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1 Absolute Values and discrete valuations

1.1 Absolute values on a field

Definition 1.1 (absolute value). An absolute value on a field k is a map |·| : k → R≥0 such that for all
x, y ∈ k,

1. |x| = 0 ⇐⇒ x = 0

2. |xy| = |x||y|

3. |x+ y| ≤ |x|+ |y|

4. (optional, implies 3) |x+ y| ≤ max(|x| , |y|).

If 4 holds, then the absolute value is non-archimedean; otherwise it is archimedean.

Example 1.2

The normal absolute value on R is archimedean because |1 + 1| ≰ |1|.

The trivial absolute value with |x| = 1 for all x ∈ k× and |0| = 0 is non-archimedean.

Lemma 1.3

|·| is non-archimedean if and only if for all for all n ≥ 1,

|1 + · · ·+ 1︸ ︷︷ ︸
n

| ≤ 1.

Proof. See pset 1.

Corollary 1.4

1. In a field of positive characteristic, every absolute value is non-archimedean.

2. The only absolute value on a finite field is the trivial absolute value.

Proof. 1. We use Lemma 1.3. In a field of characteristic p, all elements n = 1 + · · · + 1 lie in Fp and
satisfy np = n, so |n|p = |n| and |n| = 0 or 1.

2. If k is finite with say cardinality q, then xq = x for all x ∈ k, so |x|q = |x| and |x| = 1 for all x ̸= 0.

Definition 1.5 (equivalent). Two absolute values |·|, |·|′ on k are equivalent if there exists α ∈ R>0 such
that |x| = |x|α for all x ∈ k.

1.2 Absolute values on Q

We denote usual absolute value on Q ⊂ R by |·|∞. It is archimedean, since |1 + 1| > max(|1| , |1|).

There are other absolute values as follows. We write x ∈ Q× as x = ±
∏

q q
eq for primes q and eq ∈ Z.
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Definition 1.6 (p-adic valuation). Fix a prime p. The p-adic valuation νp:Q→ Z ∪ {∞} is defined by

νp

(
±
∏
q

qeq
)
:= ep, νp(0) :=∞.

The p-adic absolute value is defined by
|x|p := p−νp(x)

where p−∞ := 0.

Theorem 1.7 (Ostrowski)

Every nontrivial absolute value on Q is equivalent to |·|p for some p ≤ ∞.

Theorem 1.8 (Product formula)

For all x ∈ Q, ∏
p≤∞
|x|p = 1.

Proof. See pset 1.

1.3 Discrete valuations

Definition 1.9 (valuation). A valuation on k is a group homomorphism ν: k× → R such that for all
x, y ∈ k, we have

ν(x+ y) ≥ min(ν(x), ν(y)).

We can extend ν to a map k → R ∪ {∞} by defining ν(0) :=∞.

We can then define a non-archimedean absolute value by |x|ν := cν(x) for any 0 < c < 1.

Intuitively, if pm | x and pn | y, then x+ y is divisible by min(pm, pn). For the p-adic absolute value, we let
c = p−1.

Definition 1.10 (value group, discrete valuation). The value group of ν is the image of ν in R. A discrete
valuation is a valuation with value group precisely Z.

Definition 1.11 (valuation ring given k, ν). The valuation ring of k with respect to ν is the set

A := {x ∈ k : ν(x) ≥ 0}.

Definition 1.12 (DVR 1). A discrete valuation ring (DVR) is an integral domain A that is the valuation
ring of its fraction field k = FracA with respect to some discrete valuation.

Remark 1.13. A DVR is not a field. By definition, ν(FracA) = Z, but ν(A) = Z≥0.

For all x ∈ k×, we have ν( 1x) = ν(1) − ν(x) = −ν(x), so at least one of x and 1
x lies in A. Then x ∈ A is

invertible if and only if ν(x) = 0, and

A× = {x ∈ k : ν(x) = 0}.
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Definition 1.14 (valuation ring). A valuation ring is an integral domain A with fraction field k such
that for all x ∈ k, either x ∈ A or x−1 ∈ A.

Now suppose A is a DVR. Any element π ∈ A with ν(π) = 1 is called a uniformizer, and uniformizers exist
because ν(A) = Z≥0. If we fix a uniformizer π ∈ A, then every x ∈ k× can be written uniquely as x = uπn

for n = ν(x) and a unit u = x/πn ∈ A×. This implies A is a UFD, and in fact a PID whose ideals are
(1) ⊃ (π) ⊃ (π2) ⊃ · · · ⊃ (0), where

(πn) = {a ∈ A : ν(a) ≥ n}.

There is a unique maximal ideal
m = (π) = {a ∈ A : ν(a) > 0}.

Definition 1.15 (local ring, residue field). A local ring is a ring A with a unique maximal ideal m. The
residue field is A/m.

Given a DVR A with unique maximal ideal m, define ν:A→ Z≥0 by letting ν(a) be the unique integer n with
(a) = mn. We can extend ν to a discrete valuation on k by ν(a/b) = ν(a)−ν(b), and A = {x ∈ k : ν(x) ≥ 0}
is the valuation ring from Definition 1.11.

Example 1.16

The p-adic valuation νp:Q→ Z∪{∞} has valuation ring Z(p) := {ab : a, b ∈ Z, p ∤ b} with maximal ideal
m = (p) and residue field Z(p)/(p) ≃ Fp.

Example 1.17

The field of Laurent series k((t)) has valuation ν: k((t))→ Z ∪ {∞} defined by

ν
(∑
n≥n0

ant
n
)
= n0

for an0 ̸= 0. This measures the “order of vanishing at 0.” The valuation ring is k[[t]].

1.4 Discrete valuation rings

The following are nice properties of DVRs.

• Noetherian: Every increasing sequence of ideals I1 ⊆ I2 ⊆ · · · stabilizes (ACC). Equivalently, every
ideal is finitely generated.

• PID : Every ideal is principal.

• local : Unique maximal ideal.

• dimension one: The Krull dimension, which is the maximum length of a chain of prime ideals (0) ⊊
P1 ⊊ P2 ⊊ · · ·, is one.

• regular : If local, dimA/mm/m2 = dimA.

• integrally closed (normal): Every nonzero element of FracA that is the root of a monic polynomial
f ∈ A[x] lies in A.

• maximal : No rings between A and FracA.
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Theorem 1.18

For an integral domain A, TFAE:

• A is a DVR.

• A is a Noetherian valuation ring that is not a field.

• A is a local PID that is not a field.

• A is an integrally closed Noetherian local ring of dimension one.

• A is a regular Noetherian local ring of dimension one.

• A is a Noetherian local ring with nonzero principal maximal ideal.

• A is a maximal Noetherian ring of dimension one.

1.5 Integral extensions

Definition 1.19 (integral over). Given a ring extension A ⊆ B, an element b ∈ B is integral over A if it
is the root of some monic polynomial f ∈ A[x]. B is integral over A if all b ∈ B are.

Proposition 1.20

Let α, β ∈ B be integral over A ⊆ B. Then α+ β and αβ are also integral over A.

Definition 1.21 (integral closure). Given a ring extension B/A, the ring Ã = {b ∈ B : b integral over A}
is the integral closure of A in B. If Ã = A, then A is integrally closed in B. An integral domain A is
integrally closed if it is in FracA.

Proposition 1.22

Given ring extensions A ⊆ B ⊆ C, if C/B and B/A are integral, then C/A is integral.

Corollary 1.23

The integral closure of A ⊆ B is integrally closed in B.

Proof. Let A′ be the integral closure of A in B, and let A′′ be the integral closure of A′ of B. By Propo-
sition 1.22, A′′ is integral over A. Every element of B that is integral over A lies in A′ by definition, so
A′′ ⊂ A′ which shows A′ = A′′.

Proposition 1.24

Z is integrally closed.

Proof. If r
s ∈ Q is integral over Z with gcd(r, s) = 1, then it satisfies a monic polynomial(r

s

)n
+ an−1

(r
s

)n−1
+ · · ·+ a1

(r
s

)
+ a0 = 0

with ai ∈ Z. Clearing denominators shows s | rn, which means s = ±1 and r
s ∈ Z.
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Corollary 1.25

The same proof works for any UFD where r ⊥ s makes sense. In particular, any PID is integrally closed.

Example 1.26

Z[
√
5] is not a UFD (and thus not a PID), because it is not integrally closed. Consider ϕ = 1+

√
5

2 which

is a root of x2 − x− 1 and thus integral over Z[
√
5], but ϕ /∈ Z[

√
5].

Definition 1.27 (number field, ring of integers). A number field is a finite extension K of Q. The ring
of integers OK of a number field is the integral closure of Z in K.

Example 1.28

For K = Q[
√
5], the ring of integers is Z[1+

√
5

2 ] (not Z[
√
5], which is not integrally closed).

Definition 1.29 (order). An order in a Q-algebra K of dimension r is a subring of K that is a free
Z-module of rank r.

OK is an order in K, and in fact the maximal order (it contains every order in K).

Proposition 1.30

Let A be an integrally closed domain with fraction field K. Let α ∈ L/K with minimal polynomial
f ∈ K[x], where [L : K] <∞. Then α is integral over A if and only if f ∈ A[x].

Proof. If f ∈ A[x], then α is integral over A, as the minimal polynomial is monic. Now suppose α is integral
over A, and let g ∈ A[x] be monic with g(α) = 0. Over K[x], we can factor

f(x) =
∏
i

(x− αi).

For each αi, there is an embedding K(α) = K[x]/(f)→ K sending α 7→ αi. In K, we have g(αi) = 0 since
f(αi) = 0 and f | g. Thus, each αi ∈ K is integral over A (as g ∈ A[x]) and lies in the integral closure of
A in K. All coefficients of f are sums of products of the αi and thus elements of Ã that lie in K. We have
A = Ã ∩K as A is integrally closed in K, so f ∈ A[x].

Example 1.31

We saw 1+
√
5

2 that is integral over Z. What about 1+
√
7

2 ? Its minimal polynomial in Q[x] is x2−x− 3
2 /∈

Z[x], so it is not integral over Z by Proposition 1.30.

2 Localization

2.1 Localization of a ring

We can think of Q := Z× Z̸=0/∼ where (a, s) ∼ (a′, s′) ⇐⇒ as′ = a′s.
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Definition 2.1 (localization). Let A be a ring and S ⊂ A be a multiplicative subset, meaning that
it is closed under finite products (including the empty product which is 1). The localization of A at
S, denoted S−1A or A[S−1], is the ring with the following universal property: there is a morphism
ι:A → S−1A with φ(S) ⊂ (S−1A)× such that given φ:A → B with φ(S) ⊂ B×, then there exists a
unique map S−1A→ B making the following diagram commute.

A B

S−1A

φ

ι
∃!

By the universal property, S−1A is unique if it exists. For existence, consider S−1A := A × S/∼ where
(a, s) ∼ (b, t) ⇐⇒ there exists v ∈ S such that (at − bs)v = 0. We also denote (a, s) by a/s. Define
ι:A → S−1A by a 7→ (a, 1) = a/1. We can check S−1A is a ring and ι is a ring homomorphism with
ι(S) ⊂ (S−1A)×, as (s/1)(1/s) = s/s = 1/1 = 1.

We now check the universal property. If φ:A → B is a homomorphism with φ(S) ⊂ B×, we claim that
there is a unique map π:S−1A→ B satisfying φ = π ◦ ι, as

π(a/s) = π(ι(a)ι(s)−1) = π(ι(a)))π(ι(s))−1 = φ(a)φ(s)−1

is uniquely determined.

Remark 2.2. If A is an integral domain then ι is injective, and we can simplify the equivalence relation
as (a, s) ∼ (b, t) ⇐⇒ at = bs.

Given two multiplicative sets S ⊂ T , we have S−1(A) ⊂ T−1(A). In particular, S−1A ⊂ FracA, where
FracA is A localized at A ̸=0.

Localization yields a local ring (in the cases we care about), which is the reason behind its name.

2.2 Ideals in localizations

Let φ:A→ B be a ring homomorphism. If b is a B-ideal, then φ−1(b) is an A-ideal, sometimes denoted bc,
and called the contraction of b to A. When A ⊂ B is a subring, then bc = b ∩ A. If a is an A-ideal, then
φ(a) is not necessarily a B-ideal, but it generates a B-ideal ae called the extension of a to B.

We are interested in the case ι:A→ S−1A with A a domain, so ι is injective and can be viewed as inclusion.
If A ⊂ B, then

ae = aB = (ab : a ∈ a, b ∈ B). (2.1)

In general, a ⊆ φ−1((φ(a))) = aec and bce = φ(φ−1(b)) ⊆ b. Usually a ⊊ aec: take for example B = S−1A
with a ∩ S ̸= ∅, so ae = aB = B and aec = B ∩ A = A, but we need not have a = A. However, when
B = S−1A, we always have bce = b.

Remark 2.3. In the context of (2.1), if a = (a1, . . . , an) is finitely generated, then ae = aB = (a1, . . . , an)
is also generated by the same elements. For B = S−1A, we have b = bce, meaning that every B-ideal
is the extension of an A-ideal. Thus if A is a Noetherian domain (all ideals finitely generated), then so
is every localization S−1A, and if A is a PID, then so is S−1A.
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Theorem 2.4

Let S be a multiplicative subset of a domain A. There is a 1-to-1 correspondence between

{prime ideals of S−1A} ←→ {prime ideals of A that don’t intersect S}

given by q 7→ q ∩A and pS−1A←[ p.

Let p ⊂ A be a prime ideal so that S = A− p is a multiplicative set. Let

Ap =
{a
b
: a ∈ A, b /∈ p

}
/∼

denote the localization of A at A− p.

Warning 2.5. For a
b ∈ FracA, it is not true that a

b ∈ Ap ⇐⇒ b /∈ p. It can be true that a
b ∼

a′

b′ where
b ∈ p and b /∈ p. For example, taking A = Z and p = (3), we have 9

3 = 3
1 . In general, A need not be a

UFD, so there is no canonical way to pick a representative for each element in S−1A.

Example 2.6

Let A = k[x] and p = (x− 2). Then Ap = {f ∈ k(x) : f is defined at 2}. A is a PID, so Ap is PID with
a unique maximal ideal pAp = {f ∈ k(x) : f(2) = 0}. Hence Ap is a DVR (Theorem 1.18), and the
valuation on k(x) = FracA measures the “order of vanishing” of f at 2. The residue field is Ap/pAp ≃ k,
with quotient map f 7→ f(2).

Example 2.7

Let p ∈ Z be prime, so Z(p) = {ab : a, b ∈ Z, p ∤ b}. Z is a PID, so Z(p) is a PID with unique maximal
ideal (p)Z(p), and thus a DVR. The valuation on Q = FracZ is the p-adic valuation. The residue field
is Z(p)/(p)Z(p) ≃ Fp with quotient map Z(p) → Fp as reduction mod p.

These are essentially the same example, with reduction mod (x− 2) and reduction mod p. Note Z(p) ̸= Zp

which will later denote the p-adic integers.

2.3 Localization of modules

Definition 2.8 (localization of module). The localization S−1M of an A-module M with respect to a
multiplicative set S ⊂ A is an S−1A-module equipped with an A-module homomorphism ι:M → S−1M
satisfying the following universal property: if N is an S−1A-module and φ:M → N is an A-module
homomorphism, then φ factors uniquely through S−1M .

M N

S−1M

φ

ι
∃!

We use the same construction: S−1M := M × S/∼ where (a, s) ∼ (b, t) ⇐⇒ there exists v ∈ S such that
(at− bs)v = 0. In other words, S−1M =M ⊗A S

−1A is the base change of M from A to S−1A.

The map ι:M → S−1M is injective if and only if M
×s−→ M is injective for all s ∈ S. This is a strong

condition that does not hold in general, even when A is a domain, but it holds for the cases we care about.
In particular, if A lies in a field K and M lies in a K-vector space, then ι:M → S−1M is injective, and we
can view M as a submodule of S−1M .
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Proposition 2.9

Let A be a subring of a field K, and M be an A-module in a K-vector space V . Then

M =
⋂

m∈MaxA

Mm =
⋂

p∈SpecA
Mp.

We will use this a lot, since many things are easy to check locally on Mp but hard to check in general.

Proof. M ⊆
⋂

mMm is clear because ι is injective in this case. For the reverse direction, suppose x ∈
⋂

mMm,
and consider the A-ideal a := {a ∈ A : ax ∈M}. For each maximal ideal m, write x = m/s for some m ∈M ,
s ∈ A − m. Then sx ∈ M so s ∈ a. However, s /∈ m, so a ̸⊆ m. This is true for all maximal ideals m, so
a = A and 1 ∈ a. Thus 1x ∈M , as desired.

For the second equality, every prime ideal p lies in some maximal ideal m for which Mm ⊆Mp, so
⋂

mMm ⊆⋂
pMp. Also every maximal ideal is prime, so

⋂
mMm ⊇

⋂
pMp.

An important special case is K = FracA and V = L/K. When L = K, M ⊆ K is an A-submodule of K.
In particular, every A-ideal I is an A-submodule of K = FracA. Localizing I at p is the same as extending
I to A ⊆ Ap:

Ip =

{
i

s
: i ∈ I, s ∈ A− p

}
=

{
ia

s
: i ∈ I, a ∈ A, s ∈ A− p

}
= IAp.

Corollary 2.10

For an integral domain A, every A-ideal I satisfies

I =
⋂

m∈MaxA

Im =
⋂

p∈SpecA
Ip.

Example 2.11

For A = Z, we have Z =
⋂

p Z(p) ⊆ Q.

3 Dedekind domains

Proposition 3.1 (Dedekind domain)

Let A be a Noetherian domain. TFAE:

1. For every nonzero p ∈ SpecA, Ap is a DVR.

2. A is integrally closed and has Krull dimension dimA ≤ 1.

If either holds, A is called a Dedekind domain (DD).

The second best thing to being a DVR is for all localizations to be DVRs.

Proof. If A is a field, then 1 and 2 both hold: there are no nonzero p, and fields are integrally closed with
dimension 0. Now assume A is not a field and let K = FracA.
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(⇒): Every chain of prime ideals (0) ⊆ p1 ⊆ · · · ⊆ pn corresponds to a chain in Apn , and conversely such a
chain can be contracted to A. Thus,

dimA = sup{dimAp : p ∈ SpecA} = 1,

assuming that all Ap are DVRs. To show A is integrally closed, consider any x ∈ K integral over A which
means it is integral over every Ap ⊃ A. However, the Ap are integrally closed in FracAp = FracA (by being
DVRs), so x ∈

⋂
pAp = A, and A is integrally closed.

(⇐): We claim that the following properties are preserved by localization:

• no zero divisors

• Noetherian

• dim ≤ 1 (dimension can only decrease upon localization)

• integrally closed.

To prove the last item, suppose x ∈ K is integral over Ap. Then xn + an−1

sn−1
xn−1 + · · · + a0

s0
= 0 for some

ai ∈ A, si ∈ A − p. Let s = s0 · · · sn−1, so we can clear denominators by multiplying by sn and get a
polynomial for sx with coefficents in A, so sx is integral over A. Thus sx ∈ A, by the assumption that A is
integrally closed. Then sx

s = x ∈ Ap, so Ap is integrally closed.

Corollary 3.2

Every PID is a Dedekind domain. In particular, Z and k[x] are Dedekind domains.

PIDs are integrally closed and have dimension ≤ 1.

Remark 3.3. Every PID is a UFD and a DD, but not every UFD is a DD. For example, take k[x, y] which
has dimension 2. Also, not every DD is a UFD, e.g. Z[

√
−13] because 14 = (1+

√
−13)(1−

√
−13) = 2·7.

3.1 Fractional ideals

Definition 3.4 (fractional ideal). A fractional ideal of a Noetherian domain A is a finitely generated
A-submodule of FracA.

The following is the motivation behind the name “fractional.”

Lemma 3.5

Let A be a Noetherian domain, K = FracA, and I ⊆ K be an A-module. Then I is finitely generated
if and only if aI ⊆ A for some nonzero a ∈ A.

Proof. (⇒): If r1
s1
, . . . , rnsn generate I as an A-module, then aI ⊆ A for a = s1 · · · sn.

(⇐): If aI ⊆ A, then aI is an ideal and is finitely generated, since A is Noetherian. If (a1, . . . , an) = aI,
then (a1a , . . . ,

an
a ) generate I as an A-module.

Corollary 3.6

Every fractional ideal of A can be written as 1
aI for some nonzero a ∈ A and A-ideal I.
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Definition 3.7 (principal fractional ideal). A fractional ideal is principal if it is generated by one element.
Let (x) := xA denote the principal fractional ideals for x ∈ K = FracA.

We can add and multiply fractional ideals in the same way as normal ideals:

I + J := (i+ j : i ∈ I, j ∈ J)

IJ := (ij : i ∈ I, j ∈ J).

However, there is a new division operation

I ÷ J := {x ∈ K : xJ ⊆ I},

called “the quotient of I by J .” It is not the same as a quotient of A-modules, e.g. Z/Z = {0}, but Z÷Z = Z.

Lemma 3.8

Let I, J be fractional ideals of a Noetherian domain A, with J ̸= (0). Then (I ÷ J) is a fractional ideal
of A.

Proof. I÷J is closed under addition and multiplication by A, and hence is an A-module. We need to check
that it is finitely generated.

First suppose that I, J are A-ideals. For nonzero j ∈ J ⊆ A, we have j(I ÷ J) ⊆ I ⊆ A by definition; then
take generators of I and divide them by j to obtain finitely many generators for I ÷ J . In general, choose
a, b ∈ A such that aI ⊆ A and bJ ⊆ A. Then I ÷ J = abI ÷ abJ where now abI, abJ are A-ideals.

Definition 3.9 (invertible). A fractional ideal is invertible if IJ = A for some fractional ideal J .

Inverses are unique if they exist: J = JA = JIJ ′ = AJ ′ = J ′.

Lemma 3.10

A fractional ideal I of A is invertible if and only if I(A÷ I) = A, in which case A÷ I is the inverse.

Proof. (⇒): Note I(A÷ I) ⊆ A by definition. Suppose IJ = A so that J ⊆ A÷ I. Then

A = IJ ⊆ I(A÷ I) ⊆ A,

so IJ = I(A÷ I) = A, and J = A÷ I by uniqueness.

