite and symmetric.

Definition 1.32 (length). We can now define the length of a curve γ: [a, b] →M by

L(γ) =

∫ b

a

√
g(γ′(s), γ′(s)) ds,

where g(γ′(s), γ′(s)) is the norm of the tangent vector.

Definition 1.33 (volume). For an open set U in a chart, we can define its volume by

vol(U) =

∫
ϕ(U)

√
|det gij | dx1 · · · dxn.

1.10 Induced metrics on tensors

Metrics can measure tensors too. For V ∈ Γ(M), define |V |2 = g(V, V ). In a chart, we have

|V |2 =
∑
i,j

gijV
iV j .
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For α ∈ Γ∗(M), we similarly define

|α|2 =
∑
i,j

gijαiαj ,

where {gij} is the inverse matrix of {gij}. It turns out this is a (2, 0)-tensor called g−1 (pset 1.4).

For a (2, 0)-tensor B, we define

|B|2 =
∑
i,j,p,q

BijBpqgipgjq

which does not depend on the chart because it is the 4-time trace of the (4, 4)-tensor B ⊗B ⊗ g ⊗ g.

Definition 1.34 (pullback metric). Let F :M → N be an immersion where N has a metric g. The
pullback metric F ∗g on M is given by

(F ∗g)(V,W )(p) = g(dF (V ), dF (W ))(F (p)).

1.11 Raising and lowering indices

Given a Riemannian metric g, there is a canonical 1-form αV ∈ Γ∗(M) associated to each vector field
V ∈ Γ(M) given by

αV (W ) = g(V,W ).

In local coordinates, let V =
∑

i V
i∂xi , W =

∑
j W

j∂xj , and g =
∑

k,ℓ gkℓdxk ⊗ dxℓ. Then

αV (W ) = g
(∑

i

V i∂xi ,
∑
j

W j∂xj

)
=

∑
i,j

V iW jg(∂xi , ∂xj )

=
∑
i,j

V iW jgij ,

as expected. Thinking of it as a tensor contraction of V ⊗W ⊗g is another way to see that it is well defined.

Remark 1.35. Technically, V i andW j are not in C(M) as they are only defined locally, so it is somewhat
illegal to use the C(M)-linearity of g above. However, we can multiply them by bump functions so they
become C(M) functions, as we are working locally. For the rest of the course, we will not mention this.

On the other hand from the basis theorem for 1-forms (1.1), we have

αV (W ) =
∑
j

W jαV (∂xj ) =
∑
j

W j(αV )j ,

so
(αV )j =

∑
i

gijV
i.

This process is called lowering the index.

The process of raising the index takes a 1-form ((0, 1)-tensor) to a vector field ((1, 0)-tensor). An example
is the gradient ∇f which locally is

∇f =
∑
i,j

gij
∂f

∂xi
∂xj
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with jth coordinate

∇f j =
∑
i

gij
∂f

∂xi
.

We see that the norm is preserved after raising the index:

|∇f |2 =
∑
i,j

gij∇f i∇f j

=
∑

i,j,ℓ,m

gij

(
giℓ

∂f

∂xℓ

)(
gjm

∂f

∂xm

)
=

∑
j,ℓ,m

δjℓ
∂f

∂xℓ
gjm

∂f

∂xm

=
∑
ℓ,m

gℓm
∂f

∂xℓ

∂f

∂xm

= |df |2 .

In general, we can go between any (r, s)-tensors as long as r + s is kept constant. The same proof shows
that raising or lowering indices in general preserves the norm.

Example 1.36

We know that every vector field on S2 vanishes at some point (hairy ball theorem). Similarly, every
1-form must vanish at some point, because lowering the index preserves the norm.

2 Connections and covariant derivatives

2.1 Affine connections

Definition 2.1 (affine connection). An affine connection is a map ∇•(•): Γ(M)×Γ(M) → Γ(M) sending
X,Y 7→ ∇XY such that

1. ∇XY is C(M)-linear in X

2. ∇XY is R-linear in Y

3. ∇X(fY ) = f∇XY +X(f)Y (Leibniz rule for Y ).

Think of it as differentiating Y with respect to X. Note that if ∇XY were C(M)-linear in Y , then it would
be a (1, 2)-tensor. Intuitively, multiplying Y by a function should have some Leibniz rule.

Lemma 2.2

If V ∈ Γ(M), then ∇•V is a (1, 1)-tensor with ∇•V (W,α) := α(∇WV ).

Proof. It is C(M)-linear in W ∈ Γ(M) by definition and in α ∈ Γ∗(M) because α is C(M)-linear.

We can use the Leibniz rule to define ∇ for all tensors. Given α ∈ Γ∗(M), we want a 1-form ∇Xα satisfying
X(α(V )) = (∇Xα)(V ) + α(∇XV ), so we define

(∇Xα)(V ) ≡ X(α(V ))− α(∇XV ).
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Similarly given g ∈ Γ0,2(M), we define ∇Xg by

(∇Xg)(V,W ) ≡ X(g(V,W ))− g(∇XV,W )− g(V,∇XW ). (2.1)

For B(V, α) ∈ Γ1,1(M), we define ∇XB by

(∇XB)(V, α) ≡ X(B(V, α))−B(∇XV, α)−B(V,∇Xα).

2.2 Christoffel symbols

Definition 2.3 (Christoffel symbols). The Christoffel symbols are locally defined functions Γk
ij satisfying

∇∂i∂j =
∑
k

Γk
ij∂k.

Remark 2.4. The Γk
ij are only locally defined and depend on the choice of coordinates. They do not

vary algebraically (i.e. via some matrix multiplication) because partials are involved.

If we know the Γk
ij , then we can compute ∇XY locally:

∇XY =
∑
i,j

∇Xi∂i(Y
j∂j)

=
∑
i,j

Xi∇∂i(Y
j∂j)

=
∑
i,j

Xi[Y j∇∂i∂j + ∂i(Y
j)∂j ]

=
∑
i,j

Xi
[
Y j

∑
k

Γk
ij∂k + ∂i(Y

j)∂j

]
.

where the second equality uses linearity in the bottom entry, and the third equality is by the Leibniz rule.

There is a dual identity with

∇∂idxj = −
∑
k

Γj
ikdxk.

This follows from

(∇∂idxj)(∂k) = ∂i(dxj(∂k))− dxj(∇∂i∂k)

= −dxj
(∑

ℓ

Γℓ
ik∂ℓ

)
=

∑
ℓ

δjℓΓ
ℓ
ik

= −Γj
ik,

where the first equality is by the Leibniz rule, and the second equality is from ∂i(Id) = 0.

2.3 Levi-Civita connection

If we impose two additional conditions on ∇XY , there will be a canonical affine connection.

1. Metric compatibility : ∇Xg = 0 for any X. Then from (2.1), X(g(Y,Z)) = g(∇XY, Z) + g(Y,∇XZ).
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2. Symmetry : [X,Y ] = ∇XY −∇YX. In local coordinates, it is equivalent to Γk
ij = Γk

ji for all i, j, k, as

0 = [∂i, ∂j ]

= ∇∂i∂j −∇∂j∂i

=
∑
k

(Γk
ij − Γk

ji)∂k.

Theorem 2.5 (Levi-Civita connection)

There exists a unique connection for each g, called the Levi-Civita connection.

From now on, let ⟨X,Y ⟩ denote g(X,Y ).

Proof. We will find a formula for ∇XY to show uniqueness. From metric compatibility, we get

X⟨Y, Z⟩ = ⟨∇XY,Z⟩+ ⟨Y,∇XZ⟩ (2.2)

Y ⟨Z,X⟩ = ⟨∇Y Z,X⟩+ ⟨Z,∇YX⟩ (2.3)

Z⟨X,Y ⟩ = ⟨∇ZX,Y ⟩+ ⟨X,∇ZY ⟩. (2.4)

From (2.2) + (2.3) − (2.4), we have

X⟨Y,Z⟩+ Y ⟨Z,X⟩ − Z⟨X,Y ⟩ = ⟨∇XY,Z⟩+ ⟨Z,∇YX⟩+ ⟨Y,∇XZ −∇ZX⟩+ ⟨X,∇Y Z −∇ZY ⟩
= 2⟨∇XY,Z⟩ − ⟨∇XY,Z⟩+ ⟨∇YX,Z⟩+ ⟨Y, [X,Z]⟩+ ⟨X, [Y,Z]⟩
= 2⟨∇XY,Z⟩+ ⟨Z, [Y,X]⟩+ ⟨Y, [X,Z]⟩+ ⟨X, [Y,Z]⟩

so we know ⟨∇XY,Z⟩ for all Z. As g is positive definite and in particular invertible, this uniquely determines
∇YX.

It remains to check that this definition of ∇XY satisfies Definition 2.1, which is pset 2.2.

2.4 Christoffel symbols in terms of the metric

Applying the formula from Theorem 2.5 with X = ∂i, Y = ∂j , Z = ∂k yields

∂igij + ∂jgik − ∂kgij = 2⟨∇∂i∂j , ∂k⟩

= 2
〈∑

ℓ

Γℓ
ij∂ℓ, ∂k

〉
= 2

∑
ℓ

Γℓ
ijgℓk.

Multiplying by gmk and summing over k, we obtain

2Γm
ij =

∑
k

gmk(∂igjk + ∂jgik − ∂kgij).

Example 2.6

On Rn, Γ ≡ 0 because the metric is δij .
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Remark 2.7. We will begin to use the Einstein summation notation which omits the summation
∑

if there is an index variable appearing as an upper and a lower index. For example, we would write
2Γm

ij = gmk(∂igjk + ∂jgik − ∂kgij)

Remark 2.8. Vector fields use upper indices, 1-forms use lower indices, and tensors use an appropriate
combination of upper and lower indices. When tracing over an index, it should appear in both upper
and lower indices.

2.5 Parallel transport

Let γ be a curve with tangent vector γ′. In local coordinates, γ is given by its components γi for 1 ≤ i ≤ n.
Let

γis(s) =
∂γi

∂s
(s), γ′(s) =

∑
i

γis(s)∂i.

Let V be a vector field along the curve and write V =
∑

j V
j(s)∂j . We want to define a derivative along

the curve by

∇γ′V
?
=

∑
i,j

γis∇∂i(V
j∂j)

?
=

∑
i,j

γis(∂i(V
j)∂j + V j∇∂i∂j)

?
=

∑
j

V j
s ∂j +

∑
i,j,k

γisV
jΓk

ij∂k.

where

V j
s (s) =

d

ds
V j(γ(s)).

Note V j is only defined along the curve so terms like ∇di(V
j∂j) do not actually make sense, but this is the

motivation for the actual definition.

Definition 2.9 (derivative along curve). For a curve γ and a vector field V , we define

∇γ′V =
∑
j

V j
s ∂j +

∑
i,j,k

γisV
jΓk

ij∂k.

This function takes in a point on γ and outputs a tangent vector at that point.

Definition 2.10 (parallel along curve). V is parallel along γ if ∇γ′V ≡ 0.

The parallel condition is a 1st order system of ODEs in s. Existence and uniqueness of ODEs implies that
each initial condition has a unique solution, called parallel transport along γ.

Example 2.11

On Euclidean space, parallel transport leaves the vector constant. From Γk
ij ≡ 0, we need V j

s ≡ 0.
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Definition 2.12 (parallel). A tensor A is parallel if ∇XA ≡ 0 for any vector field X. A parallel vector
field A = V on the entire space is also parallel along any curve γ.

Claim 2.13 — The length |V |2 is preserved under parallel transport.

Proof. By the chain rule, we have

d

ds
|V |2 (γ(s)) = γ′(|V |2) = 2⟨∇γ′V, V ⟩ = 2⟨0, V ⟩ = 0.

2.6 Killing fields

Definition 2.14 (Lie derivative). For a vector field V and an (r, s)-tensor A, we define the Lie derivative
LVA, which is an (r, s)-tensor, as follows. Let LVW = [V,W ] and LV f = V (f). Then we can define
LV on any tensor by the Leibniz rule.

For example, the Lie derivative of a Riemannian metric g is

(LV g)(X,Y ) = V ⟨X,Y ⟩ − ⟨LVX,Y ⟩ − ⟨X,LV Y ⟩
= ⟨∇VX,Y ⟩+ ⟨X,∇V Y ⟩ − ⟨[V,X], Y ⟩ − ⟨X, [V, Y ]⟩ (metric compatibility)

= ⟨∇VX,Y ⟩+ ⟨X,∇V Y ⟩ − ⟨∇VX −∇XV, Y ⟩ − ⟨X,∇V Y −∇Y V ⟩ (symmetry)

= ⟨∇XV, Y ⟩+ ⟨X,∇Y V ⟩.

Definition 2.15 (Killing fields). A vector field V is Killing if LV g = 0. Equivalently,

⟨∇XV, Y ⟩+ ⟨X,∇Y V ⟩ = 0,

meaning that ⟨∇•V, •⟩ is skew.

Example 2.16 (rotation)

On (R2, δij), consider the vector field V = x1∂2 − x2∂1. Then ∇V =

(
0 1
−1 0

)
by computing

⟨∇∂1V, ∂1⟩ = 0, ⟨∇∂2V, ∂2⟩ = 0, ⟨∇∂1V, ∂2⟩ = 1, ⟨∇∂2V, ∂1⟩ = −1,

so ∇V is skew-symmetric.

The Killing field V generates a one-parameter family of isometries (rotations) with

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
.

We have

(
cos θ − sin θ
sin θ cos θ

)(
x1
x2

)
=

(
x1 cos θ − x2 sin θ
x1 sin θ + x2 cos θ

)
. Taking the derivative and restricting to θ = 0

yields
∂

∂θ
R(θ)

(
x1
x2

)∣∣∣∣
θ=0

=

(
−x1 sin θ − x2 cos θ
x1 cos θ − x2 sin θ

)∣∣∣∣
θ=0

=

(
−x2
x1

)
which gives V = −x2∂1 + x1∂2.
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Pset 2.4 involves finding all Killing forms on Euclidean space (consider translations and rotations at least).
There will be few solutions because it is a first-order system.

3 Curvature

3.1 Riemann curvature tensor

Definition 3.1 (Riemann tensor). A Riemann tensor R is a (1, 3)-tensor with R(X,Y )Z ∈ Γ(M) defined
by

R(X,Y )Z = ∇Y ∇XZ −∇X∇Y Z +∇[X,Y ]Z.

It is canonically the same as a (0, 4)-tensor with

R(X,Y, Z,W ) = ⟨R(X,Y )Z,W ⟩.

We will prove that R is a tensor. It is clear that R is R-linear in each slot, but we need to show that it is
C(M)-linear.

We apply Lemma 1.24 which states [fX, Y ] = f [X,Y ]− Y (f)X.

R(fX, Y )Z ≡ ∇Y ∇fXZ −∇fX∇Y Z +∇[fX,Y ]Z

= ∇Y (f∇XZ)− f∇X∇Y Z +∇f [X,Y ]−Y (f)X(Z)

= Y (f)∇XZ + f∇Y ∇X − f∇X∇Y Z + f∇[X,Y ]Z − Y (f)∇XZ

= f∇Y ∇X − f∇X∇Y Z + f∇[X,Y ]Z

= fR(X,Y )Z.

This shows C(M)-linearity in X, and by skew-symmetry R(X,Y )Z = −R(Y,X)Z it is also C(M)-linear in
Y . Finally we check C(M)-linearity in Z:

R(X,Y )(fZ) ≡ ∇Y ∇X(fZ)−∇X∇Y (fZ) +∇[X,Y ](fZ)

= ∇Y (f∇XZ +X(f)Z)−∇X(Y (f)Z + f∇Y Z) + [X,Y ](f)Z + f∇[X,Y ]Z

= Y (f)∇XZ + f∇Y ∇XZ + Y (X(f))Z +X(f)∇Y Z

−X(Y (f))Z − Y (f)∇XZ − f∇X∇Y Z −X(f)∇Y Z + [X,Y ](f)Z + f∇[X,Y ]Z

= f∇Y ∇XZ − f∇X∇Y Z + f∇[X,Y ]Z

= fR(X,Y )Z.

The Riemann tensor has many symmetries in addition to skew-symmetry R(X,Y )Z = −R(Y,X)Z.

Lemma 3.2 (first Bianchi identity)

R(X,Y )Z +R(Y,Z)X +R(Z,X)Y = 0.

The key is showing that it equals the Jacobi identity [Y, [X,Z]] + [X, [Z, Y ]] + [Z, [Y,X]] = 0 from pset 1.
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Proof.

R(X,Y )Z +R(Y,Z)X +R(Z,X)Y = ∇Y ∇XZ −∇X∇Y Z +∇[X,Y ]Z

+∇Z∇YX −∇Y ∇ZX +∇[Y,Z]X

+∇X∇ZY −∇Z∇XY +∇[Z,X]Y

= ∇Y [X,Z] +∇X [Z, Y ] +∇Z [Y,X]

+∇[X,Y ]Z +∇[Y,Z]X +∇[Z,X]Y

= [Y, [X,Z]] + [X, [Z, Y ]] + [Z, [Y,X]]

= 0

Recall that the (0, 4)-tensor R(X,Y, Z,W ) from lowering an index is given by ⟨R(X,Y )Z,W ⟩.

Lemma 3.3 (skew in last two)

R(X,Y, Z,W ) = −R(X,Y,W,Z)

Proof. Using polarization, we just need to show that R(X,Y, V, V ) = 0 for all V .

R(X,Y, V, V ) = ⟨∇Y ∇XV, V ⟩ − ⟨∇X∇Y V, V ⟩+ ⟨∇[X,Y ]V, V ⟩

=
(
Y ⟨∇XV, V ⟩ − ⟨∇XV,∇Y V ⟩

)
−
(
X⟨∇Y V, V ⟩ − ⟨∇Y V,∇XV ⟩

)
+

1

2
[X,Y ]⟨V, V ⟩

=
1

2
Y X⟨V, V ⟩ − 1

2
XY ⟨V, V ⟩+ 1

2
[X,Y ]⟨V, V ⟩

= 0

where we use metric compatibility.