The reverse direction is immediate.

Example 3.11 (noninvertible fractional ideal)

Let A = Z + 2iZ which is a subring of Z[i] ⊆ Q[i]. Let I = 2Z[i] so that A ÷ I = Z[i]. However,
I(A÷ I) = 2Z[i] ⊊ A.

In a DD, all fractional ideals will be invertible, so we had to find a weird example.
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3.2 Ideal class group

Fractional ideal multiplication is commutative and associative (w.r.t. addition). Thus, the nonzero fractional
ideals of a Noetherian domain form an abelian monoid under multiplication with A = (1). The subset of
invertible fractional ideals is an abelian group.

Definition 3.12 (ideal group). Let A be a Noetherian domain. The ideal group of A, denoted IA, is the
group of invertible fractional ideals.

Every nonzero principal fractional ideal (x) is invertible, since (x)( 1x) = A. Products of principal fractional
ideals are principal: (x)(y) = (xy). Thus, the principal fractional ideals are a subgroup PA ⊆ IA.

Definition 3.13 (ideal class group). The quotient cl(A) := IA/PA is the ideal class group of A.

This is also known as the Picard group Pic(A) for a Noetherian domain.

Remark 3.14. The ideal class group cl(A) is trivial if and only if A is a PID.

It turns out that a DD is a UFD if and only if cl(A) is trivial, i.e. if and only if it is a PID.

4 Properties of Dedekind domains

Let A be a Noetherian domain. Today we will present eight equivalent definitions for DDs and show that
our original definition in Proposition 3.1 satisfies them. Pset 2.1 shows the reverse direction.

Lemma 4.1

Let I, J be fractional ideals in A and p be a prime ideal. Then Ip, Jp are fractional ideals of Ap with

1. (I + J)p = Ip + Jp

2. (IJ)p = IpJp

3. (I ÷ J)p = (Ip ÷ Jp).

Proof. Because I is finitely generated as an A-module, Ip = IAp is finitely generated as an Ap-module and
is a fractional Ap-ideal by Definition 3.4. The same is true for Jp.

1. (I + J)p = (I + J)Ap = IAp + JAp = Ip + Jp. For the second equality, ⊆ is clear, and ⊇ follows from
using common denominators.

2. (IJ)p = (IJ)Ap = IpJp. For the second equality, ⊆ is clear, and ⊇ follows from using common
denominators.

3. (I ÷ J)p = {x ∈ K : xJ ⊆ I}p = {x ∈ K : xJp ⊆ Ip} = Ip ÷ Jp.

Actually, all three parts hold for any multiplicative subset S of A; the fact that S = A− p was not used.

Theorem 4.2

In a Noetherian domain A, a fractional ideal I is invertible if and only if its localization at every maximal
(or prime) ideal is invertible.
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Proof. (⇒) Suppose I is invertible, so I(A ÷ I) = A by Lemma 3.10. For any maximal ideal m, we have
Im(Am ÷ Im) = Am by Lemma 4.1, so Im is invertible.

(⇐) Now suppose Im is invertible for all m ∈ MaxA. Then

I(A÷ I) =
⋂
m

(I(A÷ I))m =
⋂
m

Im(Am ÷ Im) =
⋂
m

Am = A

by Corollary 2.10 and Lemma 4.1.

The same proof works for prime ideals instead of maximal ideals.

Corollary 4.3

In a Dedekind domain A, every nonzero fractional ideal I is invertible.

Proof. The localizations Ap at nonzero prime ideals are DVRs. In particular, they are PIDs in which every
nonzero fractional ideal Ip is invertible. Then by Theorem 4.2, I is invertible.

Lemma 4.4

In a Noetherian local domain A, a nonzero fractional ideal I is invertible if and only if it is principal.

Proof. (⇐) If I = (x) is principal, then it is invertible with inverse ( 1x).

(⇒) Now suppose I is invertible, and let m be the maximal ideal of A. We have II−1 = A so there
is some linear combination

∑n
i=1 aibi = 1 with ai ∈ I, bi ∈ I−1. Note that each summand aibi lies in

II−1 = A. At least one summand aibi must be a unit because each element in a local ring is a unit or in
m, but

∑n
i=1 aibi = 1 /∈ m. Say a1b1 ∈ A×. For every x ∈ I, we have a1b1x ∈ (a1) because b1 ∈ I−1 and

b1x ∈ A. Then x = (a1b1)
−1a1b1x ∈ (a1), which shows I ⊆ (a1). As (a1) ⊆ I by construction, I = (a1) is

principal.

Corollary 4.5

In a Noetherian domain A, a nonzero fractional ideal I is invertible if and only if it is locally principal,
i.e. all localizations at maximal ideals are principal.

Proof. Combine Theorem 4.2 and Lemma 4.4.

Lemma 4.6

Let A be a DD and a ∈ A nonzero. The set of p ∈ SpecA containing a is finite.

Proof. Consider subsets S, T of IA with

S := {I ∈ IA : (a) ⊆ I ⊆ A}
T := {I ∈ IA : A ⊆ I ⊆ (a−1)}.

S and T are nonempty because they both contain A, and define partial orders by inclusion. Consider the
bijections φ1:S → T with I 7→ I−1 and φ2:T → S with I 7→ aI where φ1 is order reversing and φ2 is order
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preserving. Then φ := φ2 ◦ φ1 is an order-reversing bijection of S. Since A and thus S satisfies ACC by
being Noetherian, φ(S) satisfies DCC.

Now suppose a lies in infinitely many distinct prime ideals p1, p2, . . . . Then

p1 ⊇ p1 ∩ p2 ⊇ p1 ∩ p2 ∩ p3 ⊇ · · ·

is a descending chain in S as (a) is contained in all intersections, the ideals are finitely generated (fractional)
because p1 is, and fractional ideals are invertible in a DD by Corollary 4.3. The chain stabilizes, so there is
some n > 1 for which

p1 · · · pn−1 ⊆ p1 ∩ · · · ∩ pn−1 = p1 ∩ · · · ∩ pn ⊆ pn.

In other words, pn contains some pj and there is a chain

(0) ⊊ pj ⊊ pn

contradicting dimA ≤ 1. Note that (0) ⊊ (a) ⊆ pj is how a is used.

Corollary 4.7

Let I be a nonzero ideal in a DD A. The number of prime ideals that contain I is finite.

Proof. Pick an element of I and apply Lemma 4.6 to it.

Example 4.8

A = C[t] is a DD with uncountably many prime ideals pr = (t − r) for r ∈ C. By Lemma 4.6, any
nonzero f ∈ C[t] lies in finitely many pr. In other words, there are finitely many r ∈ C for which
f(r) = 0, and f has finitely many roots. (This is a sledgehammer.)

Let p be a nonzero prime ideal in a DD A with K = FracA. Let π be a uniformizer for the DVR Ap, and
let I be a nonzero fractional ideal of A. Then Ip is a nonzero fractional ideal of Ap and of the form (πn)
for some n ∈ Z. Extend the valuation νp:K → Z ∪ {∞} to fractional ideals via νp(I) = n and νp((0)) =∞.
Then νp((x)) = νp(x). The map

νp: IA → Z, I 7→ νp(I)

is a group homomorphism, i.e. νp(IJ) = νp(I) + νp(J). It is order-reversing with respect to the partial
ordering on IA by inclusion and the usual order on Z: if I ⊆ J , then νp(I) ≥ νp(J).

Lemma 4.9

Let p be a nonzero prime ideal of a DD A. For any ideal I ⊆ A, νp(I) = 0 if and only if I ̸⊆ p.

In particular, if q ̸= p is another nonzero prime ideal of A, then νq(p) = νp(q) = 0, by dimA ≤ 1.

Proof. If I ⊆ p, then νp(I) ≥ νp(p) = 1 is nonzero. If I ̸⊆ p, then pick a ∈ I − p so that

0 = νp((a)) ≥ νp(I) ≥ νp(A) = 0,

where we note Ap = (π0) so νp(A) = 0.
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Corollary 4.10

For any I ∈ IA, we have νp(I) = 0 for all but finitely many nonzero p ∈ SpecA.

In particular, for all x ∈ K× we have νp(x) = 0 for all but finitely many p.

Proof. If I ⊆ A, then this follows from Corollary 4.7 and Lemma 4.9. In general for a fractional ideal 1
aI

with a ∈ A, I ⊆ A, we have νp(
1
aI) = νp(I)− νp(a) = 0− 0 = 0 for all but finitely many p.

Theorem 4.11

The ideal group IA for a DD A is isomorphic to the free abelian group generated by the nonzero prime
ideals of A. The isomorphism IA ≃

⊕
p̸=(0) Z is given by

I 7→ (. . . , νp(I), . . . )∏
p

pep ←[ (. . . , ep, . . . ).

In particular, every ideal in a DD has a unique factorization into prime ideals.

Writing I =
∏

p p
ep and J =

∏
p p

fp , we have

IJ =
∏
p

pep+fp

(I ÷ J) =
∏
p

pep−fp

I + J =
∏
p

pmin(ep,fp) = gcd(I, J)

I ∩ J =
∏
p

pmax(ep,fp) = lcm(I, J).

Then J ⊇ I if and only if ep ≥ fp for all nonzero p ∈ SpecA. So J ⊇ I if and only if J divides I. It is always
true that to divide (JH = I) implies to contain (J ⊇ I), but the reverse is only true for DD.

Proof. The map is well defined because all but finitely many entries of the direct sum are 0 by Corollary 4.10.

As the maps I 7→ νp(I) and pep ←[ ep are group homomorphisms, both maps in the theorem statement for
IA ≃

⊕
p Z are group homomorphisms. The forward map is injective because if νp(I) = νp(J), then Ip = Jp.

If this holds for every p then I =
⋂

p Ip =
⋂

p Jp = J .

For surjectivity, given (. . . , ep, . . . ) with all but finitely many entries zero, consider
∏

p p
ep . It is indeed true

that νq(
∏

p p
ep) =

∑
p epνq(p) = eq.

Corollary 4.12

A DD is a UFD if and only if it is a PID, or equivalently if and only if cl(A) is trivial.

Proof. PIDs are UFDs, so it remains to show the other direction. It suffices to show that every prime ideal
is principal. Suppose p is a nonzero prime ideal in a DD that is a UFD. Pick a nonzero element a ∈ p and
let a = p1 · · · pn be the factorization of a into irreducibles in the UFD A. Then p contains and therefore

Page 17 of 109



18.785 Number Theory I September 18, 2025

divides (a) = (p1) · · · (pn), so p divides and therefore contains some (pi). However, (pi) is a nonzero prime
ideal (because pi is irreducible) so p = (pi) is principal.

Here is a summary of the properties of a Dedekind domain from Lecture Notes 3.

Theorem 4.13 (Dedekind domain)

For an integral domain A, TFAE:

1. A is an integrally closed Noetherian domain of dimension at most one.

2. A is Noetherian and its localizations Ap at nonzero prime ideals are DVRs.

3. Every nonzero ideal in A is invertible.

4. Every nonzero ideal in A is a (finite) product of prime ideals.

5. A is Noetherian and “to contain is to divide” holds for A-ideals.

6. For every ideal I ⊆ A there is an ideal J ⊆ A such that IJ is principal.

7. Every quotient A/I of A by a nonzero ideal I is a principal ideal ring.

8. For every nonzero ideal I ⊆ A and nonzero a ∈ I we have I = (a, b) for some b ∈ I.

5 Separability and étale algebras

5.1 Separability

For a polynomial f =
∑

i aix
i ∈ A[x], define f ′ :=

∑
i iaix

i−1 ∈ A[x].

Definition 5.1 (separable polynomial). Let K be a field. A polynomial f ∈ K[x] is separable if as ideals
(f, f ′) = (1). Otherwise, f is inseparable.

Example 5.2

For K = Fp(t), the polynomial xp − t is inseparable.

Definition 5.3 (separable element). Let L/K be an algebraic extension. We call α ∈ L separable if
f(α) = 0 for some separable f . We say that L/K is separable if every α ∈ L is separable over K.

Lemma 5.4

An irreducible polynomial f ∈ K[x] is inseparable if and only if f ′ = 0.

Proof. Since f ′ has lower degree than f , it has common roots with f irreducible if and only if f ′ = 0.

Corollary 5.5

Let f ∈ K[x] be irreducible and charK = p. Then f(x) = g(xp
n
) for some separable g and n ≥ 0

(uniquely determined by f).
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Corollary 5.6

If charK = 0, then every irreducible f ∈ K[x] is separable.

Lemma 5.7

Let L = K(α) be an algebraic extension of K in K, and let f ∈ K[x] the minimal polynomial of α over
K. Then

#HomK(L,K) = #{β ∈ K : f(β) = 0} ≤ [L : K] = deg f

with equality if and only if α is separable over K.

Proof. Each element of HomK(L,K) is uniquely determined by the image of α, which must be sent to a
root β of f(x) in K. The number of roots equals [L : K] = deg f when f , and thus α, is separable over
K.

Definition 5.8 (separable degree). Let L/K be a finite extension of fields. The separable degree of L/K
is

[L : K]s := #HomK(L,K).

The inseparable degree of L/K is

[L : K]i := [L : K]/[L : K]s.

The inseparable degree turns out to be an integer (Corollary 5.24).

Theorem 5.9

Let L/K be an algebraic extension and ϕK :K → Ω be an embedding into an algebraically closed field.
Then ϕK extends to an embedding ϕL:L→ Ω.

Proof. We use Zorn’s lemma. Define a partial ordering on the set F of pairs (F, ϕF ) where

• F/K is a subextension of L/K,

• ϕF :F → Ω extends ϕK :K → Ω.

We say (F1, ϕF1) ≤ (F2, ϕF2) whenever F1 ⊆ F2 and ϕF2 extends ϕF1 . Note F is nonempty because (K,ϕK) ∈
F . For any totally ordered chain C ⊆ F , there is a maximal element (E, ϕE) with E :=

⋃
{F : (F, ϕF ) ∈ C},

and ϕE :E → Ω by x 7→ ϕF (x) for any F ∋ x.

By Zorn’s lemma, F contains a maximal element (M,ϕM ); we claim that M = L. Suppose not, and let
α ∈ L −M . Consider F = M(α) ⊆ L, where M ⊊ M(α). Extend ϕM to ϕF by letting ϕF be any root of
αM (f), where α(f) ∈ Ω[x] is obtained by applying ϕM to the minimal polynomial f ∈ M [x] of α over M .
Then (M,ϕM ) is dominated by (F, ϕF ), a contradiction.

Lemma 5.10

Let L/F/K be a tower of finite extensions and K be an algebraic closure containing L. Then

#HomK(L,K) = #HomK(F,K)#HomF (L,K).
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Corollary 5.11

Let L/F/K be a tower of finite extensions. Then

[L : K]s = [L : F ]s[F : K]s

[L : K]i = [L : F ]i[F : K]i.

Theorem 5.12

Let L/K be a finite extension. TFAE:

1. L/K is separable.

2. [L : K]s = [L : K].

3. L = K(α) for some α ∈ L separable over K.

4. L ≃ K[x]/(f) for some irreducible separable f ∈ K[x].

Corollary 5.13

Let L/K be a finite extension. Then [L : K]s ≤ [L : K] with equality if and only if L/K is separable.

Corollary 5.14

Let L/F/K be a tower of algebraic extensions. L/K is separable if and only if L/F and F/K separable.

Corollary 5.15

Let L/K be an algebraic extension. Then F := {α ∈ L : α separable over K} is a separable field
extension.

Definition 5.16 (separable closure). Let L/K be an algebraic extension.

F := {α ∈ L : α separable over K}

is the separable closure of K in L. When L is an algebraic closure, it is called the separable closure of
K and denoted by Ksep.

Definition 5.17 (perfect). A field is perfect if every algebraic extension is separable.

Example 5.18

Characteristic 0 fields and finite fields are perfect.

Definition 5.19 (separably closed). K is separably closed if no nontrivial separable extensions of K exist.

The following theorem can be used to show that finite fields are perfect.

Page 20 of 109



September 18, 2025 18.785 Number Theory I

Theorem 5.20

If charK = p > 0, then K is perfect if and only if K = Kp, or equivalently, if and only if x 7→ xp is an
automorphism.

Definition 5.21 (purely inseparable). An algebraic extension is purely inseparable if [L : K]s = 1.

The trivial extension is separable and purely inseparable. From Example 5.2 xp − t is a purely inseparable
extension of degree p.

Proposition 5.22

Let charK = p > 0. If L/K is a purely inseparable extension of degree p, then L = K(a1/p) ≃
K[x]/(xp − a) for some a ∈ K −Kp.

Theorem 5.23

Let L/K be an algebraic extension and F be the separable closure of K in L. Then L/F is purely
inseparable.

Proof. If L/K is separable, then we are done because L = F and the trivial extension L/L is purely separable.
Otherwise, we have charK = p > 0. Fix an algebraic closure K of K containing L. Let α ∈ L − F have
minimal polynomial f over F . By Corollary 5.5, we can write f(x) = g(xp

n
) with g ∈ K[x] separable and

n ≥ 0. We need deg g = 1, as otherwise there would be a separable element not in F . Then f(x) = xp
n − a

for some a ∈ F , or f(x) = xp
n − αpn = (x− α)pn for some α ∈ F . Thus

#HomF (F (α),K) = 1.

Since f only has one root, there is only one place to send α. We can continue this process if there are more
elements in L− F (α), and the upshot is that

[L : F ]s = #HomF (L,K) = 1

which is the definition of purely inseparable.

Corollary 5.24

Every algebraic extension L/K can be written uniquely as L/F/K with F/K separable and L/F purely
inseparable.

Proof. Take F to be the separable closure of K in L.

Corollary 5.25

The inseparable degree is a power of charK = p. (This is also true for p = 0, using 00 = 1.)
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5.2 Étale algebras

Every finite separable extension L/K looks like L = K[x]/(f) for some f ∈ K[x].

Let f = f1 · · · fn be the irreducible factorization in K[x]. Suppose f is separable so that the fi are distinct.
Then

K[x]/(f) = K[x]/(f1 · · · fn) ≃ K[x]/(f1)× · · · ×K[x]/(fn)

by the Chinese remainder theorem. This is a finite product of finite separable extensions of K.

Definition 5.26 (étale). An étale K-algebra is a K-algebra L which is isomorphic to a finite product
of finite separable field extensions.

Remark 5.27. Finite products and finite direct sums are same asK-vector spaces but not asK-algebras.
A direct sum sends 1 7→ (1, 0, . . . , 0), but for a homomorphism we need 1 7→ (1, . . . , 1). Products have
projection maps, so it’s important we are using ×.

Example 5.28

If K = Ksep, then every étale K-algebra is isomorphic to Kn = K × · · · ×K for some n ≥ 1.

Étale algebras are semisimple algebras. A simple ring is nonzero and has no nonzero proper ideals, and a
semisimple ring is a finite product of simple rings. Note that a commutative ring is simple if and only if
it is a field. Ideals in a semisimple commutative ring R =

∏
Ri are a product of some of the Ri.

Proposition 5.29

Let A =
∏
Ki be a K-algebra that is a product of field extensions Ki/K. Every surjective homomor-

phism φ:A→ B of K-algebras corresponds to a projection onto a subproduct.

Corollary 5.30

The decomposition of an étale K-algebra into a product of fields is unique up to isomorphism.

Definition 5.31 (base change). Let φ:A→ B be a ring homomorphism (so B is an A-module). Let M
be any A-module. The base change ofM from A to B is the B-moduleM ⊗A B with b(m⊗b′) := m⊗bb′.

If M is an A-algebra, then M ⊗A B is a B-algebra.

Example 5.32

Mp =M ⊗A Ap.

Proposition 5.33

Suppose L is an étale K-algebra and K ′/K is any field extension. Then L⊗KK
′ is an étale K ′-algebra

with the same dimension as L.

Proof. WLOG L is a field, or L is a product of fields and we can apply this reasoning to each factor.
Then L ≃ K[x]/(f) for some irreducible separable f . Let f = f1 · · · fn ∈ K ′[x] be the factorization into
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irreducibles. Then
L⊗K K ′ ≃ K ′[x]/(f) ≃

∏
i

K ′[x]/(fi)

because f is separable. Thus L ⊗K K ′ is an étale K ′-algebra, and the dimension is preserved: dimK L =
deg f = dimK′ K ′[x]/(f).

Example 5.34

Any finite dimensional R-vector space V is an étale R-algebra (say ≃ Rn with multiplication defined
component-wise w.r.t. some basis). Then V ⊗R C ≃ Cn is an étale C-algebra of the same dimension.

Corollary 5.35

Let L = K[x]/(f) be a finite separable extension of K with f ∈ K[x] irreducible and separable. Let
K ′/K be any field extension, and let f = f1 · · · fn be the factorization of f into distinct irreducible
fi ∈ K ′[x]. Then there is an isomorphism of étale K ′-algebras

L⊗K K ′ = K ′[x]/(f) ≃
∏
i

K ′[x]/(fi).

Theorem 5.36

Let L be a commutative K-algebra of finite dimension and assume dimL < #K. TFAE:

1. L is an étale K-algebra.

2. Every element of L is separable over K.

3. L⊗K K ′ is reduced for every extension K ′/K.

4. L⊗K K ′ is semisimple for every extension K ′/K.

5. L = K[x]/(f) for some separable f ∈ K[x].

Definition 5.37 (reduced). An ring element α ∈ R is nilpotent if αn = 0 for some n. R is reduced if it
contains no nonzero nilpotents.

6 Dedekind extensions

6.1 Norm and trace

Definition 6.1 (norm, trace). Let B/A be an extension of rings with B a free A-module of finite rank
(so B ≃ An). Then the norm NB/A(b) and trace TB/A(b) are the determinant and trace of the A-linear
map

B
×b−→ B, x 7→ bx.

As maps, we have NB/A:B
× → A× (multiplicative group) and TB/A:B → A (additive group).

For x = (x1, x2) ∈ B1 ×B2,

NB1×B2/A(x) = NB1/A(x1)NB2/A(x2)

TB1×B2/A(x) = TB1/A(x1) + TB2/A(x2).
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Example 6.2

Let A = R and B = C which has an A-module basis of {1, i}. Let b = 2 + 3i. Then

NC/R(2 + 3i) = det

(
2 −3
3 2

)
= 13

TC/R(2 + 3i) = tr

(
2 −3
3 2

)
= 4.

Norm and trace are well-behaved with respect to base change.

Lemma 6.3

Let B/A be a free A-module of rank n. Given φ:A → A′, the base change B′ = B ⊗A A
′ is a free

A′-module of rank n. Then

φ(NB/A(b)) = NB′/A′(b⊗ 1)

φ(TB/A(b)) = TB′/A′(b⊗ 1).

Theorem 6.4

Let K be a field with Ω as the separable closure, and let L be an étale K-algebra. Then

NL/K(α) =
∏

σ∈HomK(L,Ω)

σ(α)

TL/K(α) =
∑

σ∈HomK(L,Ω)

σ(α).

Proof. L⊗k Ω→
∏

σ Ω = Ωn sends α⊗ 1 7→ (σ1(α), . . . , σn(α)).

Proposition 6.5

Let L/K be a finite extension of fields and K be an algebraic closure containing L. Suppose α ∈ L×

has minimal polynomial f ∈ K[x] where f(x) =
∏d

i=1(x− αi) ∈ K[x], e := [L : K(α)]. Then

NL/K(α) =
d∏

i=1

αe
i , TL/K(α) = e

d∑
i=1

αi.

In particular, if f(x) =
∑d

i=1 aix
i, then NL/K(α) = (−1)deae0 and TL/K(α) = −ead−1

Proof. See pset 3.5.

Corollary 6.6

Let A be a domain with K = FracA, and let L/K be a finite extension. If α ∈ L is integral over A,
then NL/K(α) ∈ A and TL/K(α) ∈ A.
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Proof. This follows from NL/K(α) = (−1)deae0 and TL/K(α) = −ead−1 in Proposition 6.5, and how α integral

over A means f(x) =
∑d

i=1 aix
i ∈ A[x] by Proposition 1.30.

Theorem 6.7 (Transitivity of norm and trace)

Given C/B/A where C is free of finite rank over B, and B is finite rank over A, then

NC/A = NB/A ◦NC/B

TC/A = TB/A ◦TC/B

6.2 Dual modules, pairings, and lattices

Definition 6.8 (dual module). For an A-module, M , its dual module is the A-module

M∨ = HomA(M,A)

with scalar multiplication (af)(m) = af(m).

Given φ:M → N , there is a natural map φ∨:N∨ →M∨ defined by φ∨(g)(m) = g(φ(m)) for g ∈ N∨.

The dual preserves the identity morphism and is compatible with composition, so we get a covariant functor
from the category of A-modules to itself. It is also compatible with sums: (M ⊕ N)∨ ≃ M∨ ⊕ N∨ with
inverse maps φ 7→ (m 7→ φ(m, 0), n 7→ φ(0, n)) and ((m,n) 7→ ϕ(m) + ψ(n))←[ (ϕ, ψ).

Remark 6.9. If A is a field and M is finitely generated (i.e. finite dimensional vector space), then M∨

is the dual space and M∨∨ ≃M . However, this is not true in general.

Proposition 6.10

Let A be an integral domain with K = FracA, and let M be a nonzero A-submodule of K. Then

M∨ ≃ A÷M := {x ∈ K : xM ⊆ A}.

In particular if M is an invertible fractional ideal, then M∨ ≃M−1 and M∨∨ ≃M .

Example 6.11

As a Z-module, Q is not finitely generated. However, Q∨ = {0} because there are no nontrivial Z-linear
homomorphisms Q→ Z. Consequently Q∨∨ = {0} (although as Q-modules, Q ≃ Q∨ ≃ Q∨∨). Similarly,
the dual of any finite abelian group (Z-module) is {0}, as is its double dual.

Theorem 6.12

Let M be a free A-module of rank n. Then M∨ is also a free A-module of rank n, and each A-basis
(e1, . . . , en) of M uniquely determines a dual basis (e∨1 , . . . , e

∨
n) with e

∨
i (ej) = δij .

Proof. If n = 0, then M = M∨ = {0}. Now assuming n ≥ 1, fix e = (e1, . . . , en) an A-basis for M . For
a := (a1, . . . , an) ∈ An, define fa ∈ M∨ by fa(ei) = ai and extending A-linearly. The map a 7→ fa is an
A-module map An →M∨ with inverse f 7→ (f(e1), . . . , f(en)), so it’s an isomorphism and M∨ ≃ An.
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Now let e∨i := fî where î = (0, . . . , 0, 1, 0, . . . , 0) ∈ An. Then e∨ := (e∨1 , . . . , e
∨
n) is an A-basis for M∨ since

(1̂, . . . , n̂) is a basis for An, and e∨i (ej) = δij . The basis e∨ is uniquely determined by e: it must be the
image of (1̂, . . . , n̂) under a 7→ fa.

Definition 6.13 (bilinear pairing). Let M be an A-module. A bilinear pairing on M is an A-linear map
⟨·, ·⟩:M ×M → A, meaning for all λ ∈ A and u, v, w ∈M that

⟨u+ v, w⟩ = ⟨u,w⟩+ ⟨v, w⟩
⟨v, v + w⟩ = ⟨u, v⟩+ ⟨u,w⟩
⟨λu, v⟩ = ⟨u, λv⟩ = λ⟨u, v⟩.

It is

• symmetric if ⟨v, w⟩ = ⟨w, v⟩

• skew-symmetric if ⟨v, w⟩ = −⟨w, v⟩

• alternating if ⟨v, v⟩ = 0 (equivalent to skew-symmetric if charA ̸= 2)

• nondegenerate if the induced map φ:M →M∨ by m 7→ (n 7→ ⟨m,n⟩) has trivial kernel

• perfect if the induced map is an isomorphism.

Example 6.14

Perfect implies nondegenerate, but the converse is not true. For example, ⟨x, y⟩ := 2xy is nondegenerate
but not a perfect pairing on Z.

Proposition 6.15

Let M be a free A-module of rank n with a perfect pairing ⟨·, ·⟩. For each A-basis (e1, . . . , en) of M
there is a unique A-basis (e′1, . . . , e

′
n) of M with ⟨e′i, ej⟩ = δij .

Definition 6.16 (lattice). Let A be an integral domain, K = FracA, and V be a K-vector space. A
(full) A-lattice in V is a finitely generated A-submodule M in V that spans V as a K-vector space.

Remark 6.17. A-lattices do not need to be free A-modules, although this is true for A = Z or another
PID.

Definition 6.18. Let A be a Noetherian domain and K = FracA. Let V be a K-vector space with a
perfect pairing ⟨·, ·⟩. If M is an A-lattice in V , its dual lattice (with respect to the perfect pairing) is
the A-module

M∗ := {x ∈ V : ⟨x,m⟩ ∈ A, ∀m ∈M}.

M∗ is an A-submodule, and in fact M∗ ≃M∨. In particular, this implies M∗ is finitely generated.

Theorem 6.19

M∗ is an A-lattice in V isomorphic to M∨.
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Corollary 6.20

If M1,M2 are A-lattices in K-vector space V1, V2 with pairings ⟨·, ·⟩1 and ⟨·, ·⟩2, then ⟨·, ·⟩1 + ⟨·, ·⟩2 is a
perfect pairing on V1 ⊕ V2, and (M ⊕N)∗ ≃M∗ ⊕N∗.

Corollary 6.21

IfM is a free A-lattice in V with basis (e1, . . . , en), thenM
∗ is also a free A-lattice with basis (e∗1, . . . , e

∗
n)

satisfying ⟨e∗i , ej⟩ = δij .

Is M∗∗ =M? No in general, but yes if A is a DD and the perfect pairing is symmetric.

Lemma 6.22

Let S be a multiplicative set of a Noetherian domain A, and let M be an A-lattice in FracA-vector
space V . Then S−1M and S−1M∗ are S−1A-lattices in V with (S−1M)∗ = S−1M∗.

Proposition 6.23

Let A be a DD and K = FracA. Let V be a K-vector space of finite dimension with a symmetric
perfect pairing. For an A-lattice M in V , we have M∗∗ =M .

Proof. It suffices to show that (M∗∗)p =Mp for all maximal ideals p. We have (M∗∗)p =M∗∗
p by Lemma 6.22,

so it suffices to prove the proposition with A replaced by Ap which is a DVR.

Thus we may assume A is a DVR; as M and M∗ are torsion-free modules over a PID, they are free A-
modules. Choose an A-module basis (e1, . . . , en) for M . Let (e∗1, . . . , e

∗
n) be the unique A basis for M∗ with

⟨e∗i , ej⟩ = δij . Now let (e∗∗1 , . . . , e
∗∗
n ) be the unique A-basis for M∗∗ with ⟨e∗∗i , e∗j ⟩ = δij . By symmetry,

⟨ei, e∗j ⟩ = δij , so ei = e∗∗i by uniqueness. Since M and M∗∗ have the same basis, they are equal.

6.3 Extensions of Dedekind domains

Proposition 6.24

Let A be a DD and K = FracA. Let L/K be a finite extension and B be the integral closure of A in
L. (AKLB setup)

Every x ∈ L can be written as b
a with b ∈ B, a ∈ A. In particular, B spans L as a K-vector space.

Proof. For α ∈ L, we clear denominators in its minimal polynomial over K to get

g(x) = anx
n + an−1x

n−1 + · · ·+ a0

with ai ∈ A. We can make this monic by replacing x with x
an

and multiplying by an−1
n to get

an−1
n g

(
x

an

)
= xn + an−1x

n−1 + anan−2x
n−2 + · · ·+ an−1

n a0.

This has anα as a root, so anα ∈ B and α = b
an

for some b ∈ B and an ∈ A.

B generates L as a K-vector space, as α = b · 1
an

for 1
an
∈ K. Also B ⊆ L ⊆ FracB implies L = FracB.
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Proposition 6.25

AKLB. Then NL/K(b) ∈ A and TL/K(b) ∈ A for all b ∈ B.

Definition 6.26 (trace pairing). Let B/A be a ring extension with B a free A-module of finite rank.
The trace pairing on B is ⟨x, y⟩B/A := TB/A(xy). (Think B = L, A = K.)

Theorem 6.27

Let L be a commutative K-algebra of finite dimension. The trace pairing ⟨·, ·⟩L/K is a symmetric
bilinear pairing. It is a perfect pairing if and only if L is a finite étale K-algebra.

Proposition 6.28

AKLB. B is an A-lattice in L. In particular, it is finitely generated as an A-module.

Proof. Let (e1, . . . , en) be a basis for L inside B. Let M ⊆ B be the A-span of this basis. The dual lattice
M∗ contains

B∗ := {x ∈ L : ⟨x, b⟩L/K ∈ A, ∀b ∈ B}.

By Proposition 6.25, B ⊆ B∗, so
M ⊆ B ⊆ B∗ ⊆M∗.

M∗ is an A-lattice by Theorem 6.19, hence finitely generated and Noetherian. All of its A-submodules
including B are finitely generated in L, i.e. an A-lattice.

Theorem 6.29

AKLB. B is a DD.

In particular, B is integrally closed, a finitely generated Noetherian ring, and dimB ≤ dimA ≤ 1.

The ring of integers of a number field is a DD, as it is the integral closure of Z.

In the AKLB setup, recall that A is a DD, K = FracA, and L/K is finite separable. B is the integral
closure of A in L and also a DD with L = FracB.

As shorthand, “prime of A/B/K/L” means a nonzero prime ideal, or a maximal ideal. From now on we
assume A ̸= K because DD stuff becomes trivial in that case.

Let p be a prime of A, and suppose its extension in B factors as

pB =
∏

q∈SpecB
qeq .

Definition 6.30 (ramification index, residue degree). The exponent eq in this factorization is the ramifi-
cation index of q. The residue degree is fq := [B/q : A/p].

More specifically, we can write eq/p and fq/p if we have a tower of extensions. For just one extension B/A,
it is unambiguous because each q ⊂ B has one p ⊂ A lying underneath it by p = q ∩ A (although p may
have multiple q lying over it).
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Lemma 6.31

Let C/B/A be a tower of DDs corresponding to M/L/K a tower of finite separable extensions (B,C
are the integral closures of A in L,M). If r is a prime of M above q a prime of L above p a prime of K
(q = r ∩B, p = r ∩A), then er/p = er/qeq/p and fr/p = fr/qfq/p.

Example 6.32

Let A = Z, K = Q, and L = Q(i), where [L : K] = 2. Then B = Z[i].

The prime p = (5) ⊂ Z factors in Z[i] as

5Z[i] = (2 + i)(2− i),

so e(2+i) = 1 and e(2−i) = 1 because they have exponent 1. The residue field A/p = Z/(5) is isomorphic
to F5, as is B/q = Z[i]/(2 + i), so f(2+i) = 1 and similarly f(2−i) = 1.

The prime p = (7) ⊂ Z stays prime in Z[i]:

7Z[i] = (7).

Then e(7) = 1 and f(7) = 2 because Z/(7) ≃ F7 but Z[i]/(7) ≃ F49. It is a degree 2 extension of F7, and
in general B/q is an extension of A/p.

The prime p = (2) ⊂ Z factors as
2Z[i] = (1 + i)2.

Here e(1+i) = 2 and f(1+i) = 1 because Z/(2) ≃ F2 ≃ Z[i]/(1 + i).

We compute
∑

q|p eqfq: ∑
q|(5)

eqfq = 1 · 1 + 1 · 1 = 2

∑
q|(7)

eqfq = 1 · 2 = 2

∑
q|(2)

eqfq = 2 · 1 = 2

In all cases, it equals [L : K] = [Q(i) : Q] = 2, which is not a coincidence.
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Example 6.33

Let A = R[x], K = R(x), and L = K(
√
x3 + 3x). Then B = R[x, y]/(y2 − x3 − 3x), and [L : K] = 2

because we’re adjoining a square root.

The prime (x− 1) factors in B as

(x− 1) = (x− 1, y − 2)(x− 1, y + 2)

since y2 − 4 = x3 +3x− 4 ∈ (x− 1). Then e(x−1,y±2) = 1 and f(x−1,y±2) = 1 because [B/(x− 1, y− 2) :
A/(x− 1)] = [R : R] = 1.

The prime (x+1) remains prime inB because y2 = −4 has no solutions in R. Then e(x+1) = 1, f(x+1) = 2.

The prime (x) factors in B as
(x) = (x, y)2

so e(x,y) = 2, f(x,y) = 1.

Lemma 6.34

AKLB. Let p be a prime of A. The dimension of B/pB as an A/p-vector space is equal to [L : K], the
dimension of L as a K-vector space.

Proof. Localize “at p”: Bp := S−1B as an A-module where S = A− p. Then Ap/pAp = S−1A/(pS−1A) ≃
A/p and Bp/pBp = S−1B/(pS−1B) ≃ B/pB. We have reduced to showing the lemma for for A a DVR, and
in particular a PID.

By Proposition 6.28, B is finitely generated as an A-module, and torsion free by being an integral domain
containing A. By the structure theorem, B is free of finite rank over A. On the other hand, we know by
Proposition 6.24 that B spans L, so any A-basis for B is a K-basis for L.

This means B has rank n := [L : K] as a free A-module. Then pB ≃ pAn ≃ (pA)n is an isomorphisms of
A-modules, and B/pB ≃ An/(pA)n ≃ (A/p)n is an isomorphism of A/p-modules.

Example 6.35

Let A = Z, B = Z[i], and consider p = (2). Then pB = 2Z[i] = (1 + i)2 and B/pB = Z[i]/(1 + i)2 is
ring of cardinality 4 and an F2-algebra isomorphic to F2[x]/(x

2).

Theorem 6.36

AKLB. For every prime p of A, we have
∑

q|p eqfq = [L : K].

We write q | p as shorthand for q | pB.

Proof. By the Chinese remainder theorem, we have

B/pB ≃ B/
∏
q|p

qeq ≃
∏
q|p

B/qeq .

Page 30 of 109



September 25, 2025 18.785 Number Theory I

By the above Lemma 6.34, we know

[L : K] = [B/pB : A/p]

=
∑
q|p

[B/qeq : A/p]

=
∑
q|p

eq[B/q : A/p],

where the last equality is from B/qeq having dimension eq as a B/q-vector space. Indeed,

qeq = {x ∈ B : νq(x) ≥ eq}.

Letting π ∈ q be a uniformizer for Bq (we can assume it lies in q by multiplying by units), the images of
(π0, π1, . . . , πeq−1) in B/qeq is a B/q-basis for B/qeq .

Corollary 6.37

AKLB. Let p be a prime of A. Then gp := #{q ∈ SpecB : q | p} is an integer in [1, n] where n = [L : K],
as are eq and fq for each q | p.

Definition 6.38 (totally ramified, unramified). AKLB. Let p be a prime of A.

• L/K is totally ramified at q if eq = [L : K] is as large as it can be. Equivalently, fq = gp = 1.

• L/K is unramified at q if eq = 1 and B/q is separable over A/p.

• L/K is unramified above p if it is unramified at all q | p. Equivalently, B/pB is a finite étale
algebra over A/p.

Definition 6.39. When L/K is unramified above p we say

• p remains inert if q = pB is prime (equivalently eq = gp = 1, fq = [L : K]).

• p splits completely if gp = [L : K] (equivalently eq = fq = 1 for all q | p).

7 Ideal norms

Recall for a ring extension B/A with B free of finite rank, we defined the norm map NB/A:B → A by

NB/A(b) := det(B
×b−→ B).

7.1 Module index

Let A be a DD with K = FracA. Let V be a K-vector space of dimension n, and let M,N be A-lattices in
V . Ap is a DVR and thus PID, so by the structure theorem Mp ≃ An

p ≃ Np are free (there is no torsion in

a vector space). Choose ϕp:Mp
∼−→ Np, and let ϕ̂p be the unique extension of ϕp to V → V .
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Definition 7.1 (module index). The module index is the principal fractional Ap-ideal generated by

det ϕ̂p:

[Mp : Np]Ap
:= (det ϕ̂p)

Note det ϕ̂p is nonzero because ϕ̂p is invertible. The fractional ideal generated by det ϕ̂p depends only
on Mp and Np, not any choices for ϕp.

In general, for A not necessarily a DVR, the module index is the A-module

[M : N ]A =
⋂
p

[Mp : Np]Ap .

Each [Mp : Np]Ap is an A-submodule of K (not necessarily finitely generated). The intersection [M : N ]A is
clearly an A-submodule of K, and it turns out to finitely generated and nonzero.

Claim 7.2 — [M : N ]A is a nonzero fractional ideal whose localizations agree with [Mp : Np]Ap , i.e.

([M : N ]A)p = [Mp : Np]Ap .

The case of when M ≃ An ≃ N are free is easy. Then we could fix a global determinant ϕ and (det ϕ̂)p =

(det ϕ̂p). In general, M,N are just A-lattices, and we would potentially choose a different ϕ̂p for each p.

The proof involves a gluing argument. As a sketch, M,N are locally free so we can pick a1, . . . , an ∈ A
generating the unit ideal such that each M [ 1ai ] is a free A[ 1ai ]-module. Do the same thing for B with bi.

Claim 7.2 implies that [M : N ]A ∈ IA is a fractional ideal. For M,N,P A-lattices in V (no containments
assumed), we can take products

[M : N ]A[N : P ]A = [M : P ]A.

Taking P =M yields
[M : N ]A[N :M ]A = [M :M ]A = A.

where for the second equality we can take ϕ = id. Thus [M : N ]A and [N :M ]A are inverses in IA.

If N ⊆M , then [M : N ]A is indeed an ideal (not just a fractional ideal).

Remark 7.3. In the special case when V = K,

[M : N ]A = N ÷M.

Example 7.4

Note that the order of M and N are swapped above. For example, [Z : 2Z]Z = ([Z : 2Z]) = (2), but
Z÷ 2Z = (1)÷ (2) = (12).

7.2 Ideal norm

AKLB. The inclusion A ⊆ B induces a homomorphism IA → IB by I 7→ IB. We wish to define an inverse
map NB/A: IB → IA.

Definition 7.5 (ideal norm). AKLB. The ideal norm NB/A: IB → IA is given by I 7→ [B : I]A. We
extend NB/A to the zero ideal by NB/A((0)) = (0).
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Proposition 7.6

AKLB. For all α ∈ L, the ideal norm is compatible with the field norm: NB/A((α)) = (NL/K(α)).

Proof. We have

NB/A((α)) = [B : αB]A

=
⋂

p∈MaxA

[Bp : αBp]Ap

= (det(L
×α−−→ L))

= (NL/K(α))

since each Bp
×α−−→ αBp is an isomorphism of free Ap-modules.

Proposition 7.7

AKLB. The map NB/A: IB → IA is a group homomorphism.

Proof. For all I, J ∈ IB, we have

NB/A(IJ) =
⋂
p

NBp/Ap
(IpJp)

=
⋂
p

NBp/Ap
(Ip)NBp/Ap

(Jp)

= NB/A(I)NB/A(J)

where we use the fact that NBp/Ap
: IBp → IAp is a homomorphism: All elements of IBp are principal, so by

Proposition 7.6, NBp/Ap
is a group homomorphism because NL/K is.

Corollary 7.8

AKLB. For all I, J ∈ IB,
[I : J ]A = NB/A(I

−1J) = NB/A(J ÷ I).

Proof. The second equality is because J ÷ I = I−1J by B DD. For the first equality,

[I : J ]A = [I : B]A[B : J ]A

= [B : I]−1
A [B : J ]A

= NB/A(I
−1)NB/A(J)

= NB/A(I
−1J).

Corollary 7.9

AKLB. NB/A(I) = (NL/K(α) : α ∈ I) for all I ∈ IB.
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The new part that we did today is the map L× NL/K−−−→ K×.

K× L×

IA IB

(x) (y)

I 7→IB

L× K×

IB IA

NL/K

(y) (x)

NB/A

Composing the top row K× ↪→ L× → K× corresponds to exponentiating by n = [L : K] (pset 2), and same
for the bottom row.