Lemma 3.4 (symmetry in pairs)

R(X,Y, Z,W ) = R(Z,W,X, Y ).

Proof. Using the first Bianchi identity, we have

0 = R(X,Y, Z,W ) +R(Y,Z,X,W ) +R(Z,X, Y,W ) (3.1)

0 = R(X,Z,W, Y ) +R(Z,W,X, Y ) +R(W,X,Z, Y ) (3.2)

0 = R(X,Y,W,Z) +R(Y,W,X,Z) +R(W,X, Y, Z) (3.3)

0 = R(Y, Z,W,X) +R(Z,W, Y,X) +R(W,Y,Z,X). (3.4)

Taking (3.1) - (3.3) and using Lemma 3.3, we get

0 = 2R(X,Y, Z,W ) +R(Y,Z,X,W ) +R(Z,X, Y,W )−R(Y,W,X,Z)−R(W,X, Y, Z).

Taking (3.2) - (3.4) and using Lemma 3.3, we get

0 = 2R(Z,W,X, Y ) +R(X,Z,W, Y ) +R(W,X,Z, Y )−R(Y,Z,W,X)−R(W,Y,Z,X).

The colored terms match up, so the remaining terms 2R(X,Y, Z,W ) and 2R(Z,W,X, Y ) are equal.

We did the only thing that we could do to prove these identities.
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Lemma 3.5 (second Bianchi identity)

(∇XR)(Y,Z)W + (∇YR)(Z,X)W + (∇ZR)(X,Y )W = 0.

Recall ∇XR is defined by the Leibniz rule:

(∇XR)(Y,Z)W = ∇X(R(Y, Z)W )−R(∇XY, Z)−R(Y,∇XZ)W −R(Y,Z)∇XW.

3.2 Ricci curvature

Definition 3.6 (Ricci tensor). The Ricci tensor is a (0, 2)-tensor from tracing R in an orthonormal
frame:

Ric(X,Y ) =
n∑

i=1

R(X, ei, Y, ei)

where ⟨ei, ej⟩ = δij .

There are three possible ways to trace, but R(X,Y, ei, ei) gives 0, and R(X, ei, ei, Y ) is the negative. Note
Ric(X,Y ) = Ric(Y,X) by symmetry in pairs (Lemma 3.4).

Definition 3.7 (Einstein). A manifold is Einstein if Ric = λg for a constant λ ∈ R.

We say Ric ≥ λ for λ ∈ R if Ric(V, V ) ≥ λ |V |2. Ric ≥ 0 is a common condition.

Example 3.8

Euclidean space is Einstein because R = 0 so Ric = 0.

Definition 3.9 (scalar curvature). Tracing the Ricci tensor gives the scalar curvature S ∈ C(M) defined
by

S =

n∑
i=1

Ric(ei, ei)

where ei is an orthonormal frame.

In a general frame, S =
∑n

i,k=1

∑n
j=1 g

ij Ricjk (raise an index and then trace, because we can’t directly
trace a (0, 2)-tensor).

Definition 3.10 (sectional curvature). Given orthonormal vectors V,W , the sectional curvature is

KVW = R(V,W, V,W ).

Lemma 3.11 (Schur)

dS = 2div(Ric)

∇Ric is (0, 3)-tensor, which we raise to get (1, 2)-tensor, and then trace to get a (0, 1)-tensor, i.e. a 1-form.
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In an orthonormal frame,

div(Ric)(V ) =

n∑
i=1

(∇ei Ric)(ei, V )

=

n∑
i=1

(
eiRic(ei, V )− Ric(∇eiei, V )− Ric(ei,∇eiV

)
=

n∑
i,j=1

(
eiR(ei, ej , V, ej)−R(∇eiei, ej , V, ej)−R(ei, ej ,∇eiV, ej)

)
=

n∑
i,j=1

(
(∇eiR)(ei, ej , V, ej) +R(ei,∇eiej , V, ej) +R(ei, ej , V,∇eiej)

)
2nd Bianchi says that (∇eiR)(ei, ej) + (∇eiR)(ej , ei) + (∇ejR)(ei, ei) = 0.

4 Submanifolds

A circle in Euclidean space of radius R has curvature 1
R .

Definition 4.1 (geodesic curvature). The geodesic curvature is kg(p) = ± 1
R where the ± is depending

on whether the circle is inside or outside.

The intrinsic curvature of a curve viewed as a manifold is 0, but the extrinsic curvature when viewed as a
submanifold is more interesting.

4.1 Induced structure on submanifolds

Consider an immersion F :Mm ↪→ Nn, which means dF is injective and m ≤ n.
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At each point p ∈ F (M), we view TpM as a subspace of TpN and write

TpN = (TpM)⊕ (TpM)⊥.

In particular, any V can be written as
V = V ⊤ + V ⊥

where V ⊤ ∈ TpM is the tangential part and V ⊥ ∈ (TpM)⊥ is the normal part.

The structure of N induces various structures on M . For now think of F as the identity map, but these
definitions can be modified for any immersion F .

• Induced metric: gN induces a metric gM on M with

gM (V,W ) ≡ gN (dF (V ), dF (V )).

It also induces a metric on (TpM)⊥.

• Induced connections: An affine connection ∇ on N induces an affine connection ∇ on M by

∇VW ≡ (∇VW )⊤

for V,W vector fields tangent toM . To check that it is a connection, we first see that it is C(M)-linear
in the lower entry. Also for f ∈ C(M), we have

∇V (fW ) = (∇V (fW ))⊤

= (f∇VW + V (f)W )⊤

= f(∇VW )⊤ + V (f)W.

• Induced connection on normal bundle: If X normal vector field (i.e. a vector field that is per-
pendicular at each point to TpM) and V is a tangent vector field, then we can define

∇⊥
VX ≡ (∇VX)⊥.

The normal part that we throw away in the induced connection is called the second fundamental form.

Definition 4.2 (second fundamental form). The second fundamental form is A(V,W ) = (∇VW )⊥ for
tangent vector fields V,W .

A is in Γ0,2(M)⊗ Γ(TM⊥) as it takes in two tangent vector fields and outputs a normal vector field.
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Example 4.3 (S1 ↪→ R2)

Consider the embedding S1 ↪→ R2. Then

∇θ(cos θ, sin θ) = (− sin θ, cos θ).

Since the Levi-Civita connection on R2 is the directional derivative, we have

∇∂θ∂θ = (− cos θ,− sin θ)

which is purely normal and equal to (∇∂θ∂θ)
⊥. Then (∇∂θ∂θ)

⊤ = 0 and

A(∂θ, ∂θ) = (− cos θ,− sin θ),

so the second fundamental form is the inward-pointing vector.

For general V = f(θ)∂θ, we have ∇∂θ(f(θ)∂θ) = f ′(θ)∂θ.

Proposition 4.4

The second fundamental form is symmetric: A(V,W ) = A(W,V ). (In the two tangent slots, although
it also has a normal slot.)

Proof. We have

A(V,W )−A(W,V ) = (∇VW )⊥ − (∇WV )⊥

= (∇VW −∇WV )⊥

= ([V,W ])⊥

= 0

where the last equation is by the general fact that if V,W are tangent to M then so is [V,W ]. To show
this, work in a local coordinate chart and choose coordinates (x1, . . . , xn) on N such that M is given by
{xm+1 = · · · = xn = 0}. We can do this by implicit function theorem.
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Then V =
∑m

i=1 V
i∂i and W =

∑m
j=1W

j∂j are linear combinations of only ∂1, . . . , ∂m. We compute

V (W (u)) =
∑
i,j

V i∂i(W
juj) =

∑
i,j

V i(∂iW
j)uj + V iW juji

W (V (u)) =
∑
i,j

W j∂j(V
iui) =

∑
i,j

W j(∂jV
i)ui + V iW juji

[V,W ](u) =
∑
i,j

V i(∂iW
j)uj −W j(∂jV

i)ui.

(Here ui =
∂
∂xi
u.) Note that the uji terms cancel, and we are left with just a linear combination of ∂1, . . . , ∂m,

implying that [V,W ] is tangent to M .

Since A is symmetric, all eigenvalues are real and are called principal curvatures. The sum of all principal
curvatures is the mean curvature.

Definition 4.5 (mean curvature). The mean curvature is the trace TrA = H⃗.

If H⃗ = 0⃗ then it is called minimal.

4.2 Gauss equation

Lemma 4.6 (Gauss equation)

Let M ⊂ N be a submanifold, and let R and R be Riemann curvature tensors on M and N . Then for
any vector fields W,X, Y, Z tangent to M , we have

R(X,Y, Z,W ) = R(X,Y, Z,W ) + ⟨A(X,Z), A(Y,W )⟩ − ⟨A(Y, Z), A(X,W )⟩.

This is saying that the curvature is determined by the curvature R in ambient space and how M sits in the
ambient space via A.

Proof.

R(X,Y, Z,W ) = ⟨W,∇⊤
Y (∇⊤

XZ)−∇⊤
X(∇⊤

Y Z) +∇⊤
[X,Y ]Z⟩

= ⟨W,∇Y (∇⊤
XZ)−∇X(∇⊤

Y Z) +∇[X,Y ]Z⟩
= ⟨W,∇Y (∇XZ −A(X,Z))−∇X(∇Y Z −A(Y,Z)) +∇[X,Y ]Z⟩
= R(X,Y, Z,W )− ⟨W,∇YA(X,Z)⟩+ ⟨W,∇XA(Y,Z)⟩
= R(X,Y, Z,W ) + ⟨∇YW,A(X,Z)⟩ − ⟨∇XW,A(Y,Z)⟩
= R(X,Y, Z,W ) + ⟨∇⊥

YW,A(X,Z)⟩ − ⟨∇⊥
XW,A(Y,Z)⟩

= R(X,Y, Z,W ) + ⟨A(Y,W ), A(X,Z)⟩+ ⟨A(X,W ), A(Y, Z)⟩.

Since W is tangential, we can get rid of the ⊤’s in the second equation. We use metric compatibility in the
fifth equation and add back the ⊥’s in the sixth equation because A(•, •) is normal.
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Example 4.7

Consider Sn ↪→ Rn+1 where Sn = {|x⃗|2 = 1}. If V,W are tangent vectors to Sn, then at the point x we
have

A(V,W ) = ⟨∇VW, x⃗⟩x⃗ = −⟨W,∇V x⃗⟩x⃗

because A(V,W ) is the normal part of ∇VW . The second equation is by metric compatibility because
⟨W, x⃗⟩ = 0.

The Euclidean space miracle is that∇V x⃗ = V for any vector V . For example in R2, taking the derivative
of the vector field (x, y) with respect to (a, b) gives

∇(a,b)(x, y) = (∂(a,b)x, ∂(a,b)y)

= (a∂xx+ b∂yx, a∂xy + b∂yy)

= (a, b)

since ∂xx = ∂yy = 1, ∂yx = ∂xy = 1.

So from the above, we have
A(V,W ) = −⟨W,V ⟩x⃗.

Now by Gauss’s equation, we have

R(X,Y, Z,W ) = ⟨X,Z⟩⟨Y,W ⟩ − ⟨Y, Z⟩⟨X,W ⟩.

If V,W are orthonormal, then the sectional curvature is constant and equal to 1:

KVW = R(V,W, V,W ) = ⟨V, V ⟩⟨W,W ⟩ − ⟨W,V ⟩⟨V,W ⟩ = 1 · 1− 0 · 0 = 1.

Then Ric = (n− 1)g which is Einstein, and S = n(n− 1).

4.3 Codazzi equation

Lemma 4.8 (Codazzi)

If U, V,W ∈ Γ(M), then

(R(U, V )W )⊥ = (∇VA)(U,W )− (∇UA)(V,W ).

Proof. The LHS is

(R(U, V )W )⊥ = ∇⊥
V ∇UW −∇⊥

U∇VW +∇⊥
[U,V ]W

= ∇⊥
V (∇UW +A(U,W ))−∇⊥

U (∇VW +A(V,W )) +A([U, V ],W )

= A(V,∇UW ) +∇⊥
V (A(U,W ))−A(U,∇VW )−∇⊥

U (A(V,W )) +A([U, V ],W )

For the RHS, we use the Leibniz rule:

(∇VA)(U,W ) = ∇V (A(U,W ))−A(∇V U,W )−A(U,∇VW )

= ∇⊥
V (A(U,W ))−A(∇V U,W )−A(U,∇VW )

(∇UA)(V,W ) = ∇⊥
U (A(V,W ))−A(∇UV,W )−A(V,∇UW ).

They are equal, noting that A([U, V ],W ) = A(∇UV,W )−A(∇V U,W ) by symmetry (Section 2.3).
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The Codazzi equation is the most useful when the LHS is zero, such as when R = 0 in Euclidean space Rn.
Then

(∇VA)(U,W ) = (∇UA)(V,W )

and ∇A is fully symmetric in U, V,W .

Example 4.9

Let Ω be an open subset of R2 and consider the graph of u ∈ C(R2)

Ω′ = {(x, y, u(x, y)) : (x, y) ∈ Ω}.

For example, the upper hemisphere is u =
√
1− x2 − y2.

On R2, we have local coordinate vector fields ∂x, ∂y (actually global in this case). The induced metric
from this immersion is

gxx = g(∂x, ∂x) = ⟨dF (∂x), dF (∂x)⟩ = 1 + u2x

because dF (∂x) = (1, 0, ux). Similarly dF (∂y) = (0, 1, uy) so

gxy = uxuy

gyy = 1 + u2y.

The unit normal vector is a unit vector perpendicular to dF (∂x) and dF (∂y), so it is

n⃗ =
(−ux,−uy, 1)√
1 + u2x + u2y

.

Example 4.10

Intuitively, a path in R2 with this metric has the same length as if we were going along the surface of
the sphere. Going from (0, 0) to (0, 1) should have length π

2 .

Consider the curve γ(s) = (0, s) in R2. Since γ′ = (0, 1) = ∂y, we have∣∣γ′∣∣2 = gyy = 1 + u2y(0, s)

Since u =
√
1− x2 − y2,

uy =
−y√

1− x2 − y2

=⇒ 1 + u2y =
1− x2

1− x2 − y2
.

At (x, y) = (0, s), we have ∣∣γ′∣∣2 (s) = 1

1− s2

so the arc length is

L(γ) =

∫ 1

0

1√
1− s2

ds = arcsin s
∣∣∣1
0
=
π

2
.

There are two ways to find the Levi-Civita connection for this g. The first way is to compute Γm
ij from the
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formula 2Γm
ij =

∑
k g

mk(∂igjk + ∂jgik − ∂kgij). The second is using submanifold geometry:

∇FxFx = ∇Fx((1, 0, ux)) = (0, 0, uxx)

since Fx is just moving in the x direction, and the second equality is by the chain rule. Then

(∇FxFx)
⊥ = (0, 0, uxx)

⊥

= ⟨(0, 0, uxx), n⃗⟩n⃗

=

〈
(0, 0, uxx),

(−ux,−uy, 1)√
1 + u2x + u2y

〉
n⃗

=
uxx√

1 + u2x + u2y

n⃗

so we can compute the induced Levi-Civita connection ∇FxFx = (∇FxFx)
⊤.

4.4 Umbilic submanifolds

Assume there is a unit normal n⃗ (existing locally). The shape operator S:TpM → TpM is defined by

⟨S(V ),W ⟩ := ⟨A(V,W ), n⃗⟩
= ⟨∇VW, n⃗⟩
= V ⟨W, n⃗⟩ − ⟨W,∇V n⃗⟩ (metric compatibility)

= −⟨W,∇V n⃗⟩,

where the last equation is because W is ⊤ and n⃗ is ⊥. The RHS is some number because A(V,W ) and n⃗
are both normal. Note that ⟨∇V n⃗, n⃗⟩ = 1

2V ⟨n⃗, n⃗⟩ = 0.

In particular if S ≡ 0, then n⃗ is constant.

Corollary 4.11

Let M be a sub-n-manifold of Rn+1. If A ≡ 0 and M is connected, then M is a hyperplane.

Proof. Taking p ∈ M , there is a neighborhood around p where n⃗ is defined. Choose coordinates such that
n⃗(p) = ∂n+1 and xn+1(p) = 0 (rotate and translate). We claim thatM ⊆ {xn+1 = 0} which implies equality.

The set M ∩ {xn+1 = 0} is automatically closed (because xn+1 is continuous) and nonempty (as p is in
there). By connectedness, it remains to show that is is also open.

Take a curve γ in M with γ(0) = p. Let

f(s) = ⟨n⃗(γ(s)), ∂n+1⟩.

so f(0) = 1. By the chain rule,

f ′(s) = γ′⟨n⃗(γ(s)), ∂n+1⟩
= ⟨∇γ′ n⃗, ∂n+1⟩
= ⟨∇⊤

γ′ n⃗, ∂n+1⟩+ ⟨∇⊥
γ′ n⃗, ∂n+1⟩

= ⟨∇γ′ n⃗, ∂⊤n+1⟩+ 0

= −⟨n⃗,∇γ′∂⊤n+1⟩ (metric compatibility)

= −⟨n⃗, A(γ′, ∂⊤n+1)⟩
= 0. (A ≡ 0)

Note in the fourth equation that ∇⊥
γ′ n⃗ = 0 because ⟨∇γ′ n⃗, n⃗⟩ = 0.
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S:TpM → TpM is a (1, 1)-tensor that is “symmetric”, meaning

⟨S(V ),W ⟩ = ⟨S(W ), V ⟩.

Thus it has real eigenvalues λ1, . . . , λn which we call the principal curvatures.

Definition 4.12 (umbilic). An n-manifold M is umbilic if λ1 = · · · = λn at every point.

In other words, S is multiplication by a constant at each point, but not necessarily the same constant.

Example 4.13

Rn and Sn are umbilic. It turns out that these are the only two examples.

Proposition 4.14

Umbilic implies flat in Rn for n ≥ 3.

Proof. Since S is scalar multiplication (a diagonal matrix with the same entry along the diagonal), we can
locally find a function f such that S(V ) = fV . Then

f⟨V,W ⟩ = ⟨S(V ),W ⟩ = ⟨n⃗, A(V,W )⟩.

We compute the divergence
div(S) = Tr(∇•S)

which is a (0, 1)-tensor (i.e. 1-form) because S is a (1, 1)-tensor and the covariant derivative ∇•S is a
(1, 2)-tensor.

Let S =
∑

i,j S
i
j∂i ⊗ dxj and ∇•S =

∑
i,j,k S

i
j,k(∂i ⊗ dxj ⊗ dxk) where we write Si

j,k for (∇•S)
i
j,k. Then

Si
j,k = (∇∂kS)(dxi, ∂j)

= ∂k(S(dxi, ∂j))− S(∇∂kdxi, ∂j)− S(dxi,∇∂k∂j). (Leibniz rule)

To compute S(dxi, ∂j), we use∑
i

Si
jgiℓ =

〈∑
i

Si
j∂i, ∂ℓ

〉
= ⟨S(∂j), ∂ℓ⟩ = ⟨Ajℓ, n⃗⟩.

Now multiply both sides by gℓk and sum over ℓ to get∑
ℓ

gℓk⟨Ajℓ, n⃗⟩ =
∑
i,ℓ

gℓkSi
jgiℓ

=
∑
i

δikS
i
j

= Sk
j ,

so
S(dxi, ∂j) = Sj

i =
∑
ℓ

gℓj⟨Aiℓ, n⃗⟩.

Taking ∂k, some terms cancel with S(∇∂kdxi, ∂j) and S(dxi,∇∂k∂j), and we end up with

Si
j,k =

∑
ℓ

gℓi⟨Ajℓ,k, n⃗⟩.
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Ajℓ,k is fully symmetric in j, ℓ, k by the Codazzi equation.

We now compute div(S)(V ) in two ways. On one hand,

div(S)(V ) =
∑
i,j

Si
j,iV

j

=
∑
i

(∇eiS(ei))(V )− S(∇eiei)(V )

=
∑
i

(∇ei(fei))(V )− f(∇eiei)(V )

=
∑
i

(∇eif)ei(V )

= V (f).

On the other hand,

div(S)(V ) =
∑
i

(∇V S)(ei)(ei)

=
∑
i

(∇V (fei)− f∇V ei)(ei)

=
∑
i

V (f)⟨ei, ei⟩

= (n− 1)V (f).

Assuming n > 2, this means V (f) = 0 for all V , and f is constant. There are two possibilities:

• If f ≡ 0, then A ≡ 0 which implies A is flat.

• If f ≡ λ for λ ̸= 0, then define a map ϕ: Σ → Rn by

ϕ(x) = x+
1

λ
n⃗(x).

For any tangent vector V , we have

V (ϕ) = ∇VX +
1

λ
∇V n⃗ = V − 1

λ
S(V ) = 0

from assuming S(V ) = λV . This implies ϕ is constant, there is some fixed point p = ϕ(x) for all x.
Then Σ has to be contained in the (n− 1)-sphere with radius 1

|λ| and center p.

5 Geodesics

5.1 Geodesic definition

Definition 5.1 (geodesic). A curve γ: [a, b] →M is a geodesic if ∇γ′γ′ = 0.

Corollary 5.2

The length |γ′| is constant.
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Proof. The derivative of |γ′|2 is

d

dt

∣∣γ′∣∣2 = 2⟨∇γ′γ′, γ′⟩ = 2⟨0, γ′⟩ = 0.

Locally, write γ(t) = (γi(t))1≤i≤n so that γ′ =
∑

i γ
i
t∂i (where γ

i
t =

d
dtγ

i). Then

∇γ′γ′ =
∑
i,j

γit∇∂i(γ
j
t ∂j)

=
∑
i,j

γit(∂i(γ
j
t )∂j + γjt∇∂i∂j)

=
∑
j

γjtt∂j +
∑
i,j,k

γitγ
j
tΓ

k
ij∂k,

which must equal 0 for a geodesic.

Example 5.3

In Euclidean space, we need γjtt = 0 for all j, so the geodesics γ are straight lines parameterized at
constant speeds.

In general, a geodesic is a second order system. Being given an initial position and velocity determines the
geodesic.

Consider a curve γ in M which is a submanifold of N . Then

0 = ∇⊤
γ′γ′

= ∇γ′γ′ −∇⊥
γ′γ′

so
∇γ′γ′ = A(γ′, γ′).

Example 5.4

LetM = Sn be the unit sphere, so A(γ′, γ′) = − |γ′|2 γ. Spherical geodesics have to satisfy γtt = − |γt|2 γ
where |γt| is constant by Corollary 5.2. If |γt| = 1 (unit speed), then each component of γ has γjtt = −γj ,
and the functions that satisfy this are sin and cos. Geodesics in Sn are great circles (see pset).

5.2 Exponential map

Given p ∈ M , we define a map expp:TpM → M with expp(0) = p as follows. Let γ(p, V, t) be the geodesic
with

γ(p, V, 0) = p, γt(p, V, 0) = V.

By existence and uniqueness of ODEs, this is defined for |t| ≤ C for some constant C. Note for a > 0 that

γ(p, V, at) = γ(p, aV, t)

if γ(t) is a geodesic, then σ(t) := γ(at) is also a geodesic (drawing γ at a faster speed). Alternatively from
the original equation, we see ∇aγ′aγ′ = a2∇γ′γ′ = 0.

Definition 5.5. The map expp:TpM →M is defined by expp(V ) = γ(p, V, 1).
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Example 5.6

In Rn, the geodesic is γ(p, V, t) = p+ tV , and the exponential map is expp(V ) = p+ V .

Given initial conditions γ(0) = p and γ′(0) = V ∈ TpM , we get γ: [0, t0] → M . We call γ by γp,V to show
the initial conditions.

Given V , a solution γp,V exists up to some time t0. Using γp,V (at) = γp,aV (t) and setting a = t0, then
γp,aV (1) is defined. For |V | < δ fixed, expp(V ) is defined.

We determine the differential (d expp)V of the exponent map. Since the tangent space of TpM is itself, the
map expp:TpM →M induces

(d expp)V :TpM → Texpp(V )M.

We first consider V = 0, so (d expp)0 is a map TpM → TpM .

Lemma 5.7

(d expp)0 = Id.

Proof. Let α be a curve with α(s) = sV . Consider σ: [0, 1] → M given by σ(s) = expp(sV ) = γp,sV (1) =
γp,V (s). By the chain rule, we have

σ′(0) = (d expp)0(dα(∂s)) = (d expp)0(V ).

Also explicitly, σ′(0) = γ′p,V (0) = V , so (d expp)0(V ) = V .

The inverse function theorem implies expp is a diffeomorphism in some ball Bδ(0), called a normal neigh-
borhood. For a set U ⊂M , a totally normal neighborhood is a ball Bδ′(0) in which expq is a diffeomorphism
for all q ∈ U .
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5.3 Gauss lemma

Definition 5.8. For V,W ∈ TpM perpendicular, define F :R2 →M by

F (s, t) = expp(t(V + sW )).

When only t varies, it is a geodesic. When only s varies, it traces out different geodesics. There are two
nice vector fields along the image, namely Fs = dF (∂s) and Ft = dF (∂t).

By the chain rule (the s derivative of t(V + sW ) is tW , and the t derivative is V + sW ),

Fs(s, t) = (d expp)t(V+sW )(tW )

Ft(s, t) = (d expp)t(V+sW )(V + sW ).

At t = 0, (d expp)0 = Id so

Fs(s, 0) = Id(0W ) = 0

Ft(s, 0) = Id(V + sW ) = V + sW.

Lemma 5.9 (Gauss)

(a) |Ft(s, t)|2 = |V |2 + s2 |W |2 =
∣∣(d expp)t(V+sW )(V + sW )

∣∣2.
(b) ⟨Fs(0, t), Ft(0, t)⟩ = 0 = ⟨(d expp)tV (V ), (d expp)tV (W )⟩.

Proof. We can check that (a) is true for t = 0 by using Ft(s, 0) = V + sW , and cross terms disappear
because V,W orthogonal. Also (b) is true from Fs(0, 0) = 0. Now we consider the derivatives of both sides.
We use these facts:

(i) [Fs, Ft] = 0 because it equals dF ([∂s, ∂t]) = dF (0) = 0.

(ii) ∇Ft(Ft) = 0 for any (s, t) because the image of Ft is a geodesic.

(iii) As a consequence of (ii), ∂t |Ft|2 = 0 for any geodesic (Corollary 5.2).

Now (a) is obvious from (iii). To prove (b), We know ⟨Fs, Ft⟩ = 0 at t = 0. Differentiating, we get

dF (∂t⟨Fs, Ft⟩) = Ft(⟨Fs, Ft⟩)
= ⟨∇FtFs, Ft⟩+ ⟨Fs,∇FtFt⟩ (metric compatibility)

= ⟨∇FtFs, Ft⟩
= ⟨∇FsFt, Ft⟩ (using (i))

=
1

2
∂s |Ft|2

= s |W |2 (using (a))

= 0, (s = 0)
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as desired.

Corollary 5.10

Given any vector fields Z,X ∈ TpM , we decompose Z as the part Y = ⟨Z,X⟩
⟨X,X⟩X along X, and the normal

part Z − Y . Then ∣∣(d expp)X(Z)
∣∣2 = ∣∣(d expp)X(Y )

∣∣2 + ∣∣(d expp)X(Z − Y )
∣∣2

= |Y |2 +
∣∣(d expp)X(Z − Y )

∣∣2 .
We can make the radial part V and the angular part W , and then apply Gauss.

5.4 Riemannian distance

Definition 5.11 (Riemannian distance). For points p, q ∈M connected, define

d(p, q) = inf
γ
L(γ)

as γ ranges over curves from p to q that are piecewise smooth (finitely many breaks).

To check this is a metric, we need to check that it is

• Symmetric: d(p, q) = d(q, p).

• Positive definite: d(p, q) ≥ 0 with equality if and only if p = q.

• Triangle inequality: d(x, z) ≤ d(x, y) + d(y, z).

Symmetric follows by going along the curve backwards. The triangle inequality follows from pasting two
curves together. Positive definiteness is not obvious–although each curve has positive length, there could be
curves with length converging to 0.

We want to find a positive lower bound for L(γ) for γ: p → q with p ̸= q. By the Hausdorff condition,
there exists some open neighborhood Ω of p not containing q. There exists some δ such that expp is a
diffeomorphism in Bδ(0), and the image expp(∂Bδ(0)) is contained in Ω and isomorphic to Sn−1. Note

q /∈ expp(Bδ(0)). If γ is any curve from p to q, it must pass through expp(∂Bδ(0)).
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Lemma 5.12

Suppose that expp is a diffeomorphism on Bδ(0). Let 0 < r1 < r2 ≤ δ and σ be a curve in TpM . Given

that σ(0) ∈ ∂Br1(0), σ(1) ∈ ∂Br2(0) and σ ⊂ Br2(0) \Br1(0) then L(expp(σ)) ≥ r2 − r1.

Equality holds if and only if σ is a monotone ray, meaning σ/|σ| is a constant vector and |σ| is monotone.

The first part of the lemma implies δ is a lower bound. Later we’ll see why monotone ray part is useful.

Proof. For Z,X ∈ TpM , we decompose Z as the part Y := ⟨Z,X⟩
⟨X,X⟩X along X, and the normal part Z − Y .

As in Corollary 5.10, we have by the Gauss lemma on Y and Z − Y that∣∣(d expp)X(Z)
∣∣2 = ∣∣(d expp)X(Y )

∣∣2 + ∣∣(d expp)X(Z − Y )
∣∣2

= |Y |2 +
∣∣(d expp)X(Z − Y )

∣∣2
=

⟨Z,X⟩2

|X|2
+
∣∣(d expp)X(Z − Y )

∣∣2
≥ ⟨Z,X⟩2

|X|2

with equality if and only if (d expp)X(Z − Y ) = 0, or Z = Y if expp is a diffeomorphism. The first equation
is by Gauss lemma (b) which says the cross term is 0, and the second equation is by Gauss lemma (a).

Let γ = expp(σ). Applying the above inequality to Z = σ′ and X = σ, we obtain∣∣γ′∣∣2 = ∣∣(d expp)σ(t)(σ′)∣∣2
≥ ⟨σ′, σ⟩2

|σ|2
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with equality if and only if σ′ = ⟨σ′,σ⟩
|σ|2 σ. Integrating yields

L(γ) =

∫ b

a

∣∣γ′∣∣ (t) dt
≥

∫ b

a

|⟨σ′, σ⟩|
|σ|

(t) dt

=

∫ b

a

∣∣∣∣ ddt |σ|
∣∣∣∣ dt

≥
∫ b

a

d

dt
|σ| dt

= |σ| (b)− |σ| (a)
= r2 − r1

The third line is by

2 |σ| |σ|′ = d

dt
|σ(t)|2 = 2⟨σ′, σ⟩,

so |σ|′ = ⟨σ′,σ⟩
|σ| . (As a concrete example, we can compute the derivative of |x|.)

The second inequality is sharp if and only if σ is monotonic. The first inequality is sharp if and only if

σ′ = ⟨σ′,σ⟩
|σ|2 σ, which we claim is equivalent to σ

|σ| constant. Geometrically, it’s clear you should stay along

the ray from that equation if it’s a multiple of the ray pointing to the origin. Algebraically,(
σ

|σ|

)′
=

σ′

|σ|
− σ |σ|′

|σ|2
=

|σ|σ′ − σ ⟨σ′,σ⟩
|σ|

|σ|2
=

|σ|2 σ′ − σ⟨σ′, σ⟩
|σ|3

= 0

using σ′ = aσ for a ∈ R.

Definition 5.13. A curve γ: [a, b] →M is (length) minimizing if L(γ) = d(γ(a), γ(b)).

It is not necessarily unique, e.g. on a sphere between two antipodal points. It also may not exist, e.g. on a
disk missing a point.

Corollary 5.14 (of Lemma 5.12)

If γ is length minimizing, then we can (monotonically) reparameterize γ such that it is a geodesic.

Proof. We know that any subcurve of γ is also minimizing, and that γ is monotone. Reparameterize γ such
that the speed |γ′| = 1 is constant, which is still length minimizing because reparameterizing doesn’t change
the length.
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By compactness, we can cover γ by a finite collection of totally normal neighborhoods. In each totally
normal neighborhood (centered at p), the inverse image of γ in expp must be a monotone ray, so γ must be
a monotone geodesic ray. (We are using the fact that in a normal neighborhood, a length minimizing curve
is a geodesic.) In the regions where two geodesics overlap, it is the same curve and with the same speed, so
γ is a geodesic.

5.5 Hopf–Rinow theorem

Theorem 5.15 (Hopf–Rinow)

Let M be a connected manifold with Riemannian distance d. TFAE:

1. There exists p ∈M such that expp is defined on all of TpM .

2. Any subset of M that is closed and bounded is also compact.

3. (M,d) is complete (every Cauchy sequence converges).

4. M is geodesically complete (for all p ∈M , expp is defined on all of TpM).

Any of these imply that for all p, q ∈M there exists a length minimizing geodesic γ from p to q.

Lemma 5.16

Let x ∈M such that expx is a diffeomorphism on Bδ′(0) for δ
′ > δ. For y /∈ Bδ(x),

1. There exists z ∈ ∂Bδ(x) such that d(z, y) = infw∈∂Bδ(x) d(w, y).

2. Any such z satisfies d(x, y) = d(x, z) + d(z, y) = δ + d(z, y).

Proof. 1. ∂Bδ(x) = expx(∂Bδ(0)) is the image of a sphere so it is compact. The distance function is
Lipschitz by the triangle inequality and has a minimum on the compact set ∂Bδ(x).

2. The fact that d(x, z) = δ for z ∈ ∂Bδ(x) is by the Gauss lemma. For the first equality, the ≤ direction
is by the triangle inequality. For the ≥ direction, any curve γ from x to y must hit the boundary
∂Bδ(x), say at z′. Then L(γ) ≥ d(x, z′) + d(z′, y) ≥ δ + d(z, y). Taking the infimum over all γ yields
d(x, y) ≥ δ + d(y, z).

Proposition 5.17

Condition 1 in Theorem 5.15 implies for all q that there exists a minimizing geodesic γ from p to q.

This implies expp is onto.

Proof. By Lemma 5.16, choose z0 ∈ ∂Bδ(p) which minimizes the distance to q. Choose a geodesic γ such
that |γ′| ≡ 1, γ(0) = p, and γ(δ) = z0. This γ is defined for all time t by condition 1.
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Let r = d(p, q) and we show that γ(r) = q. Define

A := {t ∈ [0, r] : r ≥ t+ d(γ(t), q)}.

To see that r ∈ A, we note

• 0 ∈ A.

• A is closed.

• If t ∈ A and s < t, then s ∈ A. By the triangle inequality, we have

d(γ(s), q) ≤ d(γ(t), γ(s)) + d(γ(t), q)

≤ (t− s) + (r − t)

= r − s.

• A is open. Say t ∈ [0, r) is in A so that d(γ(t), q) ≤ r− t. In fact d(γ(t), q) = r− t because the reverse
inequality is the triangle inequality.