7.3 Ideal norm in number fields

Specialize the AKLB setup to A = Z, K = Q, and B = OL, the ring of integers of some number field L
(finite extension of Q). For some q ∈ MaxB, let (p) = q ∩ Z. Writing N in place of NB/A, we have

N(q) = (pf )

where f = [B/q : Z/pZ].

Definition 7.10 (absolute norm). The absolute norm is

N(q) = [OL : q]Z = ([OL : q]).

Proposition 7.11

More generally for any nonzero OL-ideal a, define

N(a) = ([OL : a]).

If b ⊆ a are nonzero fractional ideals of OL, then [a : b]Z = ([a : b]).

The absolute norm N: IOL
→ IZ can be viewed as a map IOL

→ Q>0 because fractional ideals of Z can
be identified with a positive rational number. When a = (a) is a principal fractional ideal, then we write
N(a) := N((a)) =

∣∣NL/Q(a)
∣∣.

7.4 Dedekind–Kummer

AKLB. Recall that we assume L/K is separable, so L = K(α) for some α ∈ L (or even α ∈ B by clearing
denominators). However, it is not always true that B = A[α], such as when A = Z,K = Q, L = Q(

√
5),

then B = Z[1+
√
5

2 ] not Z[
√
5]. However if B = A[α] for some α ∈ B, then we call B (and L) monogenic. In

our example, B and L are still monogenic.
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Theorem 7.12 (Dedekind–Kummer)

AKLB. Let L = K(α) for α ∈ B. Let f ∈ A[x] be the minimal polynomial of α. Let p be a prime of
A and suppose

f = ge11 · · · g
er
r ∈ (A/p)[x]

is the factorization of the mod p reduction of f into monic irreducibles gi ∈ (A/p)[x]. Let

qi := (p, gi(α))

where gi ∈ A[x] is any lift of gi. If B = A[α], then

pB = qe11 · · · q
er
r

and fqi = deg gi.

This might be on the midterm for small p.

Example 7.13

LetA = Z,K = Q, and L = Q(ζ5) which is a degree 4 extension. So α = ζ5 and f(x) = x4+x3+x2+x+1.
By pset 4.2, B = OL = Z[ζ5], and we can use Dedekind–Kummer to factor any prime of Z in OL.

• (2): f is irreducible in F2[x], so e2 = 1 and f2 = 4. (2) is an inert prime in Q(ζ5).

• (5): f(x) ≡ (x− 1)4 (mod 5), so 5Z[ζ5] = (5, ζ5 − 1)4 and e = 4, f = 1. (5) is totally ramified in
Q(ζ5).

• (11): f(x) ≡ (x− 4)(x− 9)(x− 5)(x− 3) (mod 11) so

11Z[ζ5] = (11, ζ5 − 4)(11, ζ5 − 9)(11, ζ5 − 5)(11, ζ5 − 3)

and eq = 1, fq = 1 for each q. (11) splits completely.

• (19): f(x) ≡ (x2 + 5x+ 1)(x2 − 4x+ 1) (mod 19) so

19Z[ζ5] = (19, ζ25 + 5ζ5 + 1)(19, ζ25 − 4ζ5 + 1)

and eq = 1, fq = 2 for each q.

Proof. We first show that each qi is prime in B. From B = A[α] ≃ A[x]/(f), we have

B

qi
=

A[α]

(p, gi(α))
≃ A[x]

(f(x), p, gi(x))
≃ (A/p)[x]

(f(x), gi(x))
=

(A/p)[x]

(gi(x))

because gi | f . Also, gi is irreducible, so the last quotient is a field and qi ⊂ B is a maximal ideal. Thus qi
is a prime over p with fqi = deg gi.

We use unique factorization into prime ideals after we know qi is prime. The ideal∏
i

qeii =
∏
i

(p, gi(α))
ei =

∏
i

(pB + (gi(α)))
ei

is divisible by pB, because all terms in the expansion have pB in it except the last term which is∏
i

(gi(α))
ei ≡ (f(α)) ≡ (0) (mod pB).
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The gi(x) are distinct in (A/p)[x]/(f(x)) ≃ A[x]/(p, f(x)) ≃ A[α]/pA[α], so the gi(α) are distinct mod
pB = pA[α]. This implies the qi are all distinct primes of B. Also ei ≥ eqi (the ramification index) and
{q | p} ⊆ {qi}i in order for

∏
i q

ei
i to be divisible by pB. We already noted that each qi | p, so indeed

{q | p} = {qi}i.

It remains to show ei = eqi . From

NB/A

(∏
i

qeii

)
= NB/A(qi)

ei =
∏
i

(pfqi )ei =
∏
i

pei deg gi =
∏
i

pdeg f = p[L:K],

we see
∑

i eifqi = [L : K] =
∑

q|p eqfq so we need ei = eqi or the LHS would be too big.

7.5 Conductor of a ring

Definition 7.14 (conductor). Let S/R be an extension of commutative rings. The conductor of R in S
is the largest S-ideal that is an R-ideal. Equivalently, it is the ideal

c := {α ∈ S : αS ⊆ R} = {α ∈ R : αS ⊆ R}.

When R is an integral domain, the conductor of R is the conductor of R in its integral closure.

Example 7.15

The conductor of Z ⊆ Z[i] is (0). Z[i] is “too far away” from Z, as multiplying by i will not land in Z.

The conductor of Z[
√
−3] ⊆ Z[ζ3] is (2, 1 +

√
−3) = 2Z[ζ3]. Note it is principal in Z[ζ3] but not in

Z[
√
−3].

Lemma 7.16

Let R be a Noetherian domain with integral closure S. The conductor of R in S is nonzero if and only
if S is finitely generated as an R-module.

Definition 7.17 (order). An order O is a Noetherian domain of dimension 1 whose conductor is nonzero,
or equivalently, whose integral closure is finitely generated as an O-module.

Example 7.18

Any DD that is not a field is an order.

In AKLB assuming L ̸= K, B is finitely generated as an A-module and thus over every intermediate
ring between A and B. If A[α] and B have the same fraction field, then A[α] is an order in B. So the
conductor of A is nonzero.

Definition 7.19 (A-order). Let A be a Noetherian domain with K = FracA, and let L be a K-algebra
of finite dimension (not necessarily commutative). An A-order in L is an A-lattice that is a ring.

All A-orders are orders in AKLB, since A-lattices have to span.

An A-order is maximal if it is not properly contained in another A-order. When A is a DD, every A-order
is contained in a maximal A-order. In AKLB, B is the unique maximal A-order in L.
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Definition 7.20 (prime to). Let A be a Noetherian domain and J an A-ideal. A fractional ideal I is
prime to J if IAp = Ap for all p ⊇ J . Let IJA ⊆ IA be the fractional ideals prime to J .

Theorem 7.21

AKLB. Let O be an order with integral closure B. Let c be any ideal of B contained in the conductor
of O. The map q 7→ q ∩ O induces a group homomorphism IcB → IcO, and both groups are isomorphic
to the free abelian group generated by their prime ideals. In particular, every fractional ideal I ∈ IcO
has a unique factorization into prime ideals

∏
i p

ei
i that matches IB =

∏
i q

ei
i with pi = qi ∩ O.

Corollary 7.22

The assumption B = A[α] in the Dedekind–Kummer theorem can be replaced by “pB is prime to the
conductor of A[α].”

Remark 7.23. For A = Z and L = Q(α), the ideal pOL is prime to the conductor of A[α] if and only if
p does not divide [OL : A[α]].

8 Galois extensions

Definition 8.1 (left G-module). Let G be a group. A left G-module is an abelian group M equipped
with a left G-action compatible with the group structure: σ(a · b) = σ(a) · σ(b) for all a, b ∈M .

AKLBG setup: AKLB and L/K Galois with Gal(L/K) = G. We show that IB is a left G-module.

Theorem 8.2

AKLBG. For each I ∈ IB and σ ∈ G, define σ(I) = {σ(x) : x ∈ I}. Then σ(I) ∈ IB and this defines
a G-action on IB.

Moreover, the restriction of this action to SpecB is a G-set, i.e. G sends prime ideals to prime ideals.

Proof. We first claim that σ(B) = B. Every b ∈ B is the root of some monic f ∈ A[x]. Then

0 = σ(0) = σ(f(b)) = f(σ(b)),

so σ(b) is another root of f . Thus σ(b) ∈ B, and σ(B) ⊆ B. We analogously have σ−1(B) ⊆ B, so B ⊆ σ(B).

Since I is a finitely generated B-module in L, σ(I) is a finitely generated σ(B)-module (i.e. B-module), so
σ(I) ∈ IB. As σ((0)) = (0), σ permutes the nonzero fractional ideals IB. To see that σ is a group action,
we have

(στ)(I) = {(στ)(x) : x ∈ I} = {σ(τ(x)) : x ∈ I} = σ(τ(I)).

To see that IB is a left G-module, let I, J ∈ IB and σ ∈ G. Each x ∈ IJ has the form x = a1b1+ · · ·+ anbn
with ai ∈ I, bi ∈ J . As σ(x) = σ(a1)σ(b1) + · · · + σ(an)σ(bn) ∈ σ(I)σ(J), σ(IJ) ⊆ σ(I)σ(J). Applying
the same argument to σ(I), σ(J), σ−1 yields σ−1(σ(I)σ(J)) ⊆ IJ . Thus σ(IJ) = σ(I)σ(J) and IB is a left
G-module.

For the second part, let q ∈ IB be a prime ideal, and let σ(q) = qe11 · · · qenn be the unique factorization in B.
Then

q = σ−1(q1)
e1 · · ·σ−1(qn)

en ,
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but since q is prime, we need n = 1 and e1 = 1. Then σ(q) = q1 is a nonzero prime ideal, and SpecB is a
G-set.

Recall that q | p for q ∈ SpecB, p ∈ SpecA means q is in the prime factorization of pB (or p = A ∩ q). In
other words, {q | p} is the fiber of MaxB → MaxA above p. If pB =

∏
i q

ei
i , then

pB = σ(pB) =
∏
i

σ(qi)
ei

implying that σ can only permute the primes above a given p. G therefore acts on {q | p}, and it turns out
this action is transitive.

Corollary 8.3

AKLBG. For all p ∈ MaxA, G acts transitively on {q | p}.

Proof. Let {q | p} = {q1, . . . , qn}. FSOC suppose q1, q2 lie in distinct G-orbits. By the Chinese remainder
theorem, we have

B/q1 · · · qn ≃ B/q1 × · · · ×B/qn.

Choose b ∈ B such that b ≡ 0 (mod q2) and b ≡ 1 (mod σ(q1)) for all σ ∈ G (by assumption σ(q1) ̸= q2 for
any σ ∈ G). Then b ∈ q2 and

NL/K(b) =
∏
σ∈G

σ(b) ≡ 1 (mod q1)

so NL/K(b) /∈ q1 ∩A = p. This contradicts NL/K(b) ∈ NL/K(q2) = pfq2 ⊆ p.

Corollary 8.4

AKLBG. The residue field degrees fq := [B/q : A/p] and the ramification indices eq := νq(pB) are the
same for all q | p.

Proof. For each σ ∈ G, we have an isomorphism B/q ≃ B/σ(q) that fixes A/p, so fq = fσ(q). From σ(p) = p
and σ(B) = B, we have σ(pB) = pB and

eq = νq(pB) = νq(σ(pB)) = νq

(∏
r|p

σ(r)er
)
= νq

(∏
r|p

r
eσ−1(r)

)
= eσ−1(q).

This means we can unambiguously define fp := fq and ep := eq. Recall gp = #{q | p}.

Corollary 8.5

AKLBG. epfpgp = [L : K].

Proof. This follows from Theorem 6.36 and Corollary 8.4.
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Example 8.6

If n = [L : K] is a prime number, the possibilities are

• ep = n, so p is totally ramified in L.

• fp = n, so p is inert.

• gp = n, so p splits completely.

In the last two cases, we assume B/pB is a finite étale A/p-algebra, which is automatically true when
A/p is finite (hence perfect).

8.1 Decomposition and inertia groups

Definition 8.7 (decomposition group). AKLBG. The decomposition group Dq is the G-stabilizer of q.

Lemma 8.8

AKLBG. Let p ∈ MaxA. The Dq for q | p are conjugate subgroups of G with #Dq = epfp and
[G : Dq] = gp.

Proof. Note that stabilizers of elements in an orbit are always conjugate. The orbit-stabilizer theorem says
[G : Dq] = gp, the size of the orbit {q | p}. Then #Dq = epfp is deduced from Corollary 8.5.

Now fix q | p. Each σ ∈ G induces σ ∈ HomA/p(B/q, B/σ(q)). For σ ∈ Dq, we have σ(q) = q, so
σ ∈ AutA/p(B/q). The map σ 7→ σ defines a group homomorphism

πq:Dq → AutA/p(B/q),

as στ(x) = στ(x) = σ(τ(x)) = σ(τ(x)) = σ(τ(x)).

Proposition 8.9

AKLBG. Let q | p be a prime of B. The homomorphism πq:Dq → AutA/p(B/q) defined by σ 7→ σ is
surjective, and B/q is a normal extension of A/p.

Proof. Let F be the separable closure of A/p in B/q. For b ∈ F , pick b ∈ B such that b ≡ b (mod q). By
CRT, we can find b ≡ 0 (mod σ−1(q)) for all σ ∈ G −Dq, as the maximal ideals q, σ−1(q) are all distinct
and thus coprime. Then σ(b) ≡ 0 (mod q), and we let

g(x) :=
∏
σ∈G

(x− σ(b)) ∈ A[x].

Let g ∈ (A/p)[x] be the reduction mod p. By construction, g(b) = 0 and g splits completely in (B/q)[x].
This holds for every b ∈ F×, so F is a normal (hence Galois) extension of A/p. Then Gal(F/(A/p)) ≃
AutA/p(B/q), since F is the separable closure.

For σ ∈ G − Dq we have σ(b) = 0, so 0 is a root of g with multiplicity at least m = #(G − Dq). The
remaining roots are σ(b) for σ ∈ Dq, which are Gal(F/(A/p))-conjugates of B. Thus g(x)/xm is a polynomial
dividing a power of the minimal polynomial f(x) of b. However, the minimal polynomial is irreducible, so
g(x)/xm is a power of f(x). In other words, every Gal(F/(A/p))-conjugate of b is of the form σ(b) for some
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σ ∈ Dq. Applying this to the b such that F = (A/p)(b) (by the primitive element theorem) shows that
πq:Dq → AutA/p(B/q) is surjective.

To show B/q is normal, proceed as above, replacing F with B/q. For b ∈ B, define g ∈ A[x] and g ∈ (A/p)[x]
as before to show every b ∈ B/q is a root of a polynomial in (A/p)[x] that splits completely in (B/q)[x].

Definition 8.10 (inertia group). AKLBG. The inertia group Iq is the kernel of the surjective homo-
morphism πq:Dq → AutA/p(B/q).

Corollary 8.11

For all q | p ∈ MaxB, we have an exact sequence

1→ Iq → Dq → AutA/p(B/q)→ 1,

and #Iq = eq[B/q : A/p]i.

We have shown that B/q is always a normal extension of A/p. Now suppose it is also a separable extension
(which always holds when A/p is finite). Then

Dq/Iq ≃ AutA/p(B/q) ≃ Gal((B/q)/(A/p)).

Proposition 8.12

AKLBG. Let q ∈ MaxB with q | p and B/q a separable extension of A/p. We have a tower of field
extensions K ⊆ LDq ⊆ LIq ⊆ L with

ep = [L : LIq ] = #Iq

fp = [LIq : LDq ] = #Dq/#Iq

gp = [LDq : K] = #{q | p}.

LDq is the decomposition field at q, and LIq is the inertia field at q.
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Proposition 8.13

AKLBG. Suppose there is a field E with K ⊆ E ⊆ L. For q ∈ MaxB, define qE := q ∩ E. Let
p = q ∩K. Then

Iq(L/E) = Iq(L/K) ∩Gal(L/E)

Dq(L/E) = Dq(L/K) ∩Gal(L/E).

If E/K is also Galois like L/K, then we get a commutative diagram

1 1 1

1 Iq(L/E) Iq(L/K) IqE (E/K) 1

1 Dq(L/E) Dq(L/K) DqE (E/K) 1

1 Gq(L/E) Gq(L/K) GqE (E/K) 1

1 1 1

where Gq(•) is Gal of the residue field.

Definition 8.14. AKLBG. Let Ip be the group generated by Iq for q | p, and let Dp be the group
generated by Dq, called the inertia group and decomposition group of p.

Proposition 8.15

The inertia field LIp and decomposition field LDp are always Galois extensions of K.

If A/p is perfect, then the inertia field LIp is the largest subfield in which p is unramified. The decom-
position field LDp is the largest subfield in which p splits completely.

8.2 Frobenius elements

Now assume that A/p is finite (and thus B/q) for all primes p of K. We write Fq = B/q and Fp = A/p.
Recall the exact sequence

1→ Iq → Dq
πq−→ Gal(Fq/Fp)→ 1

where πq sends σ 7→ σ for σ ∈ HomA/p(B/q, B/σ(q)) satisfying σ(x) := σ(x).

If p (equivalently q) is unramified, then Iq = 1 and we have an isomorphism

πq:Dq
∼−→ Gal(Fq/Fp).

Gal(Fq/Fp) is the cyclic group of order fp = [Fq : Fp] generated by the Frobenius automorphism

x 7→ x#Fp .
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Definition 8.16 (Frobenius element). The Frobenius element is π−1
q (x 7→ x#Fp) ∈ Dq, denoted σq or

Frobq.

Definition 8.17 (Frobenius class). AKLBG with finite residue fields. Let p be an unramified prime of
A. The Frobenius class is the G-conjugacy class Frobp = {σq : q | p}.

If G is abelian, then each conjugacy class consists of a single element and Frobp = {Frobq} is a singleton.

Proposition 8.18

AKLBG with finite residue fields. Let q | p be unramified. The Frobenius element Frobq is the unique
element σ ∈ G such that for all x ∈ B we have σ(x) ≡ x#Fp (mod q).

This is saying Frobq can be characterized without looking at the exact sequence.

Proof. Frobq satisfies this, so we just need to show uniqueness. Suppose σ ∈ G has this property. Then if
x ∈ q we have x ≡ 0 (mod q) =⇒ σ(x) ≡ x#Fp ≡ 0 (mod q) so σ(x) ∈ q and σ ∈ Dq (stabilizers). The
isomorphism πq:Dq → Gal(Fq/Fp) maps both σ and Frobq to x 7→ x#Fp , so they are the same.

8.3 Artin symbols

Throughout this section, assume AKLBG with finite residue fields.

Definition 8.19 (Artin symbol). For each unramified q ∈ MaxB, the Artin symbol is
(
L/K
q

)
:= Frobq.

Proposition 8.20

p splits completely in L if and only if
(
L/K
q

)
= 1 for all q | p.

Proof. p splits completely ⇐⇒ epfp = 1 ⇐⇒ #Dq = 1 by Lemma 8.8 ⇐⇒ Frobq = 1 asDq = ⟨Frobq⟩.

We extend
(
L/K
q

)
to ISA, the fractional ideals coprime to S where S ⊇ {p ramified} (i.e. νp(I) = 0 for all

p ∈ S). When Gal(L/K) is abelian, Frobq is equal for all q | p and we write
(
L/K
p

)
.

Definition 8.21 (Artin map). The Artin map is the homomorphism(
L/K

•

)
: ISA → Gal(L/K)

m∏
i=1

peii 7→
m∏
i=1

(
L/K

pi

)ei

.

This group homomorphism is remarkable because ISA doesn’t know anything about L. By understanding
structure of subgroups of IA, we can understand all abelian extensions of K.
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9 Complete fields and valuation rings

9.1 Completions

Recall that a metric on a set X is a function d:X ×X → R≥0 satisfying

1. d(x, y) = 0 ⇐⇒ x = y

2. d(x, y) = d(y, x)

3. d(x, z) ≤ d(x, y) + d(y, z).

If also d(x, z) ≤ max{d(x, y), d(y, z)}, then d is a non-archimedean metric.

There is a topology on X generated by open balls

B<r(x) := {y ∈ X : d(x, y) < r}

where r ∈ R>0 and x ∈ X. It is Hausdorff. The closed balls

B≤r(x) := {y ∈ X : d(x, y) ≤ r}

are closed in this topology.

Every absolute value |·| on a ring X induces a metric via

d(x, y) := |x− y| ,

although not every metric comes from an absolute value.

Definition 9.1 (convergence, Cauchy, complete). In a metric space X, a sequence (xn) converges (to x)
if there exists x ∈ X such that ∀ϵ > 0, ∃N ∈ Z>0 such that d(xn, x) < ϵ for all n ≥ N . The limit x is
unique if it exists.

The sequence (xn) is Cauchy if ∀ϵ > 0, ∃N ∈ Z>0 such that d(xm, xn) < ϵ for all m,n ≥ N . Convergent
sequences are Cauchy, but the converse is not always true.

If every Cauchy sequence converges, then X is complete.

Definition 9.2 (topological group). An abelian group G is a topological group if it is a topological space
in which the group operations G×G→ G by (x, y) 7→ x+ y and G→ G by x 7→ x−1 are continuous.

A commutative ring R is topological ring if it is a topological space in which addition and multiplication
R×R→ R are continuous. Note R× might not be a topological group.

A field K is a topological field if it is a topological ring, and its unit group K× is a topological group.

Definition 9.3 (equivalent). In a metric space X, two Cauchy sequences (xn), (yn) are equivalent if
d(xn, yn)→ 0 as n→∞.

This is an equivalence relation on Cauchy sequences, and let [(xn)] denote the equivalence class.
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Definition 9.4 (completion). The completion of a metric space X is the metric space X̂ whose elements
are equivalence classes of Cauchy sequences with

d([(xn)], [(yn)]) := lim
n→∞

d(xn, yn).

We embed X in X̂ via x 7→ x̂ := [(x, x, x, . . . )].

If X is a topological ring, we extend the ring operations to X̂ via [(xn)] + [(yn)] := [(xn + yn)] and
[(xn)][(yn)] := [(xnyn)]. Then 0 := 0̂ and 1 := 1̂. If d comes from an absolute value |·| on X, then we
define

|[(xn)]| := lim
n→∞

|xn| .

If |·| arises from a discrete valuation ν on a field K, meaning |x| = cν(x) for some 0 < c < 1, we can extend
ν to X̂ by defining

ν([(xn)]) := lim
n→∞

ν(xn) ∈ Z

for [(xn)] ̸= 0̂, and as usual ν(0̂) :=∞. The sequence of integers ν(xn) is eventually constant, so it converges
to an integer. We will have

|[(xn)]| = cν([(xn)]).

Proposition 9.5

K be a topological field under the metric induced by |·|, and let K̂ be its completion. Then K̂ is
complete and has the following universal property: every embedding of K into a complete field L can
be uniquely extended to an embedding K̂ ↪→ L (as topological fields, so it’s continuous). This extension
is an isomorphism when K is dense in L. Up to canonical isomorphism, K̂ is the unique topological
field with this property.

Theorem 9.6 (Weak approximation)

Let K be a field and |·|1 , . . . , |·|n be pairwise nonequivalent nontrivial absolute values on K. Let
a1, . . . , an ∈ K and ϵ1, . . . , ϵn > 0. Then there exists x ∈ K such that |x− ai|i < ϵi for 1 ≤ i ≤ n.

Corollary 9.7

Two absolute values on a field K induce the same topology if and only if they are equivalent.

“Completion is like localization but on steroids.”

Unintuitive facts about a non-archimedean topology on X:

• We can have B<r(x) = B<s(x) for r ̸= s, such as when |·| :X → R≥0 comes from a discrete valuation
and has a discrete image (powers of c).

• Every point in an open ball is a center, i.e. B<r(y) = B<r(x) for all y ∈ b<r(x).

• Any two open balls are either concentric or disjoint.

• Every open ball is closed, and every closed ball is open.

• X is totally disconnected, meaning singletons are the only connected components.
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9.2 Valuation rings in complete fields

We now consider absolute values induced by a discrete valuation ν:K× ↠ Z. Picking 0 < c < 1 and defining

|x|ν := cν(x), |0|ν := 0

yields a nontrivial non-archimedean absolute value. Let Kν := K̂ be the completion with respect to |·|ν .
Different choices of c yield equivalent absolute values and do not change the topology or Kν .

The valuation ring
Aν = {x ∈ Kν : ν(x) ≥ 0} = {x ∈ Kν : |x|ν ≤ 1}

which is a closed (and thus open) ball. It is thus complete as a closed subset of a complete topological space.

Proposition 9.8

Let K be a field with absolute value |·|ν induced by discrete valuation ν. Let A be the valuation ring
and π be a uniformizer. The valuation ring Aν of Kν is a complete DVR with uniformizer π, and we
have an isomorphism of topological rings

Aν ≃ lim←−
n→∞

A/πnA.

Proof. Read carefully in the notes. It’s important that the isomorphism is of topological rings (not just
rings). A key step is that

⋂
πnAν = {0}.

Example 9.9

For K = Q, let νp be the p-adic valuation and |x|p = p−νp(x). The completion of Q with respect to |·|p
is Q̂ = Qp (p-adic numbers). The valuation ring of Q is the local ring Z(p), so the valuation ring of Q
is Zp (p-adic integers): taking π = p as the uniformizer, we have

Ẑ(p) ≃ lim←−
n→∞

Z(p)/p
nZ(p) ≃ lim←−

n→∞
Z/pnZ ≃ Zp.

Example 9.10

For K = Fq(t), let νt be the t-adic valuation and |x|t := q−νt(x). The completion of Fq(t) with respect
to |·|t is Fq((t)). The valuation ring of Fq(t) is Fq[t](t), so the valuation ring of Fq((t)) is Fq[[t]]: taking
π = t as the uniformizer, we have

F̂q[t](t) ≃ lim←−
n→∞

Fq[t](t)/t
nFq[t](t) ≃ lim←−

n→∞
Fq[t]/t

nFq[t] ≃ Fq[[t]].
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Example 9.11

The isomorphism Zp ≃ lim←−Z/pnZ gives a canonical way to represent a ∈ Zp as a sequence (an) with
an+1 ≡ an (mod pn) and 0 ≤ an < pn. For example in Z7, we have

2 = (2, 2, 2, . . . )

2002 = (0, 42, 287, 2002, 2002, . . . )

−2 = (5, 47, 341, 2399, 16805, . . . )

2−1 = (4, 25, 172, 1201, 8404, . . . )

√
2 =

{
(3, 10, 108, 2166, 4567, . . . )

(4, 39, 235, 235, 12240, . . . )

3
√
2 = (4, 46, 95, 1124, 15530, . . . ).

To compute 2−1, we find 2−1 ≡ 4 (mod 7), etc. For
√
2, we see that 32 ≡ 42 ≡ 2 (mod 7), then lift to

mod 49 etc.

Z7 turns out to not be algebraically closed, e.g. there is no 5th root of 2 (mod 7).

There is redundancy as knowing an determines all a1, . . . , an−1. A more compact way to represent is the
following.

Definition 9.12 (p-adic expansion). Let a = (an) be a p-adic integer with an ∈ [0, pn − 1]. The p-adic
expansion is (b0, b1, b2, . . . ) with b0 = a1 and bn = (an+1 − an)/pn.

Example 9.13

The sequences from before become

2 = (2, 0, 0, . . . )

2002 = (0, 6, 5, 5, 0, 0, . . . )

−2 = (5, 6, 6, 6, . . . )

2−1 = (4, 3, 3, 3, . . . )

√
2 =

{
(3, 1, 2, 6, 1, 2, 1, 2, 4, 6, . . . )

(4, 5, 4, 0, 5, 4, 5, 4, 2, 0, . . . )

3
√
2 = (4, 6, 1, 3, 6, 4, 3, 5, 4, 6, . . . ).

Addition in Zp is done by adding p-adic expansions (b0, b1, . . . ) + (c0, c1, . . . ) component-wise mod p and
carrying to the right. Multiplication is by formal power series multiplication (

∑
bnp

n)(
∑
cnp

n).

9.3 Extending valuations

Definition 9.14 (extends). Let L/K be a finite separable extension, and let ν1 and ν2 be discrete
valuations on K and L respectively. If ν2|K= eν1 for some e ∈ Z>0, then ν2 extends ν1 with index e.
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Theorem 9.15

AKLB. Let p be a prime of A. Then for all q | p, the discrete valuation νq extends νp with index eq,
and every discrete valuation on L that extends νp arises this way. In other words, the map q 7→ νq is a
bijection from {q | p} to valuations of L extending νp.

10 Local fields and Hensel’s lemmas

10.1 Local fields

Definition 10.1 (global field). A global field is a finite extension of Q or Fq(t).

Definition 10.2 (local field). A local field is a field with a nontrivial absolute value that is locally
compact in the induced topology, meaning every point lies in a compact neighborhood.

Example 10.3

R and C are local fields, and in fact the only archimedean local fields. Q is not a local field.

It turns out that local fields are the completion of a global field with respect to some absolute value.

Lemma 10.4

LetK be a field with a nontrivial absolute value. ThenK is a local field if and only if every (equivalently,
any) closed ball is compact.

Proof. (⇒) Suppose K is a local field. For all z ∈ K, the map x 7→ x+ z is continuous, so it suffices to show
that every closed ball about 0 is compact. 0 lies in a compact neighborhood containing a closed ball B≤s(0)
which is compact. Now fix α ∈ K× with |α| > 1. The map x 7→ αx is continuous and |·| is multiplicative,
so B≤|α|ns(0) is compact for every n ≥ 1. Then every closed ball B≤r(0) about 0 is compact, because it is a
closed subset of some B≤|α|ns(0) with increasing radii |α|n s.

(⇐) This is immediate. “Any” implies “every” because we can replace B≤s(0) with any closed ball.

Corollary 10.5

If K is a local field, then K is complete.

Proof. Suppose not, and consider a Cauchy sequence (xn) in K converging to x ∈ K̂ −K. Pick N ∈ Z>0

such that |xn − x| < 1
2 for all n ≥ N . Consider S := B≤1(xN ). Then (xn) has a convergent subsequence

in S ⊆ K, contradicting the fact that S is compact (Lemma 10.4). (We are using the fact that in a metric
space, compact implies sequentially compact.)

This is another proof that Q is not a local field.
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Proposition 10.6

Let K be a field with absolute value |·|ν induced by a discrete valuation. Let A = {x ∈ K : |x|ν ≤ 1} be
the valuation ring with uniformizer π. Then K is a local field if and only if K is complete and A/πA
is finite.

Proof. (⇒) After Corollary 10.5, it remains to show that A/πA is finite. We know that A = B≤1(0) is
compact. The cosets x+ πA of the subgroup πA ⊆ A are open balls B<1(x) since y ∈ x+ πA if and only if
|x− y|ν ≤ |π|ν < 1. The cosets {x+ πA : x ∈ A} form an open cover of A, which is compact, so there is a
finite subcover. Thus, A/πA is finite.

(⇐) K complete implies A complete, and we have A = Â ≃ lim←−n
A/πnA. Each quotient A/πnA is finite

and therefore compact, so the inverse limit A is compact. Then A is a compact closed ball, which implies
K is a local field by Lemma 10.4.

Corollary 10.7

Let L be a global field with |·|ν any nontrivial absolute value. Then the completion Lν is a local field.

Proof. We know L/K is a finite extension where K = Q or Fq(t). Then A = Z or Fq[t] is a DD, as is its
integral closure B inside L. If |·|ν is archimedean, then K = Q, and Lν is a finite extension of R. Then Lν

is R or C, both of which are local fields.

Now suppose |·|ν is non-archimedean, and we claim it is induced by a discrete valuation. Let

C := {x ∈ L : |x| ≤ 1}, m = {x ∈ L : |x|ν < 1}.

Note m ̸= 0. The restriction of |·|ν to K is still non-archimedean, and from pset 1 we know that it is induced
by a discrete valuation. In particular, |x|ν ≤ 1 for all x ∈ A, so A ⊆ C. C is integrally closed in its fraction
field L (true in general for valuation rings), so B ⊆ C. Let q = m ∩ B which is a maximal ideal of B. The
DVR Bq is contained in C ⊆ L, and in fact we must have Bq = C because there are no rings properly
between a DVR Bq and its fraction field L. Then |·|ν ≃ |·|νq .

The residue field Bq/qBq ≃ B/q is finite, since B/q is a finite extension of the finite field A/p, where
p = q ∩ A. Now consider the completion Lν with valuation ring Bν . Taking a uniformizer π of q ⊆ B as a
uniformizer for Bν , we have

B/q ≃ Bq/qBq ≃ Bq/πBq ≃ Bν/πBν

so Bν/πBν is finite. Thus Lν is complete with an absolute value induced by a discrete valuation and finite
residue field, which implies it is a local field (Proposition 10.6).

Proposition 10.8

A locally compact topological vector space over a nondiscrete locally compact field has finite dimension.

Theorem 10.9

Let L be a local field. If L is archimedean, then L = R or C. Otherwise, L is isomorphic to a finite
extension of Qp or Fq((t)).
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Proof. We know L is complete. If charL = 0 then Q ⊆ L which implies R ⊆ L if archimedean, or Qp ⊆ L if
non-archimedean (pset 1). If charL = p > 0, then Fp ⊆ L, and L contains a transcendental element s ∈ L,
because no algebraic extension of Fp has a nontrivial absolute value. So Fp(s) ⊆ L, which means Fq((t)) ⊆ L
for some q a power of p. In summary, L contains a subfield K isomorphic to

• R if charL = 0 archimedean

• Qp if charL = 0 non-archimedean

• Fq((t)) if charL = p > 0.

In all cases, K is a local field and thus locally compact. It is also a finite extension by Proposition 10.8.

10.2 Hensel’s lemmas

Let R be a commutative ring with formal derivatives f 7→ f ′ on R[x]. It satisfies the usual properties of

(af + bg)′ = af ′ + bg′

(fg)′ = f ′g + fg′

(f ◦ g)′ = (f ′ ◦ g)g′

for f, g ∈ R[t].

Lemma 10.10

Given f =
∑

i fix
i ∈ R[x] and a ∈ R, we have

f(x) = f(a) + f ′(a)(x− a) + g(x)(x− a)2

for a unique g ∈ R[x].

Proof. By the binomial theorem, we have

f(x) = f(a+ (x− a)) =
∑
i

fi(a+ (x− a))i = f(a) + f ′(a)(x− a) + g(x)(x− a)2.

This is like the Taylor expansion f(x) =
∑

i
f (i)(a)

i! (x − a)i, but we should be careful as i! could be a zero

divisor. Actually f (i)/i! is a well-defined element of R.

Corollary 10.11

We have f(a) = f ′(a) = 0 if and only if f(x) = (x− a)2g(x) for some g ∈ R[x].

Definition 10.12 (simple root). If f(a) = 0 and f ′(a) ̸= 0, then a is a simple root of f .

Lemma 10.13 (Hensel I)

Let A be a complete DVR with maximal ideal p and residue field k = A/p. Let f ∈ A[x] be monic with
reduction f ∈ k[x] has a ∈ k as a simple root. Then there exists a lift a ∈ A of a such that f(a) = 0.

It turns out this lift will also be unique.
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Proof. Work in K = FracA, and let a0 be any lift of a. We construct a Cauchy sequence (an) such that
each an is a root of f mod p2

n
. Fix 0 < c < 1 and define |·| = cνp(·). Since f(a0) ∈ p but f ′(a0) /∈ p, we have

|f(a0)| ≤ c < 1 and |f ′(a0)| = 1. Let

ϵ :=
|f(a0)|
|f ′(a0)|2

< 1.

We define

an+1 := an −
f(an)

f ′(an)

and can show by induction that

1. |an| ≤ 1, so an ∈ A.

2. |an − a0| ≤ ϵ < 1, so an ≡ a0 (mod p), and an is a lift of a.

3. |f ′(an)| = |f ′(a0)|, so f ′(an) | f(an) and an+1 is well defined.

4. |f(an)| ≤ ϵ2
n |f ′(a0)|2, so |f(an)| and f(an) converge to 0 rapidly.

Then |an+1 − an| ≤ ϵ2
n → 0 so (an) is Cauchy. The limit a ∈ A (by A complete) is a root of f and satisfies

a ≡ a0 (mod p).

To prove Hensel I, we only needed ϵ < 1, not that a is a simple root. A seemingly stronger version is the
following, but it turns out they are equivalent.

Lemma 10.14 (Hensel II)

Let A be a DVR. Let f ∈ A[x], and suppose a0 ∈ A satisfies |f(a0)| < |f ′(a0)|2. Defining

an+1 := an −
f(an)

f ′(an)
,

the sequence (an) is well defined and converges to a unique a ∈ A such that |a− a0| ≤ ϵ := |f(a0)|
|f ′(a0)|2

and

|f(an)| ≤ ϵ2
n |f ′(an)|2 for all n ≥ 0.

Lemma 10.15 (Hensel III)

Let A be a complete DVR with maximal ideal p and residue field k = A/p. Let f ∈ A[x] and f ∈ k[x].
If f = gh for coprime g, h ∈ k[x], then there exist lifts g, h ∈ A[x] (so g ≡ g (mod p), h ≡ h (mod p))
such that f = gh with deg g = deg g.

Lemma 10.16 (Hensel–Kürshák)

Let A be a complete DVR and K = FracA. If f ∈ K[x] is irreducible with leading and constant
coefficients in A, then f ∈ A[x].

Proof. Let p = (π) be the maximal ideal of A and k := A/p. Suppose f =
∑n

i=0 fix
i is irreducible, so

f0, fn ̸= 0. Let m := min{νp(fi)}. FSOC suppose m < 0, and let g := π−mf =
∑n

i=0 gix
i ∈ A[x]. Then g

is irreducible and g0, gn ∈ p as m < 0 and f0, fn ∈ A. Also, gi is a unit for some 0 < i < n. The reduction
g ∈ k[x] has positive degree, but the constant term is 0, so let u = xd be the largest power of x dividing g
where 0 < d ≤ deg g < n. Let v = g/u ∈ k[x], which is coprime to u.

By Hensel III, g = uv for lifts u, v ∈ A[x] with 0 < deg u = deg u < n, which contradicts g irreducible.
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Corollary 10.17

Let A be a complete DVR with K = FracA, and let L/K be a finite extension. Then α ∈ L is integral
over A if and only NL/K(α) ∈ A.

Theorem 10.18

AKLB. Suppose A is a complete DVR with maximal ideal p. Then B is a DVR whose maximal ideal
q is the unique prime above p.

Proof. There is some q | p by considering the prime factorization of pB. FSOC there exist q1, q2 | p, with
q1 ̸= q2. Choose b ∈ q1 − q2 and consider A[b] ⊆ B. Then q1 ∩ A[b] and q2 ∩ A[b] are distinct prime ideals
of A[b] containing pA[b]. Both are maximal because they are nonzero and dimA[b] = dimA = 1.

The quotient ring A[b]/pA[b] thus has two distinct maximal ideals. Let f ∈ A[x] be the minimal polynomial
of b over K, and let f ∈ (A/p)[x] be the reduction. Then

(A/p)[x]

(f)
≃ A[x]

(p, f)
≃ A[b]

pA[b]

and (A/p)[x]/(f) has at least two maximal ideals. Then f has to be divisible by at least two irreducible
polynomials, so we can write f = gh for g, h coprime and lift to f = gh which is a contradiction as
deg g = deg g ̸= 0.

Remark 10.19. The assumption that A is complete is necessary. For example, if A = Z(5), K = Q, and
L = Q(i), then B = Z(5)[i] which is a PID but not a DVR. In particular, (1 + 2i) and (1− 2i) are both
maximal.

11 Extensions of complete DVRs

11.1 Norms

AKLB. Let A be a complete DVR, so B is a DVR by Theorem 10.18. We will show that B is also complete.

Definition 11.1 (norm). Let K be a field with absolute value |·|, and let V be a K-vector space. A
norm on V is a function ||·||:V → R≥0 such that

• ||v|| = 0 ⇐⇒ v = 0

• ||λv|| = |λ| ||v|| for all λ ∈ K, v ∈ V

• ||v + w|| ≤ ||v||+ ||w|| for all v, w ∈ V .

The norm induces a topology on V via d(v, w) := ||v − w||.

Example 11.2 (supremum norm)

Let V be a K-vector space with basis (ei). For v ∈ V , let vi ∈ K denote the coefficient of ei in
v =

∑
i viei. The supremum norm ||v||∞ := supi |vi| is a norm (so every K-vector space has a norm).

If V is a K-algebra, then an absolute value ||·|| on V is a norm if and only if it extends the absolute value
on K: ||λ|| ||v|| = ||λv|| = |λ| ||v|| ⇐⇒ ||λ|| = |λ|.
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Proposition 11.3

Let V be a finite dimensional K-vector space over a complete field K. Every norm on V induces the
same topology, under which V a complete metric space.

Proof. See pset 6.

Theorem 11.4

Let (A, p) be a complete DVR with K = FracA, discrete valuation νp, and absolute value |x|p := cνp(x)

with 0 < c < 1. Let L/K be a finite extension of degree n. Then

(i) There exists a unique absolute value |x| :=
∣∣NL/K(x)

∣∣1/n
p

on L that extends |·|p.

(ii) L is complete with respect to |·|, and the valuation ring {x ∈ L : |x| ≤ 1} is the integral closure
B of A in L.

(iii) If L/K is separable, then B is a complete DVR whose maximal ideal q induces

|x| = |x|q := cνq(x)/eq

where eq is the ramification index, i.e. pB = qeq .

Proof. It is not obvious that |·| is an absolute value, but assume that it is for now. For all x ∈ K, we have

|x| :=
∣∣NL/K(x)

∣∣1/n
p

= |xn|1/np = |x|p ,

so |·| extends |·|p, and is a norm on L. Since |·|p is nontrivial, we have |x|p ̸= 1 for some x ∈ K×. From
|x|a = |x|p = |x| ⇐⇒ a = 1, |·| is the unique absolute value (in its equivalence class) extending |·|p. Every
norm induces the same topology by Proposition 11.3, so every absolute value on L is equivalent to |·|.

Now we check that |·| is an absolute value.

• |x| = 0 ⇐⇒ x = 0 by construction.

• |·| is multiplicative by construction.

• Triangle inequality: it suffices to show that |x| ≤ 1 =⇒ |x+ 1| ≤ |x|+ 1. We have

|x| ≤ 1 ⇐⇒
∣∣NL/K(x)

∣∣
p
≤ 1 ⇐⇒ NL/K(x) ∈ A ⇐⇒ x ∈ B

where the last equivalence is by Corollary 10.17. Finally, x ∈ B ⇐⇒ x+ 1 ∈ B ⇐⇒ |x+ 1| ≤ 1 by
reversing the above chain of equivalences with x + 1 instead of x. This is in fact even stronger than
the triangle inequality.

This proves (i) and (ii).

For (iii), we now assume L/K is separable. B is a DVR and is complete because it is the valuation ring
of L. Letting q denote the maximal ideal of B, then νq extends νp with index eq by Theorem 9.15. So
νq(x) = eqνp(x) for all x ∈ K. Since 0 < c1/eq < 1, |x|q := (c1/eq)νq(x) is an absolute value of L. To show
|·| = |·|q, it suffices to show by the uniqueness in (i) that |·|q extends |·|p. Indeed, for all x ∈ K,

|x|q = cνq(x)/eq = cνp(x) = |x|p .
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Remark 11.5. Another definition of a Henselian valuation ring A is that the absolute value of K can
be uniquely extended to K.

Corollary 11.6

AKLB. Let (A, p) be a complete DVR, and let q | p (which is unique because B is a DVR). Then
νq(x) =

1
fq
νp(NL/K(x)) for all x ∈ L.

Proof. νp(NL/K(x)) = νp(NL/K((x))) = νp(NL/K(qνq(x))) = νp(p
fqνq(x)) = fqνq(x).

11.2 Local Dedekind–Kummer theorem

Lemma 11.7 (Nakayama)

Let (A, p) be a local ring, and let M be a finitely generated A-module. If the images of x1, . . . , xn ∈M
generate M/pM as an (A/p)-vector space, then x1, . . . , xn generate M as an A-module.