Choose 0 < δ1 < r − t such that B2δ1(γ(t)) is a normal neighborhood. Let z1 ∈ ∂Bδ1(γ(t)) be closest
to q. (Note this image is misleading because z1 and q will be on γ, but we don’t know that yet.)

Lemma 5.16 part 2 says d(γ(t), q) = δ1 + d(z1, q). Then

r − t = δ1 + d(z1, q) =⇒ d(z1, q) = r − (t+ δ1).

Then by the triangle inequality,

r = d(p, q) ≤ d(p, γ(t)) + d(γ(t), z1) + d(z1, q) = t+ δ1 + (r − t+ δ1) = r,

so d(p, z1) = t + δ1. The curve p → γ(t) → z1 is length minimizing and has to be a geodesic by
Corollary 5.14. Uniqueness of ODEs says that it has to be γ because they agrees up to time t. Thus
γ(t+ δ1) = z1, which implies t+ δ1 ∈ A.

Recall that the metric is d(p, q) = inf{L(γ) | γ: p → q}. The Gauss lemma showed that given expp is a
diffeomorphism on Bδ(0), if q = expp(V ) with |V | < δ, then d(p, q) = |V | and any γ: p → q of length |V | is
a “monotone ray.”
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Proof of Theorem 5.15 (Hopf–Rinow). 4 ⇒ 1: This is clear.

1 ⇒ 2: Let p ∈ M be the point for which expp is defined on all of TpM . Ω being closed and bounded

means there exists R such that d(p, x) ≤ R for all x ∈ Ω. By Proposition 5.17, Ω ⊂ expp(BR(0)) since any

x ∈ Ω has a geodesic leaving p to x with length d(p, x) ≤ R. BR(0) is compact in TpM ≃ Rn and expp is

continuous, so expp(BR(0)) is compact. Since Ω is a closed subset of expp(BR(0)), Ω is compact.

2 ⇒ 3: A Cauchy sequence (pn) is bounded, so it lies inside a compact set by our assumption. Then there
exists a convergent subsequence, which implies convergence for a Cauchy sequence.

3 ⇒ 4: We are given that (M,d) is complete. We show that a geodesic γ starting at p ∈M can be extended
for all time t. By the normal neighborhood, we can do this for t ∈ [0, δ]. Let

A := {t ∈ [0,∞) : γ(t) is defined}.

A is automatically open, as we can consider a normal neighborhood around γ(t) (e.g. consider a geodesic
from the origin to the surface of the unit ball).

It remains to show that A is closed: given that γ(t) is defined for all t ∈ [0, T ), we wish to extend it to T .
Let ti be an increasing sequence converging to T . The sequence γ(ti) is Cauchy because

d(γ(ti), γ(tj)) = L(γ|[ti,tj ]) ≤
∣∣γ′∣∣ |tj − ti| <

∣∣γ′∣∣ ϵ
when |ti − tj | < ϵ. By completeness, γ(ti) converges to some x ∈M . Looking at a totally normal neighbor-
hood about x, we have γ(T ) = x by uniqueness of ODEs.

To find the length of a curve in a metric space, we partition the curve at points ti, consider
∑
d(γ(ti), γ(ti+1)),

and take the size of the partition to 0.

Example 5.18

Consider partitioning the perimeter P of the circle. Given that π is the area of the circle, the area of
one 1

N sector is π
N ≈ 1

2bh ≈ 1
2 · 1 · P

N . Then P = 2π.
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6 Variational theory of geodesics

Recall that a curve γ: [a, b] →M is a geodesic if∇γ′γ′ = 0. These have constant speed |γ′|. A curve σ: [a, b] →
M is minimizing if L(σ) = d(σ(a), σ(b)). We showed that such a σ is a monotone reparameterization of a
geodesic.

6.1 Jacobi equation

Definition 6.1 (variation, proper). Given a curve γ: [a, b] →M , a variation of γ is a continuous (usually
piecewise smooth) map F : (−ϵ, ϵ)× [a, b] →M such that F (0, t) = γ(t).

A variation F is proper if the endpoints are fixed, meaning F (s, a) = γ(a) and F (s, b) = γ(b) for all s.

For F , there are two natural vector fields along the image:

• Fs = dF (∂s), called the variation vector field.

• Ft = dF (∂t), which gives the tangent along each curve for each s.

At s = 0, Ft = γ′ = γt. If F is proper, then Fs = 0 at the endpoints.

Corollary 6.2

∇Fs∇FtFt = ∇Ft∇FtFs +R(Ft, Fs)Ft.

Proof. Recall that [Fs, Ft] = 0 because [∂s, ∂t] = 0 in R2 and dF preserves the Lie bracket. Then

∇Fs∇FtFt = R(Ft, Fs)Ft +∇Ft∇FsFt −∇[Ft,Fs]Ft

= R(Ft, Fs)Ft +∇Ft∇FtFs

where [Ft, Fs] = 0 and symmetry implies ∇FsFt = ∇FtFs.

If Ft is a geodesic, then ∇FtFt = 0, and we get that the RHS above is 0.

Definition 6.3 (Jacobi field). Let γ be a geodesic. A vector field J along γ is a Jacobi field if

∇γ′∇γ′J +R(γ′, J)γ′ = 0.

If t→ F (s, t) is a geodesic for every s, then Fs is a Jacobi field.

Example 6.4

On Rn, geodesics γ are straight lines. Since R ≡ 0, J is a Jacobi field if and only if ∇γ′∇γ′J = 0. Let
e1, . . . , en−1, en = γ′ be a parallel orthonormal frame along γ. Writing J =

∑n
i=1 fi(t)ei(t), we have

∇γ′J =
∑n

i=1 f
′
i(t)ei(t) and ∇γ′∇γ′J =

∑
i f

′′
i (t)ei(t) because the ei are parallel. Thus, J is Jacobi

when fi(t) is affine for all i, i.e. fi(t) = ai + bit for constants ai, bi.
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Jacobi fields are supposed to be infinitesimal generators of nearby geodesics, so it makes sense that they are
linear on Rn.

Lemma 6.5

Let γ: [a, b] →Mn be a geodesic. Then

1. The space of Jacobi fields along γ is 2n-dimensional and is uniquely determined by J(a) and
J ′(a) = (∇γ′J)(a).

2. If J(a) = 0, then J(t) = (d expγ(a))(t−a)γ′(a)(tJ
′(a)).

Proof. 1. The Jacobi equation is a 2nd order ODE, so it is determined by J and J ′ at a. There are n
choices for the coefficients of J(a), and similarly for J ′(a).

2. Define a variation
F (s, t) = expγ(a)

(
(t− a)(γ′(a) + sJ ′(a))

)
where γ′(a) is a fixed constant vector. For s fixed, this is a geodesic. Then Fs|s=0 is a Jacobi field.
Note that Fs(s, a) = 0.

What is ∇Ft(Fs|s=0) = ∇FtFs?

Fs(0, t) = (d expγ(a))(t−a)γ′(a)((t− a)J ′(a))

= (t− a)(d expγ(a))(t−a)γ′(a)(J
′(a)).

When we compute ∇γ′ of this at t = a, the term with (t − a) after the chain rule vanishes, and the
other term is

∇FtFs = (d expγ(a))(t−a)γ′(a)(J
′(a))|t=a

= (d expγ(a))0(J
′(a))

= J ′(a)

at s = 0 and t = a, using (d expγ(a))0 = Id by Lemma 5.7. The uniqueness in part (a) implies that
Fs = J .

Example 6.6

There are always two simple Jacobi fields

• J = γ′, because ∇γ′∇γ′γ′ = 0 and R(γ′, γ′)γ′ = 0 (R is skew).

• J = tγ′, because ∇γ′∇γ′(tγ′) = ∇γ′(t′γ′ + t∇γ′γ′) = ∇γ′γ′ = 0 and R(γ′, tγ′)γ′ = 0 (pull out t by
linearity).

We show that the other 2n− 2 Jacobi fields must be normal.

Proposition 6.7

If J is a Jacobi field with J(0) and J ′(0) normal to γ′(0), then J is normal to γ′ for all t.
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Proof.

∂t⟨J, γ′⟩ = ⟨J ′, γ′⟩+ ⟨J,∇γ′γ′⟩
= ⟨J ′, γ′⟩

=⇒ ∂2t ⟨J, γ′⟩ = ∂t⟨J ′, γ′⟩
= ⟨∇γ′∇γ′J, γ′⟩
= −⟨R(γ′, J)γ′, γ′⟩ (Jacobi equation)

= −R(γ′, J, γ′, γ′)
= 0 (Lemma 3.3)

Then ⟨J, γ′⟩ = a + bt for some a, b ∈ R. As J and J ′ are both perpendicular to γ′ at 0, we must have
a = b = 0. Then ⟨J, γ′⟩ ≡ 0.

6.1.1 Normal Jacobi fields on constant curvature spaces

Suppose M has constant sectional curvature κ. Assume |γ′| = 1. If V is a parallel normal vector field along
γ (so ∇γ′V = 0), then fV is a Jacobi field if and only if

0 = ∇γ′∇γ′(fV ) +R(γ′, fV )γ′

= f ′′V + fR(γ′, V )γ′ (∇γ′V = 0)

= f ′′V + κfV

= (f ′′ + κf)V.

For the third equation, recall that R(X,Y, Z,W ) = κ(⟨X,Z⟩⟨Y,W ⟩ − ⟨X,W ⟩⟨Y, Z⟩) for all tangent vectors
X,Y, Z,W (pset 3.3). Then ⟨R(γ′, V )γ′,W ⟩ = κ⟨V,W ⟩ for all W , so R(γ′, V )γ′ = κV .

This is a differential equation that we can solve:

• If κ = 0, then f ′′ = 0 and f = a+ bt.

• If κ = 1 (e.g. Sn), then f ′′ = −f and f = a sin t+ b cos t.

• If κ = −1 (e.g. hyperbolic space) then f ′′ = f and f = a cosh t+ b sinh t.

6.2 Conjugate points

Geodesics on Sn get farther apart until they get to the equator, then they get closer together until they
coincide at the antipode. In hyperbolic space, then initially grow linearly, but then exponentially.

Definition 6.8 (conjugate points). Let γ be a geodesic. Then γ(a) and γ(b) are conjugate if there exists
a nonzero Jacobi field J such that J(a) = J(b) = 0.

Conjugate points correspond to places where exp is not a diffeomorphism? There are no conjugate points
in Rn, as if f = a + bt = 0 and f ′ = 0 then a = b = 0. There are also no conjugate points in hyperbolic
space. However, antipodal points are conjugate on Sn.

6.3 Energy

Definition 6.9 (energy). The energy E(γ) of a curve γ: [a, b] →M is

E(γ) =

∫ b

a

∣∣γ′∣∣2 (t) dt.
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If it were |γ′| instead of |γ′|2, that would be the length of the curve.

Lemma 6.10

We have
d(γ(a), γ(b))2 ≤ L(γ)2 ≤ (b− a)E(γ)

with equality if and only if γ is a minimizing geodesic for both L and E.

Recall the Cauchy–Schwarz inequality(∫ b

a
uv

)2
≤

(∫ b

a
u2

)(∫ b

a
v2
)

with equality if and only if u, v are multiples of each other. It comes from the L2-norm inequality

⟨u, v⟩2L2 ≤ ||u||2L2 ||v||2L2

which is always true in an inner product space. A special case is that(∫ b

a
|u|

)2
≤

(∫ b

a
1
)(∫ b

a
u2

)
= (b− a)

∫ b

a
u2

with equality if and only if u is constant.

Proof. The first inequality is by the definition of d. The second inequality is by Cauchy–Schwarz:

L(γ)2 =
(∫ b

a

∣∣γ′∣∣ )2
≤

(∫ b

a
1
)(∫ b

a

∣∣γ′∣∣2 ) = (b− a)E(γ).

If the first inequality is an equality, then γ is a monotone reparameterization of a length minimizing geodesic
by Corollary 5.14. The second equality implies |γ′| is constant, so γ is a length minimizing geodesic.

There are too many choices for curves that minimize length, so we consider one with minimal energy. Given
a length minimizing curve, we can reparameterize it to be energy minimizing. A length minimizing geodesic
is the same as an energy minimizing curve.

Remark 6.11. Historical aside: Poincaré asked when given a complete manifold, whether there is
always a closed geodesic (a map from S1 → M). For example on the sphere, we can take an equator.
For surfaces with genus ≥ 1, we can take a nontrivial loop and find a variation that minimizes energy,
which will then be a geodesic.

On simply connected surfaces such as the sphere, this doesn’t work because all loops are null homotopic.
Birkhoff used sweepouts, or a family of curves which start and end at a point curve. He considered a
curve with maximal length, which turned out to be a geodesic.
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6.3.1 First variation of energy

Let γ: [a, b] → M be continuous and piecewise smooth with breaks at a = t0 < t1 < · · · < tk < tk+1 = b.
Let γ′(t−i ) be the incoming tangent vector, and let γ′(t+i ) be the outgoing tangent vector.

Let F (s, t) be a proper, piecewise smooth, continuous variation so F (s, a) ≡ γ(a) and F (s, b) ≡ γ(b) for all
s. We compute the variation dE

ds , where E(s) is the energy of F (s):

E(s) =

∫ b

a
|Ft(s, t)|2 dt =

∑
i

∫ ti+1

ti

|Ft(s, t)|2 dt.

Differentiating,

E′(s) =
∑
i

∫ ti+1

ti

Fs⟨Ft, Ft⟩ dt

= 2
∑
i

∫ ti+1

ti

⟨∇FsFt, Ft⟩ dt (metric compatibility)

= 2
∑
i

∫ ti+1

ti

⟨∇FtFs, Ft⟩dt ([Fs, Ft] = 0 and symmetry)

= 2
∑
i

∫ ti+1

ti

(Ft⟨Fs, Ft⟩ − ⟨Fs,∇FtFt⟩) dt (metric compatibility)

= 2
∑
i

⟨Fs, Ft⟩
∣∣∣ti+1

ti
− 2

∫ b

a
⟨Fs,∇FtFt⟩ dt (FTC)

= −2

∫ b

a
⟨Fs,∇FtFt⟩ dt+ 2

∑
i

(⟨Ft, Fs⟩(t−i+1)− ⟨Ft, Fs⟩(t+i ))

= −2

∫ b

a
⟨Fs,∇FtFt⟩ dt+ 2

∑
i

⟨Fs, Ft(t
−
i )− Ft(t

+
i )⟩ (6.1)

The last sum would telescope if γ were smooth to yield

E′(s) = −2

∫ b

a
⟨Fs,∇FtFt⟩ dt+ 2⟨Fs, Ft(b)− Ft(a)⟩. (6.2)

Proposition 6.12

γ is a smooth geodesic if and only if E′(0) = 0 for all proper variations of γ.

Proof. (⇒) The first term in (6.1) vanishes because Fs = 0 for a geodesic, and the second term vanishes
when γ is smooth.

(⇐) Every vector field V on γ gives a variation F (s, t) = expγ(t)(sV (t)), where Fs(0, t) = V (t).
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We first show that γ is a broken geodesic. We let V be 0 at the breakpoints, so the summation term in (6.1)
is 0. Then the integral term is 0, but Fs can be arbitrary so ∇FtFt = 0.

Next we show that γ is smooth. If γ has a break point at ti, then we let V jump at ti, so Fs(0, ti) =
Ft(t

−
i ) − Ft(t

+
i ), and Fs(0, tj) = 0 for all j ̸= i. Then there would be a nonzero contribution in the second

term, which is a contradiction.

6.3.2 Second variation of energy

Proposition 6.13

If γ: [a, b] →M is a smooth geodesic, then

1

2
E′′(0) =

∫ b

a
|∇FtFs|2 −R(Ft, Fs, Ft, Fs) dt.

Note that ∇Ft∇FtFs +R(Ft, Fs)Ft is the Jacobi operator and equals 0 when Fs is a Jacobi field.

Proof. We have

1

2
E′′(0) = −

∫ b

a
Fs(⟨Fs,∇FtFt⟩) dt

= −
∫ b

a
⟨∇FsFs,∇FtFt⟩+ ⟨Fs,∇Fs∇FtFt⟩ dt

= −
∫ b

a
⟨Fs,∇Fs∇FtFt⟩ dt

= −
∫ b

a
⟨Fs,∇Ft∇FtFs +R(Ft, Fs)Ft⟩ dt (Corollary 6.2)

= −
∫ b

a
⟨Fs,∇Ft∇FtFs⟩+R(Ft, Fs, Ft, Fs) dt

= −
∫ b

a
Ft(⟨Fs,∇FtFs⟩)− ⟨∇FtFs,∇FtFs⟩+R(Ft, Fs, Ft, Fs) dt

= ⟨Fs,∇FtFs⟩
∣∣∣b
a
+

∫ b

a
|∇FtFs|2 −R(Ft, Fs, Ft, Fs) dt

=

∫ b

a
|∇FtFs|2 −R(Ft, Fs, Ft, Fs) dt.

The third equation is because ∇FtFt = 0 at s = 0 since γ is a geodesic.

The RHS
∫ b
a |∇FtFs|2 −R(Ft, Fs, Ft, Fs) dt ≡ I(Fs, Fs) is called an index form.

Definition 6.14. An index form I satisfies

I(V, V ) =

∫ b

a
|∇FtV |2 −R(Ft, V, Ft, V ) dt.

This motivates Bonnet–Myers, which says that a length minimizing geodesic can not be too long.

Recall that if γ is a minimizing geodesic, then

0 ≤ I(V, V ) =

∫ ∣∣∇γ′V
∣∣2 −R(γ′, V, γ′, V )

for all V along γ that vanish at the endpoints.
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6.4 Bonnet–Myers

Theorem 6.15 (Bonnet–Myers)

Suppose (Mn, g) is complete and Ric ≥ c for some constant c > 0. Then

diam(M)2 ≤ (n− 1)
π2

c
.

As a corollary, M is compact.