Corollary 11.8

Let (A, p) be a local Noetherian ring, g ∈ A[x] monic, and B = A[x]/(g(x)). Then every maximal ideal
m of B contains pB.

Corollary 11.9

Let (A, p) be a local Noetherian ring and g ∈ A[x] be monic with reduction g ∈ (A/p)[x]. Let α be
the image of x in the quotient B := A[x]/(g(x)). Then the maximal ideals of B are (p, gi(α)) where
g1, . . . , gm ∈ A[x] are lifts of irreducible gi that divide g.

This is similar to the Dedekind–Kummer theorem.

Proof. B → B/pB gives a 1-to-1 correspondence of maximal ideals, and

B

pB
≃ A[x]

(p, g(x))
≃ (A/p)[x]

(g(x))
.

The maximal ideals in (A/p)[x]/(g(x)) correspond to irreducible factors of g because (A/p)[x] is a PID.

Theorem 11.10

AKLB. Let (A, p), (B, q) be DVRs with residue fields k := A/p, ℓ := B/q. If ℓ/k is separable, then
B = A[α] for some α ∈ B (monogenic). Moreover if L/K is unramified, then this holds for every lift α
of any generator α for ℓ = k(α).

Proof. Let pB = qe and f = [ℓ : k]. Then ef = n := [L : K]. Since ℓ/k is separable, we can write ℓ = k(α0)
for some a0 ∈ ℓ whose minimal polynomial g is separable of degree f . Let g ∈ A[x] be a monic lift of g, and
let α0 ∈ B be any lift of α0. If νq(g(α0)) = 1, let α := α0. Otherwise, let π0 be a uniformizer of B and set
α := α0 + π0 ∈ B so α ≡ α0 (mod q). Writing g(x + π0) = g(x) + π0g

′(x) + π20h(x) for some h ∈ A[x] by
Lemma 10.10, we have

νq(g(α)) = νq(g(α0 + π0)) = νq(g(α0) + π0g
′(α0) + π20h(α0)) = 1.
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In both cases, π := g(α) is also a uniformizer for B.

Now we claim B = A[α], or equivalently that 1, α, . . . , αn−1 is an A-module basis for B. By Nakayama, it
suffices to show that 1, α, . . . , αn−1 span B/pB as a k-vector space. Since pB = qe = (πe), each element of
B/pB is a coset

b+ pB = b0 + b1π + · · ·+ be−1π
e−1 + pB

where b0, . . . , be−1 are determined up to equivalence mod πB. Now 1, α, . . . , αf−1 is a basis for B/πB =
B/q = ℓ = k(α0) and π = g(α) so

b+ pB = (a0 + a1α+ · · ·+ af−1α
f−1)

+ (af + af+1α+ · · ·+ a2f−1α
f−1)g(α)

+ · · ·+ (aef−f + · · ·+ aef−1α
f−1)g(α)e−1

+ pB.

Now deg g = f and n = ef , so this expresses b+pB in the form b′+pB with b′ in the A-span of 1, . . . , αn−1.
Thus B = A[α] by Nakayama.

If L/K is unramified, then ℓ/k is separable and e = 1, f = n. We don’t need to require g(α) a uniformizer
and can just take α = α0 to be any lift of α0.

11.3 Unramified extensions of a complete DVR

Now let (A, p) be a complete DVR with K := FracA and k := A/p. Every finite unramified extension L/K
of degree n yields a corresponding residue field extension ℓ/k of degree n that is separable.

Finite unramified extensions L/K form a category CunrK whose morphisms are K-algebra homomorphisms.
Finite separable extensions ℓ/k form a category Csepk whose morphisms are k-algebra homomorphisms.

Theorem 11.11

Let (A, p) be a complete DVR with K := FracA and k := A/p. There is an equivalence of categories
F : CunrK → Csepk sending each unramified extension L/K to its residue field ℓ/k.

Each K-algebra homomorphism φ:L1 → L2 is sent to φ: ℓ1 → ℓ2 defined in the obvious way: φ(α) =
φ(α) where α ∈ B1 is any lift of α ∈ ℓ1 = B/q1 and φ(α) is the reduction of φ(α) ∈ B2 to ℓ2 = B2/q2.

In particular if L1, L2 have residue fields ℓ1, ℓ2, then we have a bijection of sets

HomK(L1, L2)
∼−→ Homk(ℓ1, ℓ2).

Proof (sketch). We can check that F is well defined. We need to show that it is essentially surjective (every
separable ℓ/k is isomorphic to the residue field of some L/K) and fully faithful (bijection of Hom sets).
For essentially surjective, ℓ/k separable implies ℓ ≃ k(α) = k[x]/(g(x)) for some g monic, separable, and
irreducible of degree n = [ℓ : k]. We lift g to a monic, irreducible, separable g ∈ A[x] of degree n. Let
L := K[x]/(g(x)) = K(α) where α is the image of x in K[x]/(g(x)). By the Dedekind–Kummer theorem,
(p, g(α)) = pA[α] is the unique maximal ideal of A[α]. Then

B

q
≃ A[α]

(p, g(α))
≃ A[x]

(p, g(x))
≃ (A/p)[x]

(g(x))
≃ ℓ.

L/K has degree [L : K] = deg g = [ℓ : k] = n, so L/K is an unramified extension of degree n = [ℓ : k].

See notes for fully faithful.
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Corollary 11.12

AKLB. Let A be a complete DVR with residue field k. Then L/K is unramified if and only if B = A[α]
for some α ∈ L whose minimal polynomial g ∈ A[x] has a separable reduction g ∈ k[x].

Proof. The forward direction was proven in the above theorem. For the reverse direction, note that g must
be irreducible. Then ℓ/k is separable and has the same degree as L/K, so L/K is unramified.

Corollary 11.13

AKLB, A a complete DVR. Let ζn be a primitive nth root of unity in K, with n coprime to char k.
Then K(ζn)/K is unramified.

K(ζn) is the splitting field of xn − 1 ∈ K[x], which is separable because n is coprime to char k.

Corollary 11.14

AKLB, A a complete DVR. Now assume the residue field A/p = Fq is finite. Suppose the degree of
L/K is n. Then L/K is unramified if and only if L ≃ K(ζqn−1). When this holds, A[ζqn−1] is the
integral closure of A in L, and L/K is Galois with Gal(L/K) ≃ Z/nZ.

Definition 11.15 (maximal unramified extension). For L/K separable, the maximal unramified extension
of K in L is the subfield ⋃

K⊆E⊆L
E/K fin. unram.

E ⊆ L

where the union is over finite unramified subextensions E/K.

When L = Ksep, this is the maximal unramified extension of K, denoted Kunr.

12 Totally ramified extensions and Krasner’s lemma

12.1 Totally ramified extensions

AKLB. Suppose (A, p) is a complete DVR, so (B, q) is a complete DVR, and [L : K] = eL/KfL/K , where we
write eL/K = eq and fL/K = fq. We can uniquely decompose L/K as L/E/K such that E/K is unramified
(eE/K = 1, fE/K = fL/K) and L/E is totally ramified (eL/E = eL/K , fL/E = 1).

Definition 12.1 (Eisenstein). Let (A, p) be a DVR. A monic polynomial

f(x) = xn + an−1x
n−1 + · · ·+ a1x+ a0 ∈ A[x]

is Eisenstein if ai ∈ p for 0 ≤ i < n and a0 /∈ p2 (i.e. vp(a0) = 1 and a0 is a uniformizer).

Lemma 12.2 (Eisenstein irreducibility)

If f ∈ A[x] is Eisenstein, then f is irreducible in A[x] and K[x].
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Lemma 12.3

Let A be a DVR and f ∈ A[x] be Eisenstein. Then B = A[π] := A[x]/(f) is a DVR with uniformizer π,
where π is the image of x in A[x]/(f).

Theorem 12.4

AKLB. Let A be a complete DVR and π be a uniformizer for B. Then L/K is totally ramified if and
only if B = A[π] and the minimal polynomial of π is Eisenstein.

Proof. Let n = [L : K], p be the maximal ideal of A, and q be the maximal ideal of B. Let f ∈ A[x] be the
minimal polynomial of π.

(⇐) If B = A[π] and f is Eisenstein, then pB = qn by local Dedekind–Kummer (Corollary 11.9). Therefore
νq extends νp with index eq = n, and L/K is totally ramified.

(⇒) Suppose L/K is totally ramified. Then νq extends νp with index eL/K = n, so νq(K) = nZ. The set
{π0, π1, . . . , πn−1} is linearly independent over K because the πi have distinct valuations modulo νq(K) =
nZ, so L = K(π). Let f =

∑
i aix

i ∈ A[x] be the minimal polynomial of π. From νq(aiπ
i) ≡ i (mod n) for

all 0 ≤ i < n, we need

νq(a0) = νq(a0π
0) = νq(anπ

n) = n < νq(aiπ
i) (0 < i < n)

to get νq(f(π)) = ∞. Then νp(a0) = 1 (νq extends νp with index n) and νp(ai) ≥ 1 for 0 ≤ i < n, so f is
Eisenstein. By Lemma 12.3, A[π] ⊆ B is a DVR, but DVRs are maximal so A[π] = B.

Example 12.5

ForK = Q3, there are three distinct quadratic extensions: Q3(
√
2), Q3(

√
3), and Q3(

√
6). The extension

Q3(
√
2) = Q3(ζ8) is the unique unramified quadratic extension of Q3. The other two are ramified and

equal Q3[x]/(x
2 − 3) and Q3[x]/(x

2 − 6), where x2 − 3 and x2 − 6 are Eisenstein.

Definition 12.6 (tame, wild). AKLB, (A, p) complete DVR, separable residue field extension with
charA/p = p ≥ 0. L/K is

• tamely ramified if p ∤ eL/K (always true if p = 0). Note that unramified extensions (eL/K = 1)
are tamely ramified.

• wildly ramified if p | eL/K .

• totally tamely ramified if p ∤ eL/K = [L : K].

• totally wildly ramified if eL/K = [L : K] is a power of p.

Since ramification indices multiply in towers, and separability is transitive in towers, we have the following.

Proposition 12.7

Being unramified, tamely ramified, wildly ramified, totally tamely ramified, or totally wildly ramified
are transitive in towers of fraction fields of complete DVRs with separable residue field extensions
(including all local fields).

Remark 12.8. A composite of totally ramified extensions need not be totally ramified. For example,
Q3(
√
3,
√
6) contains Q3(

√
2) which is unramified and not totally ramified.
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Theorem 12.9

AKLB, (A, p) complete DVR, separable residue field extension. Suppose charA/p = p ≥ 0 does not

divide n = [L : K]. Then L/K is totally tamely ramified if and only if L = K(π
1/n
A ) for some uniformizer

πA of A.

Proposition 12.10

Let A be a complete DVR and L be a totally ramified extension of K = FracA. There is a unique
intermediate field E such that E/K is totally tamely ramified and L/E is totally wildly ramified.

We can split up any L/K as L/E0/E1/K where L/E0 is totally wildly ramified, E0/E1 is totally tamely
ramified, and E1/K is unramified.

12.2 Krasner’s lemma

Let K be the fraction field of a complete DVR A, with absolute value |·|. Recall that we can uniquely

extend |·| to any finite extension L/K via |x| :=
∣∣NL/K(x)

∣∣1/[L:K]
(Theorem 11.4). In particular, this

induces a unique absolute value on K which restricts to |·| on K.

Lemma 12.11

For all α ∈ K and σ ∈ AutK(K), we have |σ(α)| = |α|.

Proof. Note α and σ(α) have the same minimal polynomial f ∈ K[x] because f(σ(α)) = σ(f(α)) = 0. Then
NK(α)/K(α) = (−1)nf(0) = NK(σ(α))/K(σ(α)), where n = [K(α) : K] = [K(σ(α)) : K]. Then

|σ(α)| =
∣∣NK(σ(α))/K(σ(α))

∣∣1/n =
∣∣NK(α)/K(α)

∣∣1/n = |α| .

Definition 12.12. For α, β ∈ K, we say β belongs to α if |β − α| < |β − σ(α)| for all σ ∈ AutK(K)
with σ(α) ̸= α.

In other words, β is closer to α than α’s Galois conjugates. By the non-archimedean triangle inequality, this
is also equivalent to |β − α| < |α− σ(α)| (each triangle is isosceles and has a shortest side).

Lemma 12.13 (Krasner)

For α, β ∈ K, if β belongs to α and α is separable over K, then K(α) ⊆ K(β).

Proof. Suppose not, so β belongs to α but α /∈ K(β). ThenK(α, β)/K(β) is a nontrivial separable extension,
so there exists σ ∈ AutK(β)(K) such that σ(α) ̸= α (send α to a different root of the minimal polynomial of
α over K(β)). By Lemma 12.11, we have |β − α| = |σ(β − α)| = |β − σ(α)| which β belonging to α.

Definition 12.14 (L1-norm). The L1-norm of f =
∑

i fix
i ∈ K[x] is

||f ||1 :=
∑
i

|fi| .

||·||1 is a norm on the K-vector space K[x].
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Lemma 12.15

Let K be a field with absolute value |·|, and let f :=
∏n

i=1(x− αi) ∈ K[x] be monic with roots αi ∈ L.
Extending |·| to L, then |αi| < ||f ||1 for all αi.

Theorem 12.16 (Continuity of roots)

Let K be the fraction field of a complete DVR and f ∈ K[x] be monic, irreducible, and separable.
There exists δ = δ(f) ∈ R>0 such that for every monic g ∈ K[x] with ||f − g||1 < δ, every root β of g
belongs to a root α of f for which K(β) = K(α).

In particular, every such g is separable, irreducible, and has the same splitting field as f .

12.3 Local extensions come from global extensions

Let L̂ be a local field, so it is a finite extension of K̂ = Qp (p ≤ ∞) or Fq((t)) by Theorem 10.9. We also
know that the completion of a global field L at some nontrivial absolute value is a local field. Can we find
a global field L such that L̂ is the completion of L? The answer is yes, and in fact there is a more general
statement.

Theorem 12.17

Let K be a global field with a nontrivial absolute value |·| and completion K̂. Every finite separable
extension L̂/K̂ is the completion of a finite separable extension L/K with respect to an absolute value
extending |·|. Moreover, we can choose L such that [L : K] = [L̂ : K̂], in which case L̂ = K̂ · L
(compositum).

Proof. If |·| is archimedean, then K̂ = R or C, and L̂ is a trivial or quadratic extension. The only nontrivial
case is when K̂ ≃ R and L̂ = K̂(

√
d) ≃ C for some d ∈ Z<0. Then we can take L := K(

√
d) and define∣∣∣√d∣∣∣ = √−d.

If |·| is non-archimedean, then the valuation ring of K̂ is a complete DVR, and |·| is induced by the discrete
valuation. By the primitive element theorem, L̂ = K̂[x]/(f) for some monic irreducible separable f ∈ K̂[x].
K is dense in K̂, so we can find a monic g ∈ K[x] ⊆ K̂[x] such that ||g − f ||1 < δ for any δ > 0. By

continuity of roots, L̂ = K̂[x]/(g) and g is separable and irreducible.

Let L := K[x]/(g). Then [L̂ : K̂] = deg g = [L : K]. The field L̂ contains K̂ and L, and is the smallest field
that does by inspection, so it is the compositum K̂ · L. The absolute value on L̂ restricts to an absolute
value on L extending |·| on K. L̂ is complete, so it contains the completion of L. On the other hand, the
completion of L contains L and K̂, so it must be L̂.

Example 12.18

Let K = Q, K̂ = Q7, and L̂ = K̂[x]/(x3− 2). L̂/K̂ is Galois, since K̂ contains ζ3 (we can lift the root 2
of x2 + x+ 1 ∈ F7[x] to a root of x2 + x+ 1 ∈ Q7[x] by Hensel’s lemma). Thus x3 − 2 splits completely
in L̂. However, L = K[x]/(x3 − 2) is not Galois because it does not contain ζ3.

However, if we replace K with Q(ζ3), then L = K[x]/(x3 − 2) is a Galois extension of K.
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Corollary 12.19

For every finite Galois extension L̂/K̂ of local fields, there exists a finite Galois extension L/K of global
fields and an absolute value |·| on L such that L̂, K̂ are the completions of L,K with respect to |·| , |·|
restricted to K, and Gal(L/K) ≃ Gal(L̂/K̂).

Theorem 12.20

AKLB. Let p be a prime of A with pB =
∏

q|p q
eq . Let Kp be the completion of K with respect to |·|p,

and for each q | p let Lq be the completion of L with respect to |·|q. Let p̂ and q̂ be the maximal ideals
of the valuation rings of Kp and Lq, respectively.

1. Each Lq/Kp is a finite separable extension with [Lq : Kp] ≤ [L : K].

2. Each q̂ is the unique prime above p̂ in Lq/Kp.

3. Each q̂ has ramification index eq̂ = eq and residue field degree fq̂ = fq.

4. [Lq : Kp] = eqfq.

5. The map L ⊗K Kp →
∏

q|p Lq defined by ℓ ⊗ x 7→ (ℓx, . . . , ℓx) is an isomorphism of finite étale
Kp-algebras.

6. If L/K is Galois, then each Lq/Kp is Galois with Dq ≃ Dq̂ = Gal(Lq/Kp) and Iq ≃ Iq̂.

“If you want to know what is happening at p, take the completion.”

Proof. 1. The embedding of fieldsK ↪→ L inducesKp ↪→ Lq by sending [(xn)] 7→ [(xn)]; a sequence that is
Cauchy in K with respect to |·|p is also Cauchy in L with respect to |·|q because νq extends νp. Then Kp

is a topological subfield of Lq, and we claim that [Lq : Kp] ≤ [L : K] because any K-basis for L spans
Lq as a Kp-vector space. Given a Cauchy sequence y := (yn) in L, write yn = x1,nb1 + · · · + xm,nbm
where b1, . . . , bm is a K-basis for L and xi,j ∈ K. Then letting x1 := (x1,n), . . . , xm := (xm,n), we can
write [y] = [x1]b1 + · · ·+ [xm]bm as a Kp-linear combination of b1, . . . , bm.

Since L/K is separable, L is a finite étale K-algebra, and the base change L⊗KKp is a finite étale Kp-
algebra by Proposition 5.33. Consider the Kp-algebra homomorphism ϕq:L⊗KKp → Lq by ℓ⊗x 7→ ℓx.
Since ϕq(bi ⊗ 1) = bi and the bi span Lq as a Kp-vector space, ϕq is surjective. By Proposition 5.29,
Lq is isomorphic to a subproduct and thus also a finite étale Kp-algebra. In particular, Lq/Kp is
separable.

2. Since Kp and Lq are fraction fields of complete DVRs, this follows from Theorem 10.18.

5. Let ϕ =
∏

q|p ϕq:L ⊗K Kp →
∏

q|p Lq send (ℓ ⊗ x) 7→ (ℓx, . . . , ℓx). Then ϕ is a Kp-algebra homomor-
phism. By Proposition 5.33 and part 4,

dimKp(L⊗K Kp) = dimK L = [L : K] =
∑
q|p

eqfq =
∑
q|p

[Lq : Kp] = dimKp

∏
q|p

Lq.

Corollary 12.21

AKLB. For p a prime of A and α ∈ L, we have

NL/K(α) =
∏
q|p

NLq/Kp
(α), TL/K(α) =

∑
q|p

TLq/Kp
(α).
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Corollary 12.22

AKLB. Let Âp be the completion of A with respect to |·|p and B̂q be the completion of B with respect

to |·|q. Then B ⊗A Âp ≃
∏

q|p B̂q as Âp-algebras.

Remark 12.23. Localizing and completing is equivalent to completing (and localizing, although it’s not
needed). Both yield complete DVRs.

13 Different and discriminant

13.1 Different

Recall that an A-lattice M in a K-vector space has a dual lattice

M∗ := {x ∈ L : TL/K(xm) ∈ A, ∀m ∈M},

which is an A-lattice in L isomorphic to M∨ := HomA(M,A). Under AKLB, M∗∗ =M .

In particular, every nonzero fractional ideal I of B is finitely generated as a B-module, and thus as an
A-module (B is finite over A). I spans L because B does, so it is an A-lattice in L.

Lemma 13.1

AKLB. If I ∈ IB, then I∗ ∈ IB.

Proof. We previously showed that the dual lattice I∗ is a finitely generated A-module. To show that it is a
finitely generated B-module, we need to check that it is closed under multiplication by B. Let b ∈ B and
x ∈ I∗. Then for all m ∈ I, we have TL/K((bx)m) = TL/K(x(bm)) ∈ A since bm ∈ I. This implies bx ∈ I∗,
so I∗ is a fractional ideal.

Definition 13.2 (different). AKLB. The different DL/K (or DB/A) of L/K is the inverse of B∗ in IB.

Explicitly, B∗ := {x ∈ L : TL/K(xb) ∈ A, ∀b ∈ B}, and the inverse is

DL/K = DB/A := B ÷B∗ = {x ∈ L : xB∗ ⊆ B}.

We know B ⊆ B∗ by Proposition 6.25, so the different DB/A = (B∗)−1 ⊆ B−1 = B is in fact a B-ideal.

Proposition 13.3

AKLB. The different is compatible with localization and completion:

1. S−1DB/A = DS−1B/S−1A for any multiplicative subset S of A.

2. For any q | p, D
B̂q/Âp

= DB/AB̂q.

Definition 13.4 (discriminant). Let S/R be a ring extension with S a free R-module of rank n. For any
x1, . . . , xn ∈ S, define the discriminant

disc(x1, . . . , xn) = discS/R(x1, . . . , xn) := det[TS/R(xixj)]i,j ∈ R.
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In the AKLB setup, we consider a K-basis e1, . . . , en ∈ B for L for which

disc(e1, . . . , en) = det[TL/K(eiej)]ij ∈ A.

Proposition 13.5

Let L/K be finite separable of degree n and Ω/K be an extension with σ1, . . . , σn ∈ HomK(L,Ω)
distinct. For any e1, . . . , en ∈ L,

disc(e1, . . . , en) = det[σi(ej)]
2
ij .

Also for any x ∈ L,
disc(1, x, x2, . . . , xn−1) =

∏
i<j

(σi(x)− σj(x))2.