Proof. By Hopf–Rinow, there is a minimizing geodesic between any two points. It then suffices to show for
any minimizing geodesic γ of length L that L2 ≤ (n− 1)π

2

c .

Say |γ′| = 1, so γ: [0, L] →M . Choose a parallel orthonormal frame e1, . . . , en−1, en = γ′ along γ; note γ′ is
parallel because ∇γ′γ′ = 0. Define

Vj = sin
(πt
L

)
ej ,

which makes Vj = 0 at the endpoints t = 0, L. Then

0 ≤ I(Vj , Vj)

=

∫ L

0

∣∣∣∣∇γ′

(
sin

(πt
L

)
ej

)∣∣∣∣2 − sin2
(πt
L

)
R(γ′, ej , γ

′, ej) dt

=

∫ L

0

∣∣∣∣πL cos
(πt
L

)
ej

∣∣∣∣2 − sin2
(πt
L

)
R(γ′, ej , γ

′, ej) dt

=

∫ L

0

π2

L2
cos2

(πt
L

)
− sin2

(πt
L

)
R(γ′, ej , γ

′, ej) dt.

Summing over 1 ≤ j ≤ n− 1 yields

0 ≤ (n− 1)
π2

L2

∫ L

0
cos2

(πt
L

)
dt−

∫ L

0
sin2

(πt
L

) n−1∑
j=1

R(γ′, ej , γ
′, ej) dt

= (n− 1)
π2

L2

∫ L

0
cos2

(πt
L

)
dt−

∫ L

0
sin2

(πt
L

)
Ric(γ′, γ′) dt

≤ (n− 1)
π2

L2

∫ L

0
cos2

(πt
L

)
dt− c

∫ L

0
sin2

(πt
L

)
dt.

The summation equals Ric(γ′, γ′) because the missing term is R(γ′, γ′, γ′, γ) = 0. The two integrals are
equal, so dividing out yields

c ≤ (n− 1)
π2

L2
.
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Remark 6.16. Taking V = sin(πtL )ej results in the optimal bound. If V = fej with f = 0 at the
endpoints and κ ≡ 1, then

0 ≤ I(V, V )

=

∫ L

0
(f ′)2 − f2R(γ′, ej , γ

′, ej) dt

=

∫ L

0
(f ′)2 − f2 dt.

We want to minimize the Raleigh quotient ∫ L
0 (f ′)2 dt∫ L
0 f2 dt

.

Letting L = π for simplicity and writing the Fourier series f =
∑∞

n=1 an sin(nx), the quotient becomes∑∞
n=1 a

2
nn

2∑∞
n=1 a

2
n

,

which is minimized when a1 = 1 and a2 = a3 = · · · = 0.

Remark 6.17. Cheng’s maximal diameter theorem states that if equality occurs, then M is a round
sphere.

Example 6.18

There is no complete metric on R2 with Ric ≥ c > 0 because it is not compact.

Corollary 6.19

If (Mn, g) is complete with Ric ≥ c > 0, then π1(M) is finite.

Proof. Let M̃ be the universal cover of M . M̃ is also complete and satisfies the same diameter bound
because it has a natural metric by lifting the metric on M . By Bonnet–Myers, M̃ is compact, so π1(M) is
finite.

Example 6.20

T 2 = S1 × S1 has no such metric, because π1(T
2) ∼= Z2 × Z2 is infinite.

7 Laplacian

7.1 Harmonic functions and eigenvalues

Let u ∈ C(M) be a function.

Page 47 of 77



Laplacian October 28, 2025

Definition 7.1 (gradient). The gradient of u is the vector field obtained by raising the index:

∇u =
∑
i,j

gijuj∂xi .

Definition 7.2 (Hessian). The Hessian of u is a (1, 1)-tensor and the covariant derivative of u:

Hessu = ∇(∇u).

Definition 7.3 (Laplacian). The Laplacian of u is the trace of the Hessian:

∆u = Tr∇(∇u).

Example 7.4

On Rn, ∇u = ui, ∇(∇u) = uij , and

∆u =
n∑

j=1

ujj =
∂2u

∂x21
+ · · ·+ ∂2u

∂x2n
.

Definition 7.5 (divergence). The divergence of a vector field V is the function

div V = Tr∇V.

Note that ∆u = div(∇u). In an orthonormal frame ei, we have

div V =

n∑
i=1

⟨∇eiV, ei⟩.

In local coordinates, the divergence of V =
∑

j V
j∂j is

div V =
∑
i

∂iV
i +

∑
i,j

Γj
ijV

i.

By the Leibniz rule, we have [∇(uV )]ij = ujV
i + uV i

j , so

div(uV ) =
∑
i

(uiV
i + uV i

i ) = udiv V + V (u) = udiv V + ⟨∇u, V ⟩.

Applying this when V = ∇v, we have

div(u∇v) = u∆v + ⟨∇u,∇v⟩.

Theorem 7.6 (Riemann divergence)

Let Ω ⊂M be a domain with boundary ∂Ω. Then
∫
∂Ω FluxV =

∫
Ω div V .

Corollary 7.7

If M is compact (no boundary), then
∫
M ∆u = 0 for any u.
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Corollary 7.8

If u, v ≡ 0 on ∂Ω, then ∫
Ω
u∆v =

∫
Ω
v∆u = −

∫
Ω
⟨∇u,∇v⟩.

The Laplacian is self-adjoint.

Definition 7.9 (harmonic). A function u is harmonic if ∆u = 0.

Example 7.10

On R2, some harmonic functions are

x, y, xy, x2 − y2, x3 − 3xy2, y3 − 3x2y, . . . .

In general, Re(x+ yi)k and Im(x+ yi)k are harmonic by the Cauchy–Riemann equation.

Lemma 7.11

Suppose ∆u ≡ 0 on Ω and v ≡ 0 on ∂Ω. Then∫
Ω
|∇(u+ v)|2 =

∫
Ω
|∇u|2 +

∫
Ω
|∇v|2 .

In other words, the energy of u+ v is the sum of the energies of u and v. In particular, a harmonic function
u minimizes the energy across all functions that are the same as u on ∂Ω.

Proof. The difference between the two sides is

2

∫
Ω
⟨∇u,∇v⟩ = 2

∫
Ω
div(v∇u)− v∆u

= 0

because v∇u ≡ 0 on ∂Ω, and ∆u ≡ 0.

Lemma 7.12 (Reverse Poincaré inequality)

Let u be a harmonic function and ϕ be a cutoff function (i.e. compact support). Then∫
|∇u|2 ϕ2 ≤ 4

∫
u2 |∇ϕ|2 .

Proof. Since ϕ has compact support, div(ϕ2u∇u) integrates to 0. This evaluates to

ϕ2u∆u+ ϕ2 |∇u|2 + 2ϕu⟨∇ϕ,∇u⟩,

so ∫
ϕ2 |∇u|2 = −2

∫
ϕu⟨∇ϕ,∇u⟩.
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Then by the absorbing inequality (AM-GM) 2ab ≤ ϵa2+ b2

ϵ with ϵ = 1
2 , a = ϕ |∇u|, and b = u |∇ϕ|, we have∫

ϕ2 |∇u|2 ≤ 2

∫
|ϕu⟨∇ϕ,∇u⟩|

≤ 1

2

∫
ϕ2 |∇u|2 + 2

∫
u2 |∇ϕ|2

=⇒
∫
ϕ2 |∇u|2 ≤ 4

∫
u2 |∇ϕ|2 .

Corollary 7.13 (Yau)

An L2-harmonic function on a complete (connected) manifold must be constant.

Proof. Fix any point p ∈M . Let ϕj be a sequence of cutoff functions with ϕj ≡ 1 on the ball Bj that cuts
off on Bj+1 \Bj linearly in distance:

ϕj(x) =


1 d(x, p) ≤ j

j + 1− d(x, p) j ≤ d(x, p) ≤ j + 1

0 d(x, p) ≥ j + 1

.

Applying the reverse Poincaré inequality on ϕj , the LHS converges to
∫
|∇u|2, while the RHS converges to

0 (because u is in L2 and the dominated convergence theorem).

7.2 Bochner formula

For a function u ∈ C(M), recall that

• The gradient ∇u is a (1, 0)-tensor, and the differential du is a (0, 1)-tensor.

• The Hessian ∇∇u is a (1, 1)-tensor, and ∇du is a (0, 2)-tensor.

• The Laplacian ∆u = Tr(∇∇u) = div(∇u) is a function.

Lemma 7.14 (Bochner)
1
2∆ |∇u|2 = |Hessu|2 + ⟨∇u,∇∆u⟩+Ric(∇u,∇u).

The formula is most useful when ∆u = 0, so the middle term vanishes.

Corollary 7.15

If ∆u ≡ 0 and Ric ≥ 0, then ∆ |∇u|2 ≥ 0.

The Bochner formula is an equality of functions, so choose coordinates to make the computation easier.

Definition 7.16 (geodesic normal coordinates). Geodesic normal coordinates about a fixed p ∈M satisfy

• gij(p) = δij , so the ∂i are orthonormal at p.

• Γk
ij(p) = 0, so ∇•∂i(p) ≡ 0 and ∇•dxi(p) ≡ 0.
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We show that such a coordinate system exists. Let ei be an orthonormal of TpM . Let xi denote the ith
coordinate of V under this basis. Then yi = xi ◦ exp−1

p is a coordinate system in some neighborhood U ⊂M
of p. They are orthonormal (only) at p because (d expp)0 = Id and the ei are orthonormal by construction.

The curve γ(t) = t(a1, . . . , an) for some constants ai is a geodesic. Then from γ′ =
∑

i ai∂i, we have

0 = ∇γ′γ′ =
∑
i

ai∇∂i(aj∂j) =
∑
i,j

aiaj∇∂i∂j =
∑
i,j,k

aiajΓ
k
ij∂k.

At p, this implies

0 =
∑
i,j,k

aiajΓ
k
ij(p)∂k,

for any ai, so Γk
ij(p) = 0.

This implies ∇∂i(p) = 0 and ∇dxi(p) = 0, because they can be written in terms of Γk
ij(p).

Proof of Lemma 7.14. The facts we will use are

1. Symmetry of the Hessian: ⟨∇V ∇f,W ⟩ = ⟨∇W∇f, V ⟩.

The LHS is V ⟨∇f,W ⟩ − ⟨∇f,∇VW ⟩, while the RHS is W ⟨∇f, V ⟩ − ⟨∇f,∇WV ⟩. Recalling that
⟨∇f,W ⟩ =W (f), the difference is V (W (f))−W (V (f))− ⟨∇f, [V,W ]⟩ = 0.

2. At p, ∆f(p) =
∑

i⟨∇∂i∇f, ∂i⟩(p) =
∑

i ∂i⟨∇f, ∂i⟩(p). The first equality is the definition of trace,
and the second equality is by metric compatibility and how ∇∂i∂i(p) = 0 by the geodesic normal
coordinates.

3. ∇∂i∇∇u∇u = R(∇u, ∂i)∇u+∇∇u∇∂iu−∇[∇u,∂i]∇u by the definition of R.

4. If f = 1
2 |∇u|

2, then ⟨∇f, V ⟩ = V (f) = 1
2V ⟨∇u,∇u⟩ = ⟨∇V ∇u,∇u⟩ = ⟨∇∇u∇u, V ⟩, where the last

equality is by the symmetry of the Hessian.
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Now we compute

∆f(p) =
∑
i

∂i⟨∇f, ∂i⟩ (by 2)

=
∑
i

∂i⟨∇∇u∇u, ∂i⟩ (by 4)

=
∑
i

⟨∇∂i∇∇u∇u, ∂i⟩ (metric compatibility, ∇∂i(p) = 0)

=
∑
i

R(∇u, ∂i,∇u, ∂i) + ⟨∇∇u∇∂i∇u−∇[∇u,∂i]∇u, ∂i⟩ (by 3)

= Ric(∇u,∇u) +
∑
i

∇u⟨∇∂i∇u, ∂i⟩ −
∑
i

⟨∇∂i∇u, [∇u, ∂i]⟩ (by 1)

= Ric(∇u,∇u) +
∑
i

∇u⟨∇∂i∇u, ∂i⟩+
∑
i

⟨∇∂i∇u,∇∂i∇u⟩

= Ric(∇u,∇u) +
∑
i

∇u⟨∇∂i∇u, ∂i⟩+ |Hessu|2

where [∇u, ∂i] = −∇∂i∇u because ∇•∂i = 0 at p.

It remains to show that ⟨∇u,∇∆u⟩ =
∑

i∇u⟨∇∂i∇u, ∂i⟩ at p, which is true because

⟨∇u,∇∆u⟩ = ∇u(∆u)

= ∇u
(∑

i

dxi(∇∂i∇u)
)

=
∑
i

(∇∇udxi)(∇∂i∇u) + dxi(∇∇u∇∂i∇u) (Leibniz rule)

=
∑
i

0 + ⟨∇∇u∇∂i∇u, ∂i⟩

=
∑
i

∇u⟨∇∂i∇u, ∂i⟩. (metric compatibility, ∇∂i(p) = 0)

The first term in the third line is 0 at p, and applying dxi is the same as applying ⟨•, ∂i⟩ at p.

The following theorem gives a lower bound for eigenvalues of the Laplacian.

Theorem 7.17 (Lichnerowicz)

If Mn is complete, Ric ≥ c > 0, and ∆u = −λu for some λ ∈ R \ {0} with
∫
u2 = 1, then λ ≥ cn

n−1 .

Example 7.18

On a sphere we have c = n − 1, so any eigenvalue λ must be at least n. It turns out that coordinate
functions u attain this bound and that Lichnerowicz’s theorem holds only for the sphere.

Proof. In general,
1

2
∆u2 = div

(
∇1

2
u2

)
= div(u∇u) = |∇u|2 + u∆u

Then in our case,
1

2
∆u2 = |∇u|2 − λu2.
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By the divergence formula,
∫
∆v =

∫
Flux = 0 because the Flux is across a boundary that does not exist.

Integrating the above equation, ∫
|∇u|2 = λ

∫
u2 = λ.

In particular, λ ≥ 0.

By the Bochner formula,

1

2
∆ |∇u|2 = |Hessu|2 + ⟨∇u,∇(−λu)⟩+Ric(∇u,∇u),

so

0 =

∫
|Hessu|2 − λ

∫
|∇u|2 +

∫
Ric(∇u,∇u)

≥
∫

|Hessu|2 − λ2 + cλ

where
∫
Ric(∇u,∇u) ≥ c

∫
|∇u|2 by assumption. Then

λ2 − cλ ≥
∫

|Hessu|2 .

Given a symmetric n× n matrix S, we have TrS = S · δij (Rn2
dot product), so by Cauchy–Schwarz,

|TrS|2 = |S · δij |2 ≤ |S|2 |δij |2 = n |S|2 ,

so (∆u)2 ≤ n |Hessu|2. Integrating yields

λ2 − cλ ≥
∫

|Hessu|2 ≥
1

n

∫
(∆u)2 =

λ2

n

∫
u2 =

λ2

n
,

which rearranges to what we want: λ ≥ cn
n−1 .

7.3 Isomperimetric and Wirtinger inequalities

Theorem 7.19 (Isoperimetric inequality)

For Ω ⊂ R2, we have
Area(Ω)

L(∂Ω)2
≤ 1

4π

with equality if and only if Ω is a circle.

Proposition 7.20 (Wirtinger inequality)

1. If f : [0, π] → R satisfies f(0) = f(π) = 0, then∫ π

0
f2 ≤

∫ π

0
(f ′)2.

Equality holds if and only if f(x) = sinx.

2. If f is a C1 function on S1 = [0, 2π] and
∫
S1 f = 0, then∫

S1

f2 ≤
∫
S1

(f ′)2.

Equality holds if and only if f(x) = a sinx+ b cosx.
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Note that
∫
(f ′)2∫
f2 is not dimensionless. Taking F (x) = f(λx), we have

∫
(F ′)2∫
F 2 = λ2

∫
(f ′)2∫
f2 .

Proof. Let g(x) = f(x)2 cosxsinx which is smooth and equals 0 at the endpoints because f(x)2 vanishes to order
2 while sinx vanishes to order 1. By the FTC,

0 =

∫ π

0
g′ dx =

∫ π

0
2ff ′

cosx

sinx
− f2 − f2

cos2 x

sin2 x
dx.

Then ∫ π

0
f2 dx =

∫ π

0
2ff ′

cosx

sinx
− f2

cos2 x

sin2 x
dx

=

∫ π

0
(f ′)2 −

(
f ′ − f

cosx

sinx

)2
dx

≤
∫ π

0
(f ′)2 dx.

For equality, we need f ′

f = (sinx)′

sinx so f is a multiple of sinx.

Proof of Theorem 7.19. We can assume that Ω is connected because it suffices to prove the inequality on
each connected component. Also ∂Ω is connected, because otherwise filling in any holes of Ω increases the
area and decreases the boundary. WLOG suppose L(∂Ω) = 2π, so we wish to show that Area(Ω) ≤ π.

Let ∂Ω be given by a map γ:S1 → R2 where |γ′| = 1. Writing γ = (γ1, γ2), we can translate Ω such that∫
S1 γ1 =

∫
S1 γ2 = 0. By the Wirtinger inequality (Proposition 7.20),∫

S1

γ21 ≤
∫
S1

(γ′1)
2

and same for γ2. Adding these inequalities yields∫
S1

|γ|2 ≤
∫
S1

∣∣γ′∣∣2 = ∫
S1

1 = 2π.

Since |γ′| = 1, we can reparameterize
∫
∂Ω |x|2 =

∫
S1 |γ|2 ≤ 2π where x = (x1, x2). On R2, div x = ∂x1

∂x1
+ ∂x2

∂x2
=

2. Then letting n be the outward unit normal,

2Area(Ω) =

∫
Ω
div x

=

∫
∂Ω
x · n (divergence theorem)

≤
(∫

∂Ω
|x|2

) 1
2
(∫

∂Ω
|n|2

) 1
2

(Cauchy–Schwarz)

≤ (2π)
1
2 (2π)

1
2

= 2π

where |n|2 = 1 pointwise. For equality in the Cauchy–Schwarz inequality, we need |x|2 to also be constant
on ∂Ω.
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7.4 Submanifolds

Let Σ ↪→ M be a submanifold, so the induced connection is ∇u = ∇⊤u. Then Hessu = ∇∇u, and for any
tangent vectors V and W ,

Hessu(V,W ) = ⟨∇⊤
V ∇⊤u,W ⟩

= ⟨∇V ∇⊤u,W ⟩ (W tangent)

= ⟨∇V (∇u−∇⊥u),W ⟩
= Hessu(V,W )− ⟨∇V ∇⊥u,W ⟩
= Hessu(V,W ) + ⟨∇⊥u,∇VW ⟩ (metric compatibility ∇⊥u ⊥W )

= Hessu(V,W ) + ⟨A(V,W ),∇u⟩.

Tracing,

∆u =

n∑
i=1

Hessu(ei, ei) + ⟨∇u,H⟩

= ∆u+ ⟨∇u,H⟩

where ei is an orthonormal frame for Σ, and H is the mean curvature.

Theorem 7.21 (Minkowski)

Let Ω ⊂ Rn+1 be a compact subset of dimension n with smooth boundary ∂Ω. Let n⃗ be the outward
unit normal on ∂Ω.

1.
∫
∂Ω⟨x, n⃗⟩ = (n+ 1)Vol(Ω).

2.
∫
∂Ω⟨x, n⃗⟩⟨H, n⃗⟩ = −

∫
∂Ω n = −nArea(∂Ω).

A consequence of 2 is that ∂Ω can never be minimal, because then the integrand and integral are 0.

Proof. 1. This follows from div x = n+ 1 on Rn+1.

2. We apply the divergence theorem to x⊤ on ∂Ω. Letting ei be an orthonormal frame on ∂Ω,

div(x⊤) =
∑
i

⟨∇eix
⊤, ei⟩

=
∑
i

⟨∇ei(x− x⊥), ei⟩

=
∑
i

⟨ei −∇eix
⊥, ei⟩

= n−
∑
i

⟨∇eix
⊥, ei⟩

= n+
∑
i

⟨x⊥,∇⊥
eiei⟩ (metric compatibility)

= n+ ⟨x⊥,H⟩.

Integrating gives the claim.
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7.5 Spherical harmonics

We specialize to the case of Sn ↪→ Rn+1. Let x be the unit normal, so we know that

A(V,W ) = −⟨V,W ⟩x, κ ≡ 1, Ric = (n− 1)g, H = −nx.

Lemma 7.22

The xi are eigenfunctions with ∆xi = −nxi.

Note this is the equality case of the Lichnerowicz theorem (Theorem 7.17).

Proof. Since Hessxi ≡ 0 (the second derivatives of xi are 0), ∆xi = 0. Then

∆xi = ⟨∇xi,H⟩ = ⟨∂i,−nx⟩ = −nxi.

Definition 7.23 (homogeneous). A function u is homogeneous on Rn+1 of degree d if u(sx) = sdu(x)
for all s ∈ R>0.

Taking the s derivative yields
⟨∇u(sx), x⟩ = dsd−1u(x).

Differentiating again yields
Hessu(x, x)(sx) = d(d− 1)sd−2u(x).

Plugging in s = 1 results in

⟨∇u(x), x⟩ = du(x)

Hessu(x, x) = d(d− 1)u(x).

Now consider the sphere Sn ↪→ Rn+1. Let e1, . . . , en, x be an orthonormal frame of Rn+1 (x is normal), so

∆u =
n∑

i=1

Hessu(ei, ei)− n⟨∇u, x⟩

= ∆u−Hessu(x, x)− n⟨∇u, x⟩
= ∆u− d(d− 1)u− ndu

= ∆u− d(d+ n− 1)u.

Note the second equality is because tracing Hessu over all n+ 1 directions yields ∆u.

Theorem 7.24 (Spherical harmonics)

Suppose u is a function on Rn+1 that is homogeneous of degree d and ∆u ≡ 0. Then on Sn,

∆u = −d(d+ n− 1)u,

so u is an eigenfunction with eigenvalue d(d+ n− 1).

• For d = 1, we get the coordinate functions xi, with eigenvalue λ = 1(1 + n− 1) = n.

• If n = 1, then λ = d2, which will yield rd sin dθ and rd cos dθ (we haven’t proven this).
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8 Minimal submanifolds

8.1 First variation

We show that there exist energy-minimizing curves. Consider the space of curves γ on [0, L] with γ(0) = p
and γ(L) = q. We want to show there is a subsequence that converges. To apply Ascoli–Arzelá, we need
equicontinuity (we already have uniform boundedness):

|d(γ(x), γ(y))| ≤ L(γ([x, y]))

=

∫ y

x

∣∣γ′(t)∣∣ dt
≤

(∫ y

x

∣∣γ′∣∣2) 1
2
(∫ y

x
1

) 1
2

≤ c
√
|x− y|.

This argument can be used in 2 dimensions but fails for 3+ dimensions.

Let Σn ↪→MN be a submanifold. Consider a variation

F : Σ× (−ϵ, ϵ) →M

where (−ϵ, ϵ) is parameterized by s, and let Fs = dF (∂s) which is a variation vector field. A proper variation
means that Fs ≡ 0 on the boundary.

Let dv denote the induced volume element from M onto Σ× (−ϵ, ϵ).

Lemma 8.1 (First variation formula)

∂sdv =
(
div(F⊤

s )− ⟨F⊥
s ,H⟩

)
dv

Proof. Let x1, . . . , xn be local coordinates, and let Fi = dF (∂xi). As before, we have [Fs, Fi] = 0, and
[Fi, Fj ] = 0. The induced metric is gij = ⟨Fi, Fj⟩, and the volume element is dv =

√
det gij dx. Then

∂sgij = Fs⟨Fi, Fj⟩
= ⟨∇FsFi, Fj⟩+ ⟨Fi,∇FsFj⟩
= ⟨∇FiFs, Fj⟩+ ⟨Fs,∇FjFi⟩

where

⟨∇FiFs, Fj⟩ = ⟨∇FiF
⊤
s , Fj⟩+ ⟨∇FiF

⊥
s , Fj⟩

= ⟨∇FiF
⊤
s , Fj⟩ − ⟨F⊥

s ,∇FiFj⟩
= ⟨∇FiF

⊤
s , Fj⟩ − ⟨F⊥

s ,∇⊥
Fi
Fj⟩

= ⟨∇FiF
⊤
s , Fj⟩ − ⟨F⊥

s , A(Fi, Fj)⟩.

Analogously, ⟨Fs,∇FjFi⟩ = ⟨∇FjF
⊤
s , Fj⟩ − ⟨F⊥

s , A(Fi, Fj)⟩, so

∂sgij = ⟨∇FiF
⊤
s , Fj⟩+ ⟨∇FjF

⊤
s , Fi⟩ − 2⟨F⊥

s , A(Fi, Fj)⟩.

By Lemma 8.2,

∂s

√
det gij =

1

2
√
det gij

∂s(det gij)

=
1

2
√
det gij

det gij Tr(g
−1∂sgij).
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Next, we compute that

1

2
Tr(g−1∂sgij) =

1

2
Tr

(
g−1[⟨∇FiF

⊤
s , Fj⟩+ ⟨∇FjF

⊥
s , Fi⟩]

)
− Tr

(
g−1⟨F⊤

s , A(Fi, Fj)⟩
)

= div(F⊤
s )− ⟨F⊥

s ,H⟩.

since Tr(g−1Aij) ≡ H. All together,

∂s

√
det gij =

√
det gij

(
div(F⊤

s )− ⟨F⊥
s ,H⟩

)
which implies the desired result.

Lemma 8.2

Let B and C be n× n matrices with B invertible. Then

∂s|s=0det(B + sC) = (detB)(TrB−1C).

Proof. We have

det(B + sC) = detB det(I + sB−1C).

Differentiating yields

∂s|s=0det(B + sc) = (detB)
(
∂s det(I + sB−1C)|s=0

)
= (detB)(TrB−1C).

To see the last equality, we do an example:

det

(
1 + sa11 sa12
sa21 1 + sa22

)
= 1 + s(a11 + a22) + s2(a11a22 − a12a21).

The derivative at s = 0 is the trace a11 + a22. Then we can prove it inductively on n.

Definition 8.3 (Vol). Given Ω ⊆ Σ compact, let VolΩ(s) be the volume of the image of Ω at time s:

VolΩ(s) =

∫
Ω
dv.

Corollary 8.4

If Σ is minimal (so H ≡ 0), then Vol′Ω(0) = 0 for all compact subdomains Ω ⊆ Σ.

Proof. By the first variation formula,

∂s|s=0Vol(s) =

∫
Ω
div(F⊤

s ) dv −
∫
Ω
⟨F⊥

s ,H⟩ dv

= −
∫
Ω
⟨F⊥

s ,H⟩ dv

because the first term is 0 when Fs has compact support (proper variation). The second term is also 0 when
H ≡ 0.
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Corollary 8.5

If Σn ↪→ RN minimal, and xi are the coordinate functions of RN , then

1. ∆xi = 0.

2. ∆ |x|2 = 2n.

3. div
(
∇⊤|x|2
|x|n

)
=

2n|x⊥|2
|x|n+2 .

Proof. 1. We have ∆xi = ∆xi + ⟨∇xi,H⟩ = 0 because both terms vanish.

2. Let e1, . . . , en be an orthonormal frame for Σ. On RN , we have ∇ |x|2 = 2x. Then ∇⊤ |x|2 = 2x⊤ =
2x− 2x⊥. Then

∆ |x|2 = div(2x− 2x⊥)

= 2
n∑

i=1

⟨∇ei(x− x⊥), ei⟩ (∇eix = ei)

= 2n− 2

n∑
i=1

⟨∇eix
⊥ei⟩

= 2n+
n∑

i=1

⟨x⊥,∇⊥
eiei⟩ (this is H)

= 2n.

3. By the Leibniz rule, we have

div
(∇⊤ |x|2

|x|n
)
=

∇ |x|2

|x|n
+ ⟨∇ |x|2 ,∇ |x|−n⟩ (Leibniz rule)

=
∇ |x|2

|x|n
+
〈
∇ |x|2 , n

2
|x|−(n+2)∇ |x|2

〉
=

2n

|x|n
+ 2n |x|−(n+2)

∣∣∣x⊤∣∣∣2
=

2n(|x|2 −
∣∣x⊤∣∣2)

|x|n+2

=
2n

∣∣x⊥∣∣2
|x|n+2 .

Theorem 8.6 (Monotonicity)

If Σn ↪→ RN is minimal, then for any r1 < r2,

Vol(Br1 ∩ Σ)

rn1
≤ Vol(Br2 ∩ Σ)

rn2
.

Equality holds if and only if x⊥ = 0 between r1 and r2, where x is a position vector (same thing as x
is tangent to Σ at every point, i.e. being conical).
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On Rn, we have ∆ |x|2 = 2n too. Also,

2nVol(BR) =

∫
BR

∆ |x|2

=

∫
∂BR

∇ |x|2 · x
|x|

(divergence theorem)

=

∫
∂BR

2x · x
|x|

= 2RArea(∂BR)

It’s like how integrating 4πr2 gives 4
3πr

3.

Definition 8.7 (critical, regular value). Recall for a smooth function f :M → R, if ∇f(y) = 0, then y is
a critical point and f(y) is a critical value. The set of regular values is im(f) \ {critical values}.

• The implicit function theorem says that the inverse image of a regular value is a smooth submanifold.

• Sard’s theorem says that the set of critical values has measure 0.

Proof of Theorem 8.6. Case 1: r1 and r2 are regular values of the function |x| : Σ → R.

If r is a regular value, then Σr := Br ∩ Σ is smooth with smooth boundary ∂Σr ⊂ ∂Br. We can then
compute the volume of Σr as

2nVol(Σr) =

∫
Σr

∆ |x|2 (Corollary 8.5)

=

∫
∂Σr

⟨∇ |x|2 , n⃗⟩

= 2

∫
∂Σr

⟨x⊤, n⃗⟩

where n⃗ = x⊤

|x⊤| is the unit normal vector. Let

f(r) :=
Vol(Σr)

rn
,
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so

2nf(r2)− 2nf(r1) = 2

∫
∂Σr2

⟨x⊤, n⃗⟩
|x|n

− 2

∫
∂Σr1

⟨x⊤, n⃗⟩
|x|n

= 2

∫
Σr2\Σr1

div

(
x⊤

|x|n
)

= 2

∫
Σr2\Σr1

∣∣x⊤∣∣2
|x|n+2 (Corollary 8.5)

> 0.

Case 2: Suppose at least one of r1, r2 is not regular. Find a decreasing sequence {r1,j} → r1 of regular
values and an increasing sequence {r2,j} → r2 of regular values. We can assume that r1,j ≤ r2,j for all j.
By the regular case, we have f(r1,j) ≤ f(r2,j). Also

f(r1) ≤
(r1,j
r1

)n
f(r1,j)

≤
(r1,j
r1

)n
f(r2,j)

≤
(r1,j
r1

)n( r2
r2,j

)n
f(r2).

Example 8.8

On Euclidean space, the inequality is an equality: we claim that Vol(Br)
rn is constant if and only if

Voln−1(∂Br)
rn−1 is constant. We have |∂Br|

rn−1 =
∫
∂Br

r1−n =
∫
∂Br

∇|x|2−n

2−n · n⃗ for n⃗ normal. By the divergence

theorem, this equals 1
2−n

∫
Br interior div(∇ |x|2−n) which is a constant.

8.2 Regularity theory

Recall that Σn ↪→ RN is minimal if H = 0 (mean curvature). For geodesics, it’s simple: any energy-
minimizing curve between two points is a smooth geodesic. The next case is surfaces in R3. Take a curve γ
and consider the spanning surface Σ of least area. The questions are does Σ exist, and is it smooth?

Example 8.9 (classical plateau problem)

Minimize the area of F :B1 → R3 where B1 ⊂ R2 is such that F (∂B1) = γ.

Remark 8.10. A function is a linear functional on C∞
comp (smooth functions with compact support),

because a function f determines a map ϕ 7→
∫
fϕ. Now consider the more general space D of linear

functionals on C∞
comp. An example of another element of D is ϕ 7→ ϕ(0).

If ∆f = g, then we should have for all ϕ that
∫
gϕ =

∫
ϕ∆f =

∫
f∆ϕ, so

∫
f∆ϕ =

∫
gϕ could be taken

as the definition of ∆f = g in the distributional sense.

In geometric measure theory, we think of submanifolds as functionals on functions f on R3. There are curves
in R3 that don’t have a minimal surface, such as knotted curves, with the simplest being the trefoil.

Page 61 of 77



Laplacian comparison November 18, 2025

9 Laplacian comparison

9.1 Laplacian computations in Euclidean space

Question 9.1. What is ∆ |x| on Rn \ {0}?

We first note that
∆ |x|2 = ∆(x21 + · · ·+ x2n) = 2n.

By the product rule,
∆ |x|2 = ∆(|x| · |x|) = 2 |x|∆ |x|+ 2 |∇ |x||2 .

By the chain rule,

2x = ∇ |x|2 = 2 |x| ∇ |x| =⇒ ∇|x| = x

|x|
,

so |∇ |x|| = 1 for x ̸= 0. All together,

2n = ∆ |x|2 = 2 |x|∆ |x|+ 2 =⇒ ∆ |x| = n− 1

|x|

on Rn \ {0}.

In general on Mn with Ric ≥ 0, defining d(x) := d(p, x) for a fixed p, we have ∆d ≤ n−1
d .

Remark 9.2. We can similarly compute Hess|x|. We know that Hess|x|2 = 2δij , so

2δij =
∂2 |x|2

∂xi ∂xj

=
∂

∂xi

( ∂

∂xj
|x|2

)
=

∂

∂xi

(
2 |x| ∂ |x|

∂xj

)
= 2 |x| ∂2 |x|

∂xi ∂xj
+ 2

∂ |x|
∂xi

∂ |x|
∂xj

= 2 |x| ∂2 |x|
∂xi ∂xj

+ 2
xixj

|xi| |xj |
.

In particular,

Hess|x| =

( 1
|x| Idn−1 0

0 0

)
has eigenvalues of 1

|x| (multiplicity n− 1) and 0 (multiplicity 1). The trace is the Laplacian n−1
|x| .

9.2 Distance function

Let p ∈ Mn be fixed, and define d(x) := d(p, x). Note that d is 1-Lipschitz by the triangle inequality. By
Rademacher’s theorem, d is differentiable almost everywhere.

Proposition 9.3 (Laplacian comparison at smooth points)

If Mn satisfies Ric ≥ 0, and q is a smooth point of d, then ∆d ≤ n−1
d at q.
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Proposition 9.4

Let L = d(p, q). Suppose γ: [0, L] → M is a unit-speed minimizing geodesic with γ(0) = p, γ(L) = q,
and that d is smooth in a neighborhood of every point in im γ \ p. Then

1. ∇d(γ(t)) = γ′(t).

2. Hessd has rank at most n− 1 along γ and is 0 along γ′ itself.

In Rn, think about how along a ray from the origin to a point, the gradient is exactly the tangent to the
geodesic (1). The rank of Hess was n− 1, and the kernel was in the radial direction (2).

Proof. 1. We have d(γ(t)) = t because γ is a minimizing unit-speed geodesic. Differentiating with respect
to t yields ⟨∇d(γ(t)), γ′(t)⟩ = 1. Both ∇d(γ(t)) and γ′(t) are unit vectors, so we need ∇d(γ(t)) = γ′(t).