Proof. We have TL/K(eiej) =
∑n

k=1 σk(eiej) by Theorem 6.4. Then

disc(e1, . . . , en) = det[TL/K(eiej)]ij

= det([σk(ei)]ik[σk(ej)]kj)

= det[σi(ej)]
2
ij ,

because the determinant is multiplicative and does not change under transposes.

The second statement then follows from the Vandermonde determinant:

disc(1, x, x2, . . . , xn−1) = det[σi(x
j−1)]2ij = det[σi(x)

j−1]2ij =
∏
i<j

(σi(x)− σj(x))2.

Definition 13.6 (discriminant). The discriminant of f(x) =
∏

i(x− αi) is

disc(f) :=
∏
i<j

(αi − αj)
2.

Equivalently, if A is a DD, f ∈ A[x] is monic separable, and α is the image of x in A[x]/(f(x)), then

disc(f) = disc(1, α, α2, . . . , αn−1) ∈ A.

Example 13.7

disc(x2 + bx+ c) = b2 − 4c and disc(x3 + ax+ b) = −4a3 − 27b2.

AKLB. Let M be an A-lattice in L, so M is a finitely generated A-module which contains a K-basis for L.
We want to define the discriminant of M without needing to choose a basis.

First suppose M is a free A-module. Let e := (e1, . . . , en) and e
′ := (e′1, . . . , e

′
n) be two A-bases for M . We

claim that
disc(e′1, . . . , e

′
n) = u2 disc(e1, . . . , en)
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for a unit u ∈ A×. Letting P ∈ An×n be the change of basis matrix so that e′ = eP , then

disc(e′) = det[TL/K(e′ie
′
j)]ij

= det[TL/K((eP )i(eP )j)]ij

= det[P T [TL/K(eiej)]ijP ]

= detP T disc(e) detP

= u2 disc(e).

where u = detP is a unit because P is invertible.

Definition 13.8 (discriminant). AKLB. Let M be an A-lattice in L and n = [L : K]. The discriminant
D(M) is the A-module generated by {disc(x1, . . . , xn) : xi ∈M}.

Lemma 13.9

AKLB. If M ′ ⊆ M are both free A-lattices in L, then the discriminants D(M ′) ⊆ D(M) are nonzero
principal fractional ideals.

If D(M ′) = D(M), then M ′ =M .

Proof. Let e = (e1, . . . , en) be an A-basis for M , so disc(e) ∈ D(M). For any row vector x = (x1, . . . , xn)
with entries in M , there exists a matrix P ∈ An×n such that x = eP and disc(x) = (detP )2 disc(e). Then

D(M) = (disc(e))

is a principal fractional A-ideal. It is nonzero because e is a basis and the trace pairing is nondegenerate.
Similarly, D(M ′) = (disc(e′)) if e′ is an A-basis for M ′. The assumption M ′ ⊆ M means that e′ = eP for
some matrix P ∈ An×n. Then disc(e′) = (detP )2 disc(e) and D(M ′) ⊆ D(M).

If D(M ′) = D(M), then detP must be a unit. In particular, P is invertible and e = e′P−1, which implies
M ⊆M ′ and M ′ =M .

Proposition 13.10

AKLB. For any A-lattice M in L, D(M) ∈ IA.

Proof. The A-module D(M) ⊆ K is nonzero because M contains a K-basis e for L, and disc(e) ̸= 0 because
the trace pairing is nondegenerate. Let N be the free A-lattice in L generated by the K-basis e. Pick
a nonzero a ∈ A such that M ⊆ a−1N ; such an a exists because we can write each A-module generator
for M in terms of the K-basis e, and let a be the product of all denominators. Then D(M) ⊆ D(a−1N),
and D(a−1N) is a principal fractional ideal in IA, hence a Noetherian A-module (by A Noetherian). Its
submodule D(M) is Noetherian, hence finitely generated.

Definition 13.11 (discriminant). AKLB. The discriminant DL/K of L/K (or DA/B of B/A) is the
discriminant of B as an A-lattice in L:

DL/K = DB/A := D(B) ∈ IA.

The discriminant DL/K is an A-ideal, since disc(x1, . . . , xn) = det[TB/A(xixj)]ij ∈ A for all x1, . . . , xn ∈ B.

Like the different, the discriminant is compatible with localization and completion.
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Example 13.12

Let A = Z,K = Q, L = Q(i), B = Z[i]. Then B is a free A-module with basis (1, i), and we compute
DL/K in three ways.

• disc(1, i) = det

[
TL/K(1 · 1) TL/K(1 · i)
TL/K(i · 1) TL/K(i · i)

]
= det

[
2 0
0 −2

]
= −4.

• The nontrivial automorphism of L/K sends i 7→ −i, so disc(1, i) =
(
det

[
1 i
1 −i

])2
= (−2i)2 =

−4.

• B = Z[i] = Z[x]/(x2 + 1), and disc(x2 + 1) = −4.

In all cases, DL/K is the ideal (−4) = (4).

Theorem 13.13

AKLB. DB/A = NB/A(DB/A).

Proof. Because D and N are compatible with localization, it suffices to consider the case where A is a DVR,
so B is a free A-lattice in L. Let (e1, . . . , en) be an A-basis for B. The dual A-lattice

B∗ = {x ∈ L : TL/K(xb) ∈ A,∀b ∈ B} ∈ IB
is also a free A-lattice in L, with basis (e∗1, . . . , e

∗
n) uniquely determined by TL/K(e∗i ej) = δij . Writing

ei =
∑
aije

∗
j , we have

TL/K(eiej) = TL/K

(∑
k

aike
∗
kej

)
=

∑
k

aik TL/K(e∗kej) =
∑
k

aikδkj = aij .

Thus P = [TL/K(eiej)]ij is the change of basis matrix from e∗ to e, i.e. e = e∗P . Let ϕ be the K-linear
transformation defined by P , so ϕ is an isomorphism of free A-modules and

DB/A = (det[TL/K(eiej)]ij) = (detϕ) = [B∗ : B]A.

Then by Corollary 7.8,

DB/A = [B∗ : B]A = NB/A(B ÷B∗) = NB/A((B
∗)−1) = NB/A(DB/A).

The module index was defined in Definition 7.1 such that this theorem holds.

13.2 Ramification

AKLB. Let pB = qe11 · · · qerr , so B/pB ≃ B/qe11 × · · · ×B/qerr . This is an A/p-algebra of dimension
∑

i eifi
where fi = [B/qi : A/p]. It is a product of fields when all ei = 1, and it is an étale A/p-algebra if also all
residue field extensions are separable (always in our setting).

Lemma 13.14

Let k be a field and R be a commutative k-algebra with k-basis r1, . . . , rn. Then R is an étale k-algebra
if and only if disc(r1, . . . , rn) ̸= 0.

Proof (sketch). By Theorem 6.27, R is an étale k-algebra if and only the trace pairing is perfect. Since k is
a field, this is equivalent to the trace pairing being nondegenerate.
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Theorem 13.15

AKLB. Suppose q is a prime of B lying above the prime p of A such that B/q a separable extension
of A/p. Then L/K is

• unramified at q if and only if q ∤ DB/A,

• unramified at p if and only if p ∤ DB/A.

Proof. The different DB/A is compatible with completion, so WLOG A and B are complete DVRs. Then
[L : K] = eqfq and pB = qeq . B is a DVR with maximal ideal q, so DB/A = qm for some m ≥ 0. By
Theorem 13.13,

DB/A = NB/A(DB/A) = NB/A(q
m) = pfqm,

so q | DB/A if and only if p | DB/A. Since A is a PID, B is a free A-module, and we can choose an A-basis
e1, . . . , en for B, which is also a K-basis for L. Let k = A/p, and let e1, . . . , en be the reductions mod p to
the k-algebra B/pB. Then (e1, . . . , en) is a k-basis for B/pB: it spans, and

[B/pB : k] = [B/qeq : A/p] = eqfq = [L : K] = n.

Since B has an A-module basis, its discriminant is

DB/A = (disc(e1, . . . , en)).

Then p | DB/A if and only if disc(e1, . . . , en) ∈ p, or disc(e1, . . . , en) = 0. By Lemma 13.14, disc(e1, . . . , en) =
0 if and only if B/pB is not an étale k-algebra, which is if and only if p is ramified. There is only one prime
q above p, so this is if and only if q is ramified.

Corollary 13.16

AKLB. Only finitely many primes are ramified.

14 Global fields and the product formula

14.1 Places of a field

Definition 14.1 (place). A place ν of a field K is an equivalence class of nontrivial absolute values.
Places are in one-to-one correspondence with completions.

Let MK denote the set of places of K. Let Kν denote the completion of K at a place represented by |·|ν . A
place ν is (non-)archimedean if and only if Kν is.

For a global field K, the completion Kν is a local field by Corollary 10.7. From the classification of local
fields in Theorem 10.9, we have Kν ≃ R or C (if Kν is archimedean), or the absolute value of Kν is induced
by a discrete valuation.

• If Kν ≃ R, then ν is a real place.

• If Kν ≃ C, then ν is a complex place.

• If |·|ν is induced by a discrete valuation νp corresponding to a prime ideal p of the valuation ring of
K, then ν is a finite place. Otherwise, ν is an infinite place.
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Example 14.2

Every finite place is non-archimedean. Infinite places are archimedean if charK = 0, and non-
archimedean if charK > 0. Every archimdean place is an infinite place, but non-archimedean places
may be finite or infinite (if charK > 0).

In our case (finite extension of a global field), there are finitely many infinite places.

Example 14.3

MQ consists of finite places p corresponding to p-adic absolute values |·|p, and one archimedean infinite
place ∞ corresponding to the Euclidean absolute value |·|∞.

MFq(t) consists of finite places corresponding to irreducible polynomials in Fq[t], and one archimedean

infinite place ∞ corresponding to |·|∞ = qdeg(·).

Definition 14.4 (extends). If L/K is an extension of global fields, a place |·|w of L restricts to a place
|·|ν of K. We write w | ν and say that w extends ν, or w lies above ν.

Theorem 14.5

Let L/K be a finite separable extension of global fields and ν be a place of K. There is an isomorphism
of finite étale Kν-algebras

L⊗K Kν
∼−→

∏
w|ν

Lw

defined by ℓ⊗ x 7→ (ℓx, . . . , ℓx).

We already proved this for finite places ν in Theorem 12.20.

Corollary 14.6

Same hypotheses as above. Suppose f ∈ K[x] is monic irreducible such that L ≃ K[x]/(f). Then there
is a bijection

{irreducible factors of f in Kν [x]} ←→ {places w | ν of L}.

If f = f1 · · · fr ∈ Kν [x] (note fi distinct because f separable), we can order {w | ν} = {w1, . . . , wr}
such that Lwi ≃ Kν [x]/(fi) for 1 ≤ i ≤ r.

Suppose L/K is a finite separable extension of global fields, and ν is a place of K. Consider the algebraic
closure Kν of Kν , and consider HomK(L,Kν). There is a group action with σ ∈ Gal(Kν/Kν) acting on
τ ∈ HomK(L,Kν) by σ ◦ τ ∈ HomK(L,Kν).

Corollary 14.7

There is a bijection
HomK(L,Kν)/Gal(Kν/Kν)←→ {w | ν}.

For K = Q and ν = ∞, we get a bijection between HomQ(L,C)/Gal(C/R) and the infinite places of L.
Gal(C/R) ≃ C2 generated by complex conjugation, so the orbits of HomQ(L,C) have size 1 or 2. Orbits of
size 1 correspond to real places, and orbits of size 2 correspond to complex places.
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Definition 14.8 (real, complex embedding). Let L be a number field. Elements of HomQ(L,R) are real
embeddings. Elements of HomQ(L,C) that are not real embeddings are complex embeddings.

Corollary 14.9

Let L be a number field with r real places and s complex places. Then [L : Q] = r + 2s.

Example 14.10

Let K = Q[x]/(x3 − 2). There are three embeddings K ↪→ C, namely x 7→ 3
√
2, x 7→ e2πi/3 3

√
2, and

x 7→ e4πi/3 3
√
2. The first embedding is real, while the last two are complex embeddings in the same

complex place.

Proposition 14.11

Let K be a number field with s complex places. The absolute discriminant DK ∈ Z has sign (−1)s.

Proof. Let α1, . . . , αn be a Z-basis for OK , and let HomQ(K,C) = {σ1, . . . , σn}. Then Dk = (detA)2 where
A := [σi(αj)]ij and detA = x+ iy ∈ C. Each real embedding σi corresponds to a row of A fixed by complex
conjugation, while each pair of complex conjugate embeddings corresponds to two rows of A interchanged
by complex conjugation. Thus detA = (−1)s detA = (−1)s(x− iy). If (−1)s = 1 then y = 0 and DK = x2

has sign 1. If (−1)s = −1 then x = 0 and DK = −y2 has sign −1.

14.2 Haar measures

Definition 14.12 (σ-algebra). Let X be a locally compact Hausdorff space. The σ-algebra Σ of X is
the collection of subsets of X generated by all of the open and closed sets under countable unions,
intersections, and complements. Elements of Σ are measurable (Borel) sets.

Definition 14.13 (Borel measure). A Borel measure on X is a countably additive function

µ: Σ→ R≥0 ∪ {∞}.

Definition 14.14 (Radon measure). A Radon measure is a Borel measure for which

1. µ(S) <∞ if S is compact.

2. µ(S) = inf{µ(U) : S ⊆ U, U open}.

3. µ(S) = sup{µ(C) : C ⊆ S, C compact}.

Definition 14.15 (locally compact). A locally compact group G is a topological group that is Hausdorff
and locally compact (each point has a compact neighborhood).

Definition 14.16 (Haar measure). A (left) Haar measure µ on a locally compact group G is a nonzero
Radon measure that is translation invariant: µ(S) = µ(x+ S) for all x ∈ G and S ⊆ G measurable.

Compact groups are locally compact. In a compact group G, every measurable set has finite measure, so
we can say WLOG µ(G) = 1.
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Theorem 14.17 (Weil)

Every locally compact group G has a Haar measure, and if µ and µ′ are two Haar measures on G, then
µ′ = λµ for some λ ∈ R>0.

Proposition 14.18

Let K be a local field with discrete valuation ν, residue field k, and absolute value |x|ν := (#k)−ν(x).
Let µ be a Haar measure on K (as an additive topological group). For all x ∈ K and measurable
S ⊆ K,

µ(xS) = |x|ν µ(S).

Moreover, |·|ν is the unique absolute value compatible with the topology of K for which this holds.

We know that µ is invariant under addition, but this proposition states how it changes under multiplication.
The number |x|ν is uniquely determined, because changing scaling the Haar measure µ multiplies both sides
by the same constant.

Proof. Let A be the valuation ring {x ∈ K : |x|ν ≤ 1} with maximal ideal p. The proposition is true for
x = 0, so let x ̸= 0. The map ϕx: y 7→ xy is an automorphism of K, so µx := µ ◦ ϕx is another Haar
measure. By Weil’s theorem (Theorem 14.17), µx = λxµ for some λx ∈ R>0. Define χ:K× → R>0 by
x 7→ λx = µx(A)/µ(A). Then µx = χ(x)µ, and for all x, y ∈ K×,

χ(xy) =
µxy(A)

µ(A)
=
µx(yA)

µ(A)
=
χ(x)µy(A)

µ(A)
=
χ(x)χ(y)µ(A)

µ(A)
= χ(x)χ(y),

so χ is multiplicative.

We in fact claim that χ(x) = |x|ν for all x ∈ K×. Since χ is multiplicative, it suffices to consider x ∈ A\{0}.
The ideal xA equals pν(x) since A is a DVR. The residue field k = A/p is finite, so A/xA is also finite, and
in fact a k-vector space of dimension ν(x) and cardinality [A : xA] = (#k)ν(x). Then

µ(A) = [A : xA]µ(xA) = (#k)ν(x)χ(x)µ(A),

so χ(x) = (#k)−ν(x) = |x|ν . Then µ(xS) = µx(S) = χ(x)µ(S) = |x|ν µ(S) for all x ∈ K and S measurable.

For uniqueness, if |·| is another equivalent absolute value on K with |·| = |·|cν for some 0 < c ≤ 1, then

µ(xA)

µ(A)
= |x| = |x|cν =

(µ(xA)
µ(A)

)c

implies c = 1.

14.3 Product formula for global fields

Definition 14.19 (normalized absolute value). Let K be a global field. The normalized absolute value
||·||ν :Kν → R≥0 is given by

||x||ν =
µ(xS)

µ(S)

where µ is any Haar measure on Kν and S ⊆ Kν is any measurable set with 0 < µ(S) <∞.

Note this definition is independent of µ and S by the above proposition.

• If ν is a non-archimedean place, then ||·||ν = (#k)−ν(·).

• If ν is a real place, then ||·||ν is the Euclidean absolute value |·|R.
• If ν is a complex place, then ||·||ν = |·|2C.
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Example 14.20

When ν is a complex place, ||·||ν is not an absolute value. For example in Q(i), suppose ν | ∞ is a
complex place. Then ||1||ν = |1|2C = 1, but ||1 + 1||ν = |2|2C = 4 > 2, so the triangle inequality doesn’t
hold.

Lemma 14.21

Let L/K be a finite separable extension of global fields, ν a place of K, and w | ν a place of L. Then

||x||w =
∣∣∣∣NLw/Kν

(x)
∣∣∣∣
ν
.

Theorem 14.22 (Product formula)

Let L be a global field. For all x ∈ L×, ∏
ν∈ML

||x||ν = 1.

Proof. Let K = Q or Fq(t), ν | p. Let p be a place of K. Any basis for L as a K-vector space is also a basis
for L⊗K Kp ≃

∏
ν|p Lν as a Kp-vector space, so

NL/K(x) = N(L⊗KKp)/Kp
(x) =

∏
ν|p

NLν/Kp
(x).

Then ∣∣∣∣NL/K(x)
∣∣∣∣
p
=

∏
ν|p

∣∣∣∣NLν/Kp
(x)

∣∣∣∣
p
=

∏
ν|p

|x|p .

Taking the product over all p ∈MK and using the product formula for K (pset 1), we have

1 =
∏

p∈MK

∣∣∣∣NL/K(x)
∣∣∣∣
p
=

∏
p∈MK

∏
ν|p

||x||ν =
∏

ν∈ML

||x||ν .

Definition 14.23 (global field). A global field is a field K (with at least one place) whose completion at
each ν ∈MK is a local field, and ∏

ν∈MK

||x||ν = 1

where each ||·||ν satisfies ||·||ν = |·|mν
ν for some mν ∈ R>0.

15 Geometry of numbers

15.1 Lattices in real vector spaces

Recall that if V is an R-vector space with dimV = n, then V ≃ Rn is a locally compact group.

Definition 15.1 (discrete, cocompact). A subgroup H of a topological group G is discrete if it has the
discrete topology (every point is open). H is cocompact if it is normal in G, and G/H is compact.
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Lemma 15.2

A subgroup G ≤ V ≃ Rn is discrete if and only if it is generated by a finite R-linearly independent set,
in which case G ≃ Zm for some m ≤ n. G is cocompact if and only if m = n.

Definition 15.3 (lattice). A (full) lattice Λ in V ≃ Rn is a Z-submodule generated by an R-basis, or
equivalently, a discrete cocompact subgroup.

We have Λ ≃ Zn and V ≃ Rn, so V/Λ ≃ (R/Z)n is an n-torus.

Any basis v1, . . . , vn for V determines a fundamental parallelepiped

F (v1, . . . , vn) := {t1v1 + · · ·+ tnvn : ti ∈ [0, 1)}.

Normalize the Haar measure on V such that µ(F (v1, . . . , vn)) = 1, so µ(S) = µRn(φ(S)) for φ:V
∼−→ Rn the

isomorphism sending F (v1, . . . , vn) 7→ [0, 1]n. For any other basis e1, . . . , en of V , letting E = [eij ]ij where
ej =

∑
i eijvi, then

µ(F (e1, . . . , en)) = |detE| =
√
detET detE =

√
det[⟨ei, ej⟩]ij .

Proposition 15.4

Let T :V → V be a linear transformation, µ be any Haar measure, and S be any measurable set. Then

µ(T (S)) = |detT |µ(S).

If Λ = e1Z⊕· · ·⊕enZ is a lattice, then V/Λ is a compact group that can be identified with the parallelepiped
F (e1, . . . , en) ⊆ V , which is a fundamental domain for Λ.

Definition 15.5 (fundamental domain). Let Λ be a lattice in V ≃ Rn. A fundamental domain for Λ is
a measurable set F ⊆ V such that V =

⊔
λ∈Λ(F + λ).

In other words, F is a measurable set of coset representatives for V/Λ.

Proposition 15.6

Every fundamental domain for Λ has the same Haar measure.

Proof. Let F,G be two fundamental domains for Λ. Using the translation invariance and countable additivity
of µ, we have

µ(F ) = µ
(
F ∩

⊔
λ∈Λ

(G+ λ)
)

= µ
( ⊔

λ∈Λ
(F ∩ (G+ λ)

)
=

∑
λ∈Λ

µ(F ∩ (G+ λ))

=
∑
λ∈Λ

µ((F − λ) ∩G)

=
∑
λ∈Λ

µ(G ∩ (F + λ))

= µ(G).
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The second-to-last equality is because Λ is closed under negation.

Definition 15.7 (covolume). Let Λ be a lattice in V ≃ Rn and µ be a Haar measure. The covolume of
Λ is covol(Λ) := µ(F ) ∈ R>0 for any fundamental domain F .

Proposition 15.8

If Λ′ ⊆ Λ are lattices in V ≃ Rn, then the covol(Λ′) = [Λ : Λ′] covol(Λ).

Definition 15.9 (symmetric, convex). A subset S of V ≃ Rn is symmetric if it is closed under negation,
and convex if {tx+ (1− t)y : t ∈ [0, 1]} ⊆ S for all x, y ∈ S.

Theorem 15.10 (Minkowski’s lattice point theorem)

Let Λ be a lattice in V ≃ Rn and µ be a Haar measure on V . If S ⊆ V is a symmetric, convex,
measurable subset of V , and

µ(S) > 2n covol(Λ),

then S contains a nonzero element λ ∈ Λ.