2. Differentiating ⟨∇d(γ(t)), γ′(t)⟩ = 1 again,

0 = ⟨∇γ′∇d(γ(t)), γ′⟩+ ⟨∇d,∇γ′γ′⟩
= ⟨∇γ′∇d, γ′⟩
= ⟨Hessd(γ

′, γ′), γ′⟩

which implies γ′ is in the kernel of the Hessian.

Proof of Proposition 9.3. We know |∇d|2 = 1 along γ, and in a neighborhood of each point on γ. This
means we can take ∆ |∇d|2. The Bochner formula (Lemma 7.14) says

0 =
1

2
∆ |∇d|2 = |Hessd|2 + ⟨∇d,∇∆d⟩+Ric(∇d,∇d) ≥ |Hessd|2 + 2⟨∇d,∇∆d⟩.

For an n× n symmetric rank ≤ n− 1 matrix A, we have (Tr(A))2 ≤ (n− 1) |A|2. Letting A = Hessd, then
(∆d)2 ≤ (n− 1) |Hessd|2. Then

0 ≥ 1

n− 1
(∆d)2 + ⟨γ′,∇∆d⟩

=
1

n− 1
(∆d)2 + γ′(∆d)

=
1

n− 1
(∆d)2 + (∆d)′.

Define f(t) = (∆d)(γ(t)). We have shown that f ′ ≤ − f2

n−1 and will be done by the following lemma.

Lemma 9.5

If f : [0, L] → R satisfies f ′ ≤ − f2

n−1 , then f(L) ≤
n−1
L .

Proof. We can assume that f > 0, since f is nonincreasing and would then satisfy f(L) ≤ 0 ≤ n−1
L . We

can set u(t) := 1
f(t) , so u

′ = − f ′

f2 ≥ 1
n−1 . FTC says that u(L)− u(ϵ) ≥ 1

n−1(L− ϵ). Since u(ϵ) > 0, we have

u(L) ≥ L−ϵ
n−1 and f(L) ≤ n−1

L−ϵ . Since this is true for all ϵ > 0 arbitrarily small, we have f(L) ≤ n−1
L .
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9.3 Calabi’s barriers

Suppose f, g are continuous functions at p. We give a new definition of ∆f ≥ g even when we can not
necessarily take second derivatives of f .

Definition 9.6 (barrier sense). For f, g continuous functions, we say “∆f ≥ g” in the barrier sense if
for every ϵ > 0, there exists a C2-function hϵ and a neighborhood Uϵ of p such that

1. hϵ ≤ f in Uϵ with equality at p.

2. ∆hϵ ≥ g − ϵ at p.

Note that f − hϵ has a local minimum at p. If f is indeed C2, then at p we have ∇f = ∇hϵ, and the 2nd
derivative test yields ∆(f − hϵ) ≥ 0. Then ∆f ≥ ∆hϵ ≥ g− ϵ. So at p, ∆f ≥ g− ϵ for all ϵ > 0, so ∆f ≥ g.

Definition 9.7 (viscosity sense). We say that “∆f ≥ g” at p in the viscosity sense if for every open set
U ∋ p and C2-function ϕ on U with f ≤ ϕ and equality at p, then ∆ϕ(p) ≥ g(p).

The viscosity sense is weaker than the barrier sense: if ϕ ≥ hϵ with equality at p, then ϕ − hϵ has a local
minimum at p. Then ∆ϕ ≥ ∆hϵ ≥ g − ϵ at p.

Theorem 9.8 (Laplacian comparison)

If Mn is complete with Ric ≥ 0, then we have ∆d ≤ n−1
d in the barrier sense (and thus in the viscosity

sense).

Corollary 9.9

We have ∆d2 ≤ 2n at every point in the barrier sense.

9.4 Cut points

Let Mn be a complete manifold with no boundary, and fix p ∈M .
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Definition 9.10. For each V ∈ Sn−1
1 ⊂ TpM , there is a unit speed geodesic γ with γ(0) = p and

γ′(0) = V . Define
T (V ) = sup

t>0
{t : d(γ(t)) = t},

i.e. for how long the geodesic is minimizing. If T (V ) <∞, then γ(T (V )) is a cut point. Let Cut(p) be
the union of all cut points as V varies.

Example 9.11

Note that d(γ(t)) = t holds at least when t is within the normal neighborhood.

• On Sn−1, T (V ) = π for all V , so Cut(p) = {antipode of p}.

• On Rn, T (V ) = ∞, so Cut(p) = ∅.

Lemma 9.12

If q /∈ Cut(p), then there exists a unique minimizing geodesic from p to q.

Proof. By Hopf–Rinow (Theorem 5.15), there exists a minimizing geodesic γ. Suppose there is a second
minimizing geodesic γ̃, which must have the same length from p to q. Extending γ past q, it can no longer
minimizing because there is a piecewise geodesic with the same length following γ̃. This implies q is a cut
point.

Lemma 9.13

If q ∈ Cut(p), then at least one of the following hold.

1. q is the first conjugate point to p along γ.

2. q is the first point where there are distinct minimizers from p.

The sphere satisfies both 1 and 2, while the cylinder satisfies only 2 (it does not have conjugate points).

Proof. The reverse direction is straightforward, so consider the forward direction. Let q ∈ Cut(p), and γ be
a geodesic of unit speed with L = d(q), so γ(L) = q. Let V = γ′(0) be the initial direction. By definition,

• γ is minimizing on [0, L] i.e. d(γ(t)) = t for t ≤ L (it is true for t < L, and being minimizing is a closed
condition).

• d(γ(t)) < t for t > L.

Take a decreasing sequence ti → L. There is some minimizing geodesic γi ̸= γ from p to γ(ti) = expp(tiV )
with unit speed, so let Wi := γ′i(0) ∈ Sn−1. Note Wi ̸= V by uniqueness of ODEs. Define si < ti by
γi(si) = γ(ti).

Because Sn−1 is compact, there is a subsequence Wi → W ∈ Sn−1. Let σ be a unit speed geodesic with
σ′(0) =W , so γi → σ. We have si → L by the squeeze theorem and then σ(L) = q by continuity.
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If σ ̸= γ, then this is 2. If σ = γ, then W = V . Since expp(siWi) = expp(tiV ), both sides converge to q
as i → ∞. However, notice that si < ti, so siWi and tiV are two distinct points in TpM . Since they go
towards the same point under expp, this means expp:TpM → M is not injective in a neighborhood of LV ,
so (d expp)LV is not invertible. Let U be the tangent vector such that (d expp)LV (LU) = 0. By Lemma 6.5,
there is a Jacobi field J(t) = (d expp)γ(t)(tU) with J(0) = J(L) = 0. Then γ(0) = p and γ(L) = q are
conjugate points.

Corollary 9.14

If γ is a minimizing geodesic from p to q, then there are no cut points before q along γ.

Corollary 9.15

Cut(p) is closed and has measure 0.

Proof. It has measure 0 because along each ray in TpM there is at most one point which maps to a cut
point.

To show that it is closed, intuitively, the two conditions in Lemma 9.13 are closed. Rigorously, consider
qi ∈ Cut(p) with qi → q ∈ M , and we must show that q ∈ Cut(p). Let ℓi = d(qi), γi be the minimizing
geodesic from p to qi, and ℓ = d(q). By continuity of d, we have ℓi → ℓ. Choose ti > ℓi with ti → ℓ. By the
definition of a cut point, there exist geodesics σi from p to γi(ti) of length si < ti.

By the compactness of Sn−1 implies that σi → σ and γi → γ for some geodesics σ, γ from p with σ(ℓ) =
γ(ℓ) = q. If σ ̸= γ then 2 in Lemma 9.13 is satisfied. If σ = γ, then like before, expp is not invertible and p
and q are conjugate points.

Remark 9.16. Consider a set A ⊂ Rn, δ > 0, and p > 0. We say that the measure Hp
δ(A) ≤ K if there

exists a countable collection of balls Bri(xi) with ri ≤ δ such that A ⊂
⋃

iBri(xi) and
∑

i r
p
i ≤ K. If

p = n, then rni is essentially the volume of the balls. The limit limδ→0Hp
δ(A) exists (may be ∞) and is

called the p-dimensional Hausdorff measure Hp(A).

Proposition 9.17 (smoothness away from cut points)

If q /∈ Cut(p), q ̸= p, and d(q) = ℓ, then

1. d is smooth in a neighborhood of q.

2. There exists a unique minimizing geodesic γ from p to q with unit speed such that ∇d(γ(t)) = γ′(t)
for all t ≤ ℓ.
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Proof. 1. Let Ω = exp−1
p (M \ (Cut(p) ∪ {p})). In other words, it is rays of TpM that go to up until the

cut points. Since Ω is starshaped, it is naturally like Rn, and expp is a local diffeomorphism on Ω that
maps it to M \ Cut(p). So for any q /∈ Cut(p) ∪ {p}, there exists x ∈ Ω such that expp(x) = q. Then
d(p, q) = d(p, expp(x)) = |x|, so d is smooth at q.

2. For any q /∈ Cut(p) ∪ {p}, there exists a unique unit speed geodesic γ with γ(0) = p, γ(d(p, q)) = q,
and |γ′(0)| = 1. Fix V ∈ TqM . Let σ be a unit speed curve with σ(0) = q and σ′(0) = V . For s
sufficiently small, σ(s) is not a cut point because Cut(p) is closed and σ(0) = q is not a cut point.
Then there exists a unique geodesic γs from p to σ(s). By the first variation formula (Equation (6.2)),

⟨V,∇d⟩(q) = d

ds
d(σ(s))

∣∣∣∣
s=0

= E′(0) = ⟨V, γ′⟩(q).

Since this holds for any V , we have ∇d(q) = γ′(q).

Proof of Theorem 9.8. We want to prove that ∆d ≤ n−1
d at q ∈ Cut(p), which means (c.f. Definition 9.6)

for all ϵ > 0, there exists a C2-function hϵ (near q) such that

1. d ≤ hϵ with equality at q,

2. ∆hϵ ≤ n−1
d + ϵ at q.

Let γ: [0, ℓ] →M be the unit speed minimizing geodesic from p to q. Given δ > 0, define

h(x) = d(γ(δ), x) + δ.

If δ = 0, then h(x) = d(x). Note that h(q) = ℓ = d(q). In general, we have by the triangle inequality that

d(x) = d(p, x) ≤ d(p, γ(δ)) + d(γ(δ), x) = δ + d(γ(δ), x) = h(x),

so d ≤ h with equality at q, giving condition 1.

For condition 2, first note that q /∈ Cut(γ(δ)). If q ∈ Cut(γ(δ)), then γ(δ) ∈ Cut(q) because being a
cut point is a symmetric condition, but continuing γ past γ(δ) would no longer not be minimizing. Then
by smoothness away from cut points (Proposition 9.17) and and Laplacian comparison at smooth points
(Proposition 9.3),

∆h(q) = ∆d(γ(δ), q) ≤ n− 1

d(γ(δ), q)
=

n− 1

d(q)− δ
≤ n− 1

d(q)
+ ϵ

for δ sufficiently small.

Remark 9.18. We also just showed that ∆d2 ≤ 2n, and similarly for other powers da. At smooth
points,

∆d2 = 2d∆d+ 2 |∇d|2 ≤ 2d · n− 1

d
+ 2 = 2n.

At cut points, use h2.
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9.5 Bishop–Gromov

Theorem 9.19 (Bishop–Gromov)

For Mn with Ric ≥ 0, the volume ratio Vol(Br(p))
rn is nonincreasing as r increases.

This is the opposite direction as for minimal submanifolds (Theorem 8.6). In particular, minimal submani-
folds can not have nonnegative Ricci curvature.

Corollary 9.20 (Bishop 1964)

Vol(Br(p)) ≤ Vol(Br ⊂ Rn).

Corollary 9.21 (volume doubling)

Vol(B2r(p))

Vol(Br(p))
≤ 2n.

Proof. Rearrange Vol(B2r(p))
(2r)n ≤ Vol(Br(p))

rn .

Fake proof of Theorem 9.19. A fake proof is that |∇d|2 = 1 almost everywhere, and ∆d2 ≤ 2n.

The coarea formula (“slicing”) says that for any s ∈ R and functions f, g ∈ C(M),∫
f≤s

g |∇f | =
∫ s

∞

∫
{f=t}

g dt.

Define V (r) := Vol(Br(p)) and A(r) := Area(∂Br(p)) = V ′(r). The fact that A(r) = V ′(r) follows from the
coarea formula, because

V (r) =

∫
d≤r

|∇d| (|∇d| = 1 a.e.)

=

∫ r

0

∫
{d=t}

1 dt (coarea formula)

=

∫ r

0
A(t) dr,

and then FTC. Then

V ′(r) =

∫
d=r

|∇d|

=

∫
d=r

∣∣∇d2∣∣
2d

=
1

2r

∫
d=r

∣∣∇d2∣∣
=

1

2r

∫
d=r

⟨∇d2, conormal⟩

=
1

2r

∫
d<r

∆d2 (divergence theorem)

≤ 1

2r

∫
d<r

2n (Remark 9.18)

=
n

r
V (r).
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This shows V ′ ≤ n
r V , so (r−nV )′ = − n

rn+1V + V ′

rn ≤ 0.

The flaw in this “proof” is that we can’t apply the divergence theorem, because it requires the boundary to
be smooth.

Real proof of Theorem 9.19. For each V ∈ Sn−1 ⊂ TpM , let

T (V ) := sup
t>0

{t | d(expp(tV )) = t} ∈ R+ ∪ {∞},

which is the last point where the geodesic from 0 to expp(tV ) is smooth. Define Ω ⊂ TpM to be

Ω :=
⋃

V ∈Sn−1

⋃
t∈[0,T (V ))

tV.

For example, on Rn, Ω = TpM = Rn, while on Sn, Ω = Bπ(0). We can show that Ω is open, and that
expp is injective and a local diffeomorphism on Ω. Thus expp is a global diffeomorphism onto its image
Im(Ω) =M \ Cut(p).

Since M is complete, we have Br(p) = expp(Ω ∩Br(0)) up to cut points, so

V (r) := Vol(Br(p)) = Vol(expp(Ω ∩Br)).

By changing variables, we get

V (r) =

∫
Ω∩Br(0)

det(d expp) =

∫ r

0

∫
∂Bs∩Ω

det(angular part) ds,

where the last equality is by switching to polar coordinates where there is a radial part and an angular part.
Gauss’s lemma (Lemma 5.9) says that d expp looks like a 1 on the radial part and an (n−1)× (n−1) matrix
on the angular part.

Let a(s, θ) be the Jacobian determinant for each θ ∈ ∂Br∩Ω, so V (r) =
∫ r
0

∫
θ∈∂Bs∩Ω a(s, θ) ds. By the proof

of Lemma 8.1, we know how to differentiate the area factor:

a′

a
= mean curvature of the level set

= div(unit normal)

= div(∇d) = ∆d ≤ n− 1

d
.

Incomplete proof in class.

9.6 Dirichlet Poincaré inequality

This is a generalization of the Wirtinger inequality. Let Mn be complete with Ric ≥ 0 and no boundary.

Theorem 9.22 (Dirichlet Poincaré inequality)

There exists a constant cn such that if f ∈ C(Mn) with f ≡ 0 on ∂Br(p), then∫
Br(p)

f2 ≤ cnr
2

∫
Br(p)

|∇f |2 .
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Lemma 9.23

Fix a point q, and let d(x) = d(q, x). Then ∆d−n ≥ 2nd−n−2.

Proof. Chain rule and Laplacian comparison.

Proof of Theorem 9.22. Pick any point q such that d(p, q) = 2r. Define w := d(q, x)−n. Lemma 9.23 says

∆w ≥ 2nd(q, x)−n−2 ≥ 2n(3r)−n−2.

On the other hand,

|∇w| ≤ n

d(q, x)n+1
≤ n

rn+1

on Br(p).

The function f2∇w is 0 on ∂Br(p), so the divergence theorem says

0 =

∫
Br(p)

div(f2∇w)

=

∫
Br(p)

f2∆w + 2f⟨∇f,∇w⟩

≥
∫
Br(p)

2n(3r)−n−2f2 + 2f⟨∇f,∇w⟩.

Then

2n(3r)−n−2

∫
Br(p)

f2 ≤ 2

∫
Br(p)

|f | |∇f | |∇w|

≤ 2n

rn+1

∫
Br(p)

|f | |∇f |

≤ 2n

rn+1

(∫
Br(p)

f2
) 1

2
(∫

Br(p)
|∇f |2

) 1
2

by Cauchy–Schwarz. Rearrange to get 3−n−2

r

( ∫
Br(p)

f2
) 1

2 ≤
( ∫

Br(p)
|∇f |2

) 1
2
, so∫

Br(p)
f2 ≤ 32n+4r2

∫
Br(p)

|∇f |2 ,

where cn = 32n+4.

10 Gradient estimate and Liouville theorems

10.1 Gradient estimate

Recall that a function u is harmonic if ∆u = 0. Liouville’s theorem on Rn says that if ∆u = 0 and u > 0
on all of Rn, then u is constant.

In this section, we always assume Mn is complete and connected with Ric ≥ 0.

Page 70 of 77



December 2, 2025 Gradient estimate and Liouville theorems

Theorem 10.1 (Cheng–Yau gradient estimate)

If u ∈ C(M) satisfies ∆u = 0 and u > 0 on BR(p), then |∇ log u| ≤ Cn
R on BR/2(p), for some constant

Cn depending only on n.

An estimate like this will blow up near the boundary of BR(p).

Corollary 10.2 (Yau’s Liouville theorem)

If ∆u = 0 and u > 0 on all of M , then u is constant.

Proof. Then |∇ log u| ≤ Cn
R holds for every R, and Cn

R → 0.

Note that ∆u = 0 and u > L for any L ∈ R implies u is constant by Liouville’s theorem on u−L. The same
is true if |u| ≤ L.

Corollary 10.3

If ∆u = 0 on BR(p), then

sup
x∈BR/2(p)

|∇u(x)| ≤ 3Cn

R
sup

x∈BR(p)
|u(x)| .

In other words, we can control the derivative on a smaller ball by controlling the values on a larger ball.

Proof. Set L = supBR(p) |u| and w = u+ 2L, so w > 0 on BR(p). By the gradient estimate (Theorem 10.1),
|∇u|
u+2L = |∇ logw| ≤ Cn

R on BR/2(p), so |∇u| ≤ Cn
R (u+ 2L) ≤ Cn

R (3L).

Lemma 10.4

For u ∈ C(M) with ∆u = 0, the function w := log u satisfies

1. ∆w = − |∇w|2

2. 1
2∆ |∇w|2 ≥ 1

n |∇w|4 − ⟨∇w,∇ |∇w|2⟩.

Proof. 1. ∆w = div(∇w) = div(∇u
u ) = ∆u

u − |∇u|2
u2 = − |∇w|2.

2. By the Bochner formula,

1

2
∆ |∇w|2 = |Hessw|2 + ⟨∇w,∇∆w⟩+Ric(∇w,∇w) ≥ |Hessw|2 − ⟨∇w,∇ |∇w|2⟩.

Cauchy–Schwarz (TrA)2 ≤ n |A|2 on the n × n symmetric matrix A = Hessw implies (∆w)2 ≤
n |Hessw|2. Then |Hessw|2 ≥ 1

n(− |∇w|2)2 = 1
n |∇w|4, and combine with the above inequality.

At an interior maximum of F , the first derivative test says that ∇F = 0. The second derivative test says
HessF ≤ 0, so tracing yields ∆F ≤ 0.

At an interior maximum of ∇ |∇w|2, by 2 we would have ∇ |∇w|2 = 0 and ∆ |∇w|2 ≤ 0. Then by 2, we
would have |∇w|4 = 0 =⇒ ∇w = 0, which is suspicious. The problem is that |∇w|2 may not have an
interior maximum, but we will use a cutoff function η.
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Proof of Theorem 10.1. Define η ≥ 0 with

η(x) =

{
R2 − d(p, x)2 if x ∈ BR(p)

0 else
.

Define F := η2 |∇w|2 which does have an interior maximum. Choose y ∈ BR(p) with F (y) = maxF . We
will show that F (y) ≤ C ′

nR
2, which will imply that C ′

nR
2 ≥ F (x) for any x. Then if x ∈ BR/2(p),

C ′
nR

2 ≥ F (x) = |∇w|2 (x)η2(x) ≥ 9

16
R4 |∇w|2 (x).

Dividing by R4 yields the gradient estimate.

Assuming that F (y) ≤ C ′
nR

2 for now, at a maximum y for F , the first derivative test says

0 = ∇F = 2η |∇w|2∇η + 2η2∇ |∇w|2 =⇒ ∇|∇w|2 = −|∇w|2∇η
η

(10.1)

The second derivative test says

0 ≥ 1

2
∆F =

1

2
∆(η2 |∇w|2)

=
1

2
|∇w|2∆η2 + η2

∆ |∇w|2

2
+ ⟨∇η2,∇ |∇w|2⟩

≥ −2nR2 |∇w|2 + η2
( 1

n
|∇w|4 − ⟨∇w,∇ |∇w|2⟩

)
+ 2η⟨∇η,∇ |∇w|2⟩ (Lemma 10.4(2))

= −2nR2 |∇w|2 + η2

n
|∇w|4 + η2

〈
∇w, |∇w|

2∇η
η

〉
− 2η

〈
∇η, |w|

2∇η
η

〉
. (by (10.1))

Dividing by |∇w|2 and rearranging yields

2nR2 ≥ η2
|∇w|2

n
+ η⟨∇w,∇η⟩ − 2 |∇η|2

≥ η2
|∇w|2

n
− η |∇w| |∇η| − 2 |∇η|2

=
1

n
F −

√
F |∇η| − 2 |∇η|2

≥ 1

n
F −

( 1

2n
F +

n

2
|∇η|2

)
− 2 |∇η|2 (AM-GM)

We know ∇η = −2d+∇d where ∇d ≤ 1, so |∇η| ≤ 2R, and ∆η = −∆d2 ≥ −2n by Laplacian comparison.
Rearranging and using |∇η|2 ≤ 4R2,

F ≤ 2n2R2 + n
(n
2
+ 2

)
R2 = CR2

where C = Θ(n2).

10.2 Harnack inequality

Theorem 10.5 (Harnack)

If ∆u = 0 and u > 0 on BR(p), then

sup
BR/2(p)

u ≤ Cn inf
BR/2(p)

u

for some Cn depending only on n.
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Proof. Take any q ∈ BR/2(p) and let γ be a minimizing geodesic from p to q, which is contained in BR/2(p).
Let f(t) := log u(γ(t)), so ∣∣f ′(t)∣∣ = ∣∣⟨∇ log u(γ(t)), γ′(t)⟩

∣∣
≤ |∇ log u(γ(t))| (Cauchy–Schwarz and |γ′| = 1)

≤ C ′
n

R
. (gradient estimate Theorem 10.1)

Then FTC implies

|log u(p)− log u(q)| =

∣∣∣∣∣
∫ d(p,q)

0
f ′(t) dt

∣∣∣∣∣ ≤
∫ d(p,q)

0

∣∣f ′(t)∣∣ dt ≤ C ′
n

R
d(p, q) ≤ C ′

n

2

which implies u(p) ≤ u(q)eC
′
n/2, and the inequality holds with Cn = eC

′
n .

Remark 10.6. By a limiting argument with u+ ϵ and ϵ→ 0, this inequality is also true for u ≥ 0.

Corollary 10.7

For α < 1, we have supBαR(p) u ≤ Cα infBαR(p) u where Cα → ∞ as α→ 1.

Proof. One way to prove this is with a stronger gradient estimate: for all q ∈ BαR(p), |∇ log u(q)| ≤ Cn
(1−α)R .

Another way is to use Harnack’s inequality and iterate.

Lemma 10.8 (Kato’s inequality)

At any point where |∇u| ≠ 0, |∇ |∇u|| ≤ |Hessu|.

Proof. First note
2 |∇u| ∇ |∇u| = ∇ |∇u|2 = 2⟨∇•∇u,∇u⟩ = 2Hessu(∇u, •),

so dividing by 2 |∇u| implies ∇ |∇u| = Hessu(
∇u
|∇u| , •). Choose an orthonormal frame e1, . . . , en such that

e1 =
∇u
|∇u| . Then

|∇ |∇u||2 =
n∑

i=1

⟨∇ |∇u| , ei⟩2 =
n∑

i=1

u21i ≤
n∑

i,j=1

u2ji = |Hessu|2 .

Next we give an easier proof of another version of Corollary 10.3, in the case of Rn.

Theorem 10.9

Let Mn be a manifold (not necessarily Ric ≥ 0) and u ∈ C(M) satisfy ∆u = 0. Then there exists a
constant C = Cn such that

sup
x∈BR/2(p)

|∇u(x)| ≤ C

R
sup

x∈BR(p)
|u(x)| .
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Proof. WLOG let p = 0. Consider the cutoff function η := R2 = |x|2 which vanishes on ∂BR. We want to
bound η2 |∇u|2. Recall that

∆η = −2n

∆η2 = 2η∆η + 2 |∇η|2 ≥ −4nη ≥ −4nR2

|∇η| = 2η.

Kato’s inequality says
∆ |∇u|2 = 2 |Hessu|2 + 2⟨∇u,∇∆u⟩ ≥ 2 |∇ |∇u||2 .

Then

∆(η2 |∇u|2) = η2∆ |∇u|2 + |∇u|2∆η2 + 2⟨∇ |∇u|2 ,∇η2⟩
≥ 2η2 |∇ |∇u||2 − 4nR2 |∇u|2 + 4⟨∇η2, |∇ |∇u|| |∇u|⟩
≥ 2η2 |∇ |∇u||2 − 4nR2 |∇u|2 − 8η |∇η| |∇ |∇u|| |∇u|
≥ 2η2 |∇ |∇u||2 − 4nR |∇u|2 − 16Rη |∇u| |∇ |∇u|| (|∇η| ≤ 2R)

By the absorbing inequality, 16η |∇u| |∇ |∇u|| ≤ 2η2 |∇ |∇u||2 + 32 |∇u|2R2,so

∆(η2 |∇u|2) ≥ −(4n+ 32)R2 |∇u|2 .

Since ∆u2 = 2u∆u+ 2 |∇u|2 = 2 |∇u|2, we get

∆(η2 |∇u|2 + (2n+ 16)R2u2) ≥ 0.

By the maximum principle, η2 |∇u|2 + (2n + 16)R2u2 has its maximum on the boundary. However, η ≡ 0
on the boundary, so the maximum value is at most (2n+ 16)R2 supBR(p) |u|

2. Then

(2n+ 16)R2 sup
x∈BR(p)

|u(x)|2 ≥ η(x)2 |∇u(x)|2 + (2n+ 16)2R2u(x)2

≥ η(x)2 |∇u(x)|2

≥ 9R4

16
|∇u(x)|2 ,

which implies the result, where C = Θ(n).

10.3 Mean value inequality

Theorem 10.10 (Mean value inequality)

Suppose Ric ≥ 0, and let v ∈ C(M) satisfy v ≥ 0 and ∆v ≥ 0 on B4R(p). Then

sup
BR(p)

v2 ≤ Cn

∫
B4R(p) v

2

Vol(B4R(p))
.

In other words, the mean value can be compared to the maximum.

Proof. Let ϕ be a cutoff function such that ϕ ≡ 1 on B2R(p), ϕ ≡ 0 on ∂B4R(p), and |∇ϕ| ≤ 1
2R . Reverse

Poincaré (Lemma 7.12) says∫
B2R(p)

|∇v|2 ≤ 4

∫
B4R(p)

v2 |∇ϕ|2 =⇒
∫
B2R(p)

|∇v|2 ≤ 1

R2

∫
B4R(p)

v2. (10.2)
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Now we solve for u such that ∆u = 0 in B2R(p) and u = v on ∂B2R(p). Note that ∆(v − u) = ∆v ≥ 0, so
v− u has its maximum on the boundary ∂B2R(p). However, v− u = 0 on ∂B2R(p), so v ≤ u inside B2R(p).

By Lemma 7.11, we have
∫
Ω |∇(u+ w)|2 =

∫
Ω |∇u|2 +

∫
Ω |∇w|2. Then by (10.2),

1

R2

∫
B4R(p)

v2 ≥
∫
B2R(p)

|∇v|2 =
∫
B2R(p)

|∇u|2 + |∇(u− v)|2 ≥
∫
B2R(p)

|∇(u− v)|2 .

By Dirichlet Poincaré (Theorem 9.22), u− v ≡ 0 on ∂B2R(p) implies∫
B2R(p)

(u− v)2 ≤ C1R
2

∫
B2R(p)

|∇(u− v)|2 ≤ C1

∫
B4R(p)

v2.

Since u is harmonic and u ≥ 0, the Harnack inequality (Theorem 10.5) says v2 ≤ u2 ≤ C infBR(p) u
2. Then

sup
BR(p)

v2 ≤ sup
BR(p)

u2 ≤ C inf
BR(p)

u2

≤ C

Vol(BR(p))

∫
BR(p)

u2

≤ C

Vol(BR(p))

∫
B2R(p)

u2

≤ 2C

Vol(BR(p))

(∫
B2R(p)

v2 +

∫
B2R(p)

(u− v)2
)

≤ 2C

Vol(BR(p))

(∫
B4R(p)

v2 + C1

∫
B4R(p)

v2
)

≤ 2 · 4n · C(1 + C1)

Vol(B4R(p))

∫
B4R(p)

v2

where the last line is by Bishop–Gromov (Theorem 9.19).

10.4 Harmonic functions of polynomial growth

Recall Liouville’s theorem says that any bounded harmonic function is constant. There is also a stronger
result: if ∆u = 0 and supBR(p) |u| ≤ C ′Rα for some α < 1, then the easier gradient estimate says that

sup
BR/2(p)

|∇u| ≤ C

R
sup
BR(p)

u.

So if ∆u = 0 and |u| ≤ C ′, then u is constant. On Rn, u = x1 grows like this.

Definition 10.11 (space of harmonic functions). Define Hd(M) as the space of harmonic functions that
grow almost like degree d. In other words, there exist p ∈M and C ∈ R such that

|u(x)| ≤ C(1 + d(p, x))d.

In particular, Mn with Ric ≥ 0 implies Hd(M) = {0} for d < 1.

Example 10.12

On Rn, we can show that Hd(Rn) is finite: if ∆u = 0 then ∂u
∂xi

is harmonic too, and the gradient

estimate implies ∂u
∂xi

∈ Hd−1(Rn). Do this d times to get a constant, which implies u is a polynomial

with degree ≤ d. Then dimHd(Rn) = O(nd).
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Theorem 10.13 (Colding–Minicozzi 1997)

If Ric ≥ 0, then dimHd(Mn) is finite dimensional. It is also true for (M, g̃) if Ricg ≥ 0 and g, g̃ are
bi-Lipschitz.

In 1998, they furthermore showed that dimHd(Mn) ≤ Cdn−1.

Theorem 10.14

There exists a constant Cn such that if u1, . . . uN are harmonic, L2(B2r)-orthonormal, and
∫
Br
u2i ≥

α > 0, then N ≤ C
α .

Theorem 10.15

If v1, . . . , v2n ∈ Hd(Mn) and are linearly independent, then there exist R > 0 and u1, . . . , un in the span
of the vi’s such that

1.
∫
B2R

uiuj = δij (L2(B2R)-orthonormal).

2.
∫
BR

u2i > 2−4(d+n).

Together, these imply N ≤ C24(d+n), so dimHd(Mn) <∞.

Lemma 10.16

Given x ∈ B2r, there exists y ∈ SN−1 satisfying w =
∑N

i=1 yiui has
∑

i ui(x)
2 = w(x)2.

Proof. Let

y =
⟨u1(x), . . . , uN (x)⟩√
u1(x)2 + · · ·+ un(x)2

.

Proof of Theorem 10.14. Fix x ∈ Br, and choose w as in the above lemma, so

n∑
i=1

ui(x)
2 = w(x)2 ≤ C

Vol(Br(x))

∫
B2r(x)

w2 ≤ C

Vol(Br(x))

by the mean value inequality and
∫
B2r

w2 = 1.

Since Br(p) ⊂ B2r(x), Vol(Br(p)) ≤ Vol(B2r(x)) ≤ 2nVol(Br(x)) by Bishop–Gromov. Thus

n∑
i=1

u2i (x) ≤
C2n

Vol(Br(p))

where the RHS does not depend on x. Integrating over Br(p) yields Nα ≤
∫
Br(p)

∑n
i=1 u

2
i (x) ≤ C2n.

Polynomial growth means that if F (r) = rd, then F (2r)
F (r) = 2d.

Lemma 10.17

If F : [1,∞) → R satisfies 0 < F (r) ≤ Crd for all r, then for any ϵ > 0, there exist infinitely many k ∈ N
such that F (2k+1)

F (2k)
≤ 2d+ϵ.
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Proof. FSOC there exists k0 ∈ N such that for all k ≥ k0, F (2
k+1) > 2d+ϵF (2k). This implies

F (2k0+m) > (2d+ϵ)mF (2k0).

On the other hand, F (2k0+m) ≤ C(2k0+m)d implies 2dm+ϵmF (2k0) ≤ C(2k0+m)d. Dividing by 2dm yields

2ϵm ≤ C

F (2k0)
2k0d

This is a contradiction because as m→ ∞, the LHS goes to infinity while the RHS is constant.

Proof of Theorem 10.15. Let Λj = span{v1, . . . , vj−1} ⊂ Hd(M). Fix r, and let wj,r be the L2(Br)-
orthogonal projection of vj onto Λj . Define

fj(r) :=

∫
Br

(vj − wj,r)
2 ≤

∫
Br

(vj − w)2

for any w ∈ Λj , vj − wj,r is perpendicular to Λj . Note that

1. The independence of the vi implies there exists rj such that fj(rj) > 0.

2. By letting w = 0, we have fj(r) ≤
∫
Br
v2j ≤ Cjr

2d+n for some constant Cj depending only on j.

3. We have fj(r1) ≤ fj(r2) for r1 < r2 because

fj(r1) =

∫
Br1

(vj − wj,r1)
2 ≤

∫
Br1

(vj − wj,r2)
2 ≤

∫
Br2

(vj − wj,r2)
2 = fj(r2).

Now define F (r) =
∏2n

j=1 fj(r). By 1, we have F (r) > 0 for r > max{rj}. By 2, we have F (r) ≤ C(r2d+n)2N .

By, Lemma 10.17, there exists some R = 2k such that F (2R)
F (R) ≤ 2(d+n)2N . Every fi is nondecreasing, so∏2N

i=1 fi(2R)∏2N
i=1 fi(R)

≤ 2(d+n)4N which implies at least N of the fi’s satisfy
fi(2R)
fi(R) ≤ 24(d+n). For each such i, set

ui =
vi − wi,2R√
fi(2R)

which are orthonormal by Gram–Schmidt. Finally,∫
BR

u2i =
1

fi(2R)

∫
B2R

(vi − wi,2R)
2

≥ 1

fi(2R)

∫
BR

(vi − wi,R)
2

≥ 1

fi(2R)

∫
BR

(vi − wi,R)
2

=
fi(R)

fi(2R)

≥ 2−4(d+n).
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