15.2 Canonical inner product

In the AKLB setup, we now take A = Z, K = Q, and L = K a number field. Suppose K/Q is a number
field of degree n with r real places and s complex places, so n = r + 2s. We consider the two base changes

KR := K ⊗Q R ≃ Rr × Cs

KC := K ⊗Q C ≃ Cn.

We have a sequence of injective homomorphisms of topological rings

OK ↪→ K ↪→ KR ↪→ KC

where

• OK ↪→ K is the inclusion.

• K ↪→ KR = K ⊗Q R is the canonical embedding α 7→ α⊗ 1.

• KR ≃ Rr × Cs ↪→ Cr × C2s ≃ KC is R ↪→ C by x 7→ x, and C ↪→ C× C by z 7→ (z, z).

The composition K ↪→ KR ↪→ KC is x 7→ (σ1(x), . . . , σn(x)) where HomQ(K,C) = {σ1, . . . , σn}.

Fixing a Z-basis for OK , we may view the above injections are inclusions of topological groups (but not
topological rings)

Zn ↪→ Qn ↪→ Rn ↪→ Cn.

In particular, OK is a lattice in KR ≃ Rn, which inherits a canonical inner product on KC ≃ Cn via

⟨z, z′⟩ :=
n∑

i=1

ziz
′
i ∈ C.

Then for all x, y ∈ K,

⟨x, y⟩ :=
∑

σ∈HomQ(K,C)

σ(x)σ(y).
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Now write z ∈ KC ≃ Cn as vectors (zσ) induced by σ ∈ HomQ(K,C). For real embeddings σ = σ, we have
zσ ∈ R while for complex embeddings σ ̸= σ, we have (zσ, zσ) = (zσ, zσ) ∈ C × C. Each z ∈ KR can be
uniquely written as

(w1, . . . , wr, x1 + iy1, x1 − iy1, . . . , xs + iys, xs − iys).

for wi, xj , yj ∈ R. The canonical inner product on KR can then be written as

⟨z, z′⟩ =
r∑

i=1

wiw
′
i + 2

s∑
j=1

(xjx
′
j + yjy

′
j)

Taking w1, . . . , wr, x1, y1, . . . , xs, ys as coordinates for KR ≃ Rn, we normalize a Haar measure µ on KR to
be consistent with the Lebesgue measure µRn on Rn by defining

µ(S) := 2sµRn(S)

for any measurable S ⊆ KR ≃ Rn.

For any R-basis e1, . . . , en of KR, we still have µ(F (e1, . . . , en)) =
√
|det[⟨ei, ej⟩]ij | using the Hermitian inner

product on KR ⊆ KC ≃ Cn (instead of the dot product on KR ≃ Rn as before).

15.3 Covolumes of fractional ideals

We now have fixed a normalized Haar measure µ on KR. Recall that the discriminant of a number field K
is

DK = discOK := disc(e1, . . . , en) ∈ Z

for any Z-basis e1, . . . , en of OK .

Proposition 15.11

Let K be a number field and µ be the normalized Haar measure on KR. Then

covol(OK) =
√
|DK |.

Proof. Let e1, . . . , en be a Z-basis for OK , and let HomQ(K,C) = {σ1, . . . , σn}. Let A = [σi(ej)]ij ∈ Cn×n,
so DK = disc(e1, . . . , en) = (detA)2. We have

covol(OK) = µ(F (e1, . . . , en)) =
√
|det[⟨ei, ej⟩]ij |,

where det[⟨ei, ej⟩]ij = det[
∑

k σk(ei)σk(ej)]ij = det(ATA) = (detA)(detA). (detA)2 ∈ Z, so covol(OK)2 =∣∣(detA)2∣∣ = |Dk|.

Recall the absolute norm map on ideals N: IOK
→ IZ sending I 7→ [OK : I]Z with image in Q>0. When

I = (a) for a ∈ K, we write N(a) := N((a)) =
∣∣NK/Q(a)

∣∣.
Corollary 15.12

For all I ∈ IOK
, covol(I) = N(I)

√
|DK |.
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15.4 Minkowski bound

Theorem 15.13 (Minkowski bound)

Let K be a number field of degree n with r real places and s complex places (r + 2s = n). Define the
Minkowski constant

mK :=
n!

nn

( 4

π

)s√
|DK |.

Then for all nonzero I ∈ IOK
, there exists a nonzero a ∈ I for which

N(a) ≤ mK N(I).

Lemma 15.14

For t ∈ R>0, the measure of St := {(zσ) ∈ KR :
∑

σ |zσ| ≤ t} ⊆ KR is µ(St) = 2rπs t
n

n! .

Proof. Write (zσ) = (w1, . . . , wr, x1+ iy1, x1− iy1, . . . , xs+ iys, xs− iys) for wi, xj , yj ∈ R. Then
∑

σ |zσ| ≤ t
if and only if

r∑
i=1

|wi|+ 2
s∑

j=1

√
|xj |2 + |yj |2 ≤ t. (15.1)

The volume of
Ut := {(u1, . . . , un) ∈ Rn

≥0 : u1 + · · ·+ un ≤ t}

is µRn(Ut) =
tn

n! . Fixing all coordinates of (zσ) except for (xs, ys), then (xs, ys) ranges over a disk of some
radius d ∈ [0, t2 ] determined by (15.1). If we replace (xs, ys) with (un−1, un) in the triangular region bounded

by un−1+un ≤ 2d and un−1, un ≥ 0, we need to incorporate a factor of π
2 to account for the areas (2d)2

2 = 2d2

vs. πd2. Repeat this s times for all (xj , yj). Similarly if wr is replaced by ur, then wr ∈ [−d, d] for some
t ∈ [0, t], but ur ∈ [0, d] is nonnegative, so we need a factor of 2. Repeat this r times for all wi. The upshot
is that

µ(St) = 2sµRn(St) = 2s
(π
2

)s
2rµRn(Ut) = 2rπs

tn

n!
.

Proof of Theorem 15.13. For I ∈ IOK
, choose t such that µ(St) > 2n covol(I) so that St contains a nonzero

a ∈ I by Minkowski’s lattice point theorem (Theorem 15.10). By the above lemma, it suffices for t to satisfy( t
n

)n
=
n!µ(St)

nn2rπs
>

n! 2n

nn2rπs
covol(I) =

n!

nn

( 4

π

)r√
|DK |N(I) = mK N(I).

Pick t such that ( t
n)

n > mK N(I), then St contains a nonzero a ∈ I with
∑

σ |σ(a)| ≤ t. By AM-GM,

N(a) =
(∏

σ

|σ(a)|1/n
)n
≤

( 1

n

∑
σ

|σ(a)|
)n
≤

( t
n

)n
.

Take the limit as ( t
n)

n → mK N(I) from above yields N(a) ≤ mKN(I).

15.5 Finiteness of the class group

Theorem 15.15

Let K be a number field. Then every ideal class in clOK contains some ideal I ⊆ OK with absolute
norm N(I) ≤ mK .
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Proof. Let [J ] ∈ clOK . By the Minkowski bound (Theorem 15.13), there exists a nonzero a ∈ J−1 such
that N(a) ≤ mK N(J−1) = mK N(J)−1, so N(aJ) = N(a)N(J) ≤ mK . Since a ∈ J−1, aJ ⊆ J−1J = OK

and I = aJ is an OK-ideal in [J ] with N(I) ≤ mK .

Lemma 15.16

Let K be a number field of degree n. The number of OK-ideals of norm N(I) ≤M for any M ∈ R>0 is
at most (nM)log2 M (in particular, it is finite).

Proof. Suppose N(I) ≤ M , and factor I = p1 · · · pk into (not necessarily distinct) prime ideals. Since
N(pi) ≥ 2, k = log2M . There are at most M primes p ≤ M , and at most n primes p of OK with p | p, so
there are at most (nM)log2 M OK-ideals I with N(I) ≤M .

Corollary 15.17

The class group clOK is finite.

Proof. Combine the bound N(I) ≤ mK from Theorem 15.15 with Lemma 15.16.

This is also true for global function fields (see pset 8).

Corollary 15.18

Let K be a number field of degree n with s complex places. Then

|DK | ≥
(nn
n!

)2(π
4

)2s
>

1

e2n

(πe2
4

)n
.

Corollary 15.19

If K ̸= Q is a number field, then |DK | > 1; i.e. there are no nontrivial unramified extensions of Q.

Theorem 15.20

For every real number M > 0, the set of number fields with discriminant |DK | < M is finite.

Theorem 15.21 (Hermite)

Let S be a finite set of places of Q. The number of extensions K/Q of a fixed degree n that are
unramified outside S is finite.

16 Dirichlet’s unit theorem

Let K be a number field. Last time we proved that clOK is finite. Today we will prove that O×
K is finitely

generated.

Page 73 of 109



18.785 Number Theory I November 4, 2025

16.1 Arakelov divisors

Let MK denote the set of places of K. Given a place ν ∈ MK , let Kν be the completion with respect to
||·||ν :K → R≥0 where ||x||ν := µ(xS)

µ(S) for a Haar measure µ and a measurable set S. Recall that

||x||ν =


|x|ν = (#k)−ν(x) if ν archimedean

|x|R if ν real

|x|2C if ν complex

.

Definition 16.1 (Arakelov divisor). An Arakelov divisor is a sequence of positive real numbers (cν)
indexed by ν ∈MK with cν = 1 for all but finitely many ν.

Arakelov divisors form an abelian group called DivK under pointwise multiplication: (cν)(dν) = (cνdν).
The multiplicative group K× is embedded in DivK via x 7→ (||x||ν), which is a subgroup PrinK of principal
Arakelov divisors.

Definition 16.2 (size). The size of c ∈ DivK is ||c|| :=
∏

ν∈MK
cν ∈ R>0.

The map DivK → R>0 given by c 7→ ||c|| is a group homomorphism with PrinK in the kernel by the
product formula (Theorem 14.22).

Corresponding to each c ∈ DivK is a subset L(c) of K defined by

L(c) := {x ∈ K : ||x||ν ≤ cν ,∀ν ∈MK}.

and a fractional ideal Ic ∈ IOK
defined by

Ic :=
∏
ν|∞

qν(c)ν

where qν := {a ∈ OK : ν(a) > 0} and ν(c) := − log#kν (cν) ∈ Z. There is another group homomorphism
DivK → IOK

given by c 7→ Ic. Note that L(c) ⊆ Ic.

Remark 16.3. The Arakelov class group is Pic0K = Div0K/PrinK, where Div0K = {c : ||c|| = 1}.

DivK IOK

PicK clOK

We have
N(Ic) =

∏
ν∤∞

N(qν)
ν(c) =

∏
ν∤∞

(#kν)
ν(c) =

∏
ν∤∞

c−1
ν

so
||c|| = N(Ic)

−1
∏
ν|∞

cν .

We also define
Rc := {c ∈ KR : ||x||ν ≤ cν ,∀ν | ∞}.

This set is compact, convex, and symmetric in KR := K ⊗Q R ≃ Rr ×Cs, where r, s are the number of real
and complex places. There is a natural inclusion K ↪→ KR by x 7→ x ⊗ 1. Viewing Ic and L(c) as subsets
of KR, we have

L(c) = Ic ∩Rc.
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Example 16.4

Let K = Q(i) and Ic = (2 + i) which corresponds to a place ν1. Let ν2 | ∞ be the unique complex
conjugate. Let cν1 = 1

5 , cν2 = 10, and cν = 1 for all ν ̸= ν1, ν2. Then L(c) = {x ∈ (2 + i) : ||x||ν2 ≤ 10},
where ||x||ν2 ≤ 10 is a circle of radius

√
10. In this case, #L(c) = 9.

Lemma 16.5

L(c) is finite.

Corollary 16.6

Let K be a global field and µK be the torsion subgroup of K×. Then µK is finite and equal to the
kernel of the map K× → DivK given by x 7→ (||x||ν). It is also the torsion subgroup of O×

K .

As a result, for all global fields K we have an exact sequence of abelian groups

1→ µK → K× → DivK → PicK → 1.

Proposition 16.7

Let K be a number field with s complex places, and define BK := ( 2π )
s
√
|DK |. If c ∈ DivK with

||c|| > BK , then L(c) contains an element of K×.

Proof. We apply the Minkowski lattice point theorem (Theorem 15.10) to Rc and the lattice Ic ⊆ K ⊆ KR.
We need to show that ||c|| > BK implies µ(Rc) > 2n covol(Ic) where n = [K : Q].

For each real place ν, the constraint ||x||ν = |x|R ≤ cν contributes a factor of 2cν , while for a complex place
ν, the constraint ||x||ν = |x|C ≤ cν contributes a factor of πcν . Then

µ(Rc)

covol(Ic)
=

2sµRn(Rc)

covol(Ic)
=

2s(
∏

ν real 2cν)(
∏

ν complex πcν)

covol(Ic)
=

2r(2π)s
∏

ν|∞ cν√
|DK |N(Ic)

=
2r(2π)s√
|DK |

||c|| = ||c||
BK

2n.
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16.2 Unit group of a number field

We have an isomorphism of topological groups

K×
R ≃

∏
ν|∞

K×
ν ≃

∏
ν real

R×
∏

ν complex

C× = (R×)r × (C×)s.

Write elements of K×
R as vectors x = (xν). Define

Log:K×
R → Rr+s, (xν) 7→ (log ||xν ||ν)

which is surjective, continuous, and a group homomorphism.

Recall that infinite places are in bijection with Gal(C/R)-orbits of HomQ(K,C). For each ν | ∞, pick
σν ∈ HomQ(K,C) in the corresponding orbit. Then

||x||ν =

{
|σν(x)|R if ν real

|σν(x)σν(x)|R if ν complex
.

The absolute norm N:K× → Q>0 extends to a continuous homomorphism of locally compact groups

N:K×
R → R>0, (xν) 7→

∏
ν|∞

||xν ||ν .

It is compatible with the canonical embedding K× ↪→ K×
R because for all x ∈ K×,

N(x) =
∣∣NK/Q(x)

∣∣ = ∣∣∣∣∣∏
σ

σ(x)

∣∣∣∣∣
R

=
∏
ν|∞

||x||ν .

We thus have a commutative diagram

K× K×
R Rr+s

Q×
>0 R×

>0 R

N

Log

N T

log

where T:Rr+s → R is defined by (xi) 7→
∑
xi. To summarize, T(Log x) = logN(x).

Since N(O×
K) is a unit in Z and has absolute value 1, O×

K ⊆ ker(log ◦N), so O×
K ⊆ ker(T ◦Log). Log(O×

K)
is a subgroup of the trace zero hyperplane

Rr+s
0 := {x ∈ Rr+s : T(x) = 0}.

Proposition 16.8

Let K be a number field with r real and s complex places. Let ΛK := Log(O×
K) ⊆ Rr+s

0 . Then

1. We have a split exact sequence of finitely generated abelian groups

1→ µK → O×
K

Log−−→ ΛK → 0.

2. ΛK is a lattice in the trace zero hyperplane Rr+s
0 .
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Proof. 1. To show exactness, let Z = ker(O×
K

Log−−→ ΛK). We have µK ⊆ Z since ΛK ⊆ Rr+s
0 is torsion

free. Let c ∈ DivK satisfy Ic = OK and cν = 2 for ν | ∞, so

L(c) = {x ∈ OK : ||x||ν ≤ 2,∀ν | ∞}.

For x ∈ O×
K , we have

x ∈ L(c) ⇐⇒ Log(x) ∈ {z ∈ Rr+s : zi ≤ log 2}.

Note that 0 is in the set on the RHS, so Z ⊆ L(c). L(c) is finite by Lemma 16.5, so Z is finite. Any
finite subgroup Z ⊆ OK is in the torsion subgroup, so Z ⊆ µK .

To show that the short exact sequence splits, we first note ΛK ∩ Log(Rc) = Log(O×
K ∩ L(c)) is finite

because L(c) is finite. Therefore 0 is an isolated point of ΛK in Rr+s and in Rr+s
0 , so ΛK is a discrete

subgroup of Rr+s
0 , hence finitely generated (Lemma 15.2). This implies O×

K is also finitely generated, as
the other terms µK and ΛK in the exact sequence are. By the structure theorem for finitely generated
abelian groups, the sequence splits as O×

K ≃ µK × ΛK , since µK is the torsion subgroup.

2. Let V be the subspace of Rr×s
0 spanned by ΛK . FSOC suppose dimV < dimRr+s

0 = r + s− 1. Then
the orthogonal subspace V ⊥ contains a unit vector u, and for all λ ∈ R>0, the ball B<λ(λu) does not
intersect ΛK . It would suffice to show that there exists some M ∈ R>0 such that for all h ∈ Rr+s

0 ,
there exists some point ℓ ∈ ΛK such that ||h− ℓ|| := maxi |hi − ℓi| < M . Fix a constant B > BK

(from Proposition 16.7). Then for all c ∈ DivK with ||c|| > B, L(c) contains a nonzero element. Fix
b ∈ Rr+s with bi ≥ 0 such that T (b) =

∑
i bi = logB. Let (α1), . . . , (αm) be all nonzero principal

ideals with N(αj) ≤ B (it is a finite list by Lemma 15.16).

Let M = 2max{(r + s)B,maxj ||Log(αj)||}. For h ∈ Rr+s
0 , define c ∈ DivK by Ic = OK and

cν := exp(hν + bν) for ν | ∞. Then from T(h) = 0,

||c|| =
∏
ν

cν = exp
(∑

ν

(hν + bν)
)
= expT(h+ b) = exp(T(h) + T(b)) = expT(b) = B > BK .

Thus L(c) contains a nonzero γ ∈ Ic ∩K = OK , and g = Log γ satisfies gν ≤ log cν = hν + bν . Also
T(g) = T(Log γ) = logN(γ) ≥ 0 since N(γ) ≥ 1 for all nonzero γ ∈ OK . Let w := g − h ∈ Rr+s, so∑

ν

wν = T(w) = T(g)− T(h) = T(g) ≥ 0

and wν ≤ bν < logB. Then ||w|| ≤ (r + s)B so ||g − h|| = ||w|| ≤ M
2 . Also

logN(γ) = T(Log γ) ≤ T(h+ b) = T(b) = logB

so N(γ) ≤ B and (γ) = (αj) for some j. Thus γ
αj
∈ O×

K and ℓ := Log( γ
αj
) = Log(γ) − Log(αj) ∈ ΛK

satisfies ||g − ℓ|| = ||Log(αj)|| ≤ M
2 by the definition of M , so by the triangle inequality ||h− ℓ|| ≤

||h− g||+ ||g − ℓ|| ≤M .

Theorem 16.9 (Dirichlet)

Let K be a number field with r real and s complex places. Then O×
K ≃ µK×Zr+s−1 is finitely generated.

16.3 Regulator of a number field
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Definition 16.10 (regulator). The regulator of K is

RK := covol(π(Log(O×
K))) ∈ R>0

where π:Rr+s → Rr+s−1 is a coordinate projection.

We can compute this explicitly. If ϵ1, . . . , ϵr+s−1 is a basis for the free part of O×
K , then RK is the absolute

value of the determinant of any (r+ s− 1)× (r+ s− 1) minor in the (r+ s)× (r+ s) matrix with columns
as Log(ϵi).

17 Riemann zeta function and prime number theorem

17.1 Riemann zeta function

Definition 17.1 (Riemann zeta function). ζ(s) :=
∑∞

n=1 n
−s.

It is a complex function defined for for Re(s) > 1 (note it converges absolutely on Re(s) > 1).

Theorem 17.2 (Euler product)

For Re(s) > 1, we have

ζ(s) =
∑
n≥1

n−s =
∏
p

(1− p−s)−1

where the product converges absolutely. In particular, ζ(s) ̸= 0 on Re(s) > 1.

Proof. We have ∑
n≥1

n−s =
∑
n≥1

∏
p

p−νp(n)s =
∏
p

∑
e≥0

p−es =
∏

(1− p−s)−1.

To justify the second equality, consider the partial zeta function

ζm(s) :=
∑
n∈Sm

n−s =
∑
ei≥0

(pe11 · · · p
ek
k )−s =

∏
1≤i≤k

∑
ei≥0

(p−s)ei =
∏
p≤m

(1− p−s)−1

where Sm = {n ∈ Z≥1 : p | n =⇒ p ≤ m} (i.e. no prime factors p > m). Fixing δ > 0, the sequence of
functions ζm(s) converges uniformly on Re(s) > 1 + δ: for all ϵ > 9, we have

|ζm(s)− ζ(s)| ≤

∣∣∣∣∣∑
n>m

n−s

∣∣∣∣∣ ≤ ∑
n>m

∣∣n−s
∣∣ = ∑

n>m

n−Re(s) ≤
∫ ∞

m
x−1−δ dz ≤ 1

δ
m−δ < ϵ

for all sufficiently large m.

Thus the ζm(s) converge locally uniformly to ζ(s) on Re(s) > 1. Also the functions
∏

p≤m(1 − p−s)−1

converge locally uniformly to
∏

p(1− p−s)−1 whenever
∏

p(1− p−s)−1 is (absolutely) convergent. For any s
with Re(s) > 1,

∑
p

∣∣log(1− p−s)−1
∣∣ = ∑

p

∣∣∣∣∣∣
∑
e≥1

1

e
p−es

∣∣∣∣∣∣ ≤
∑
p

∑
e≥1

∣∣p−s
∣∣e = ∑

p

(|ps| − 1)−1 <∞,

where the first equality is by log(1 − z) = −
∑

n≥1
1
nz

n for |z| < 1. Therefore
∏

p(1 − p−s)−1 is absolutely
convergent on Re(s) > 1.
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Theorem 17.3 (Analytic continuation I)

For Re(s) > 1, we have

ζ(s) =
1

s− 1
+ ϕ(s)

for ϕ(s) holomorphic on Re(s) > 0. Thus ζ(s) extends to a meromorphic function on Re(s) > 0, with
a simple pole at s = 1 with residue 1, and no other poles on Re(s) > 0.

Proof. For Re(s) > 1, we have

ζ(s)− 1

s− 1
=

∑
n≥1

n−s −
∫ ∞

1
x−s dx =

∑
n≥1

∫ n+1

n
(n−s − x−s) dx.

For each n ∈ Z≥1, define ϕn(s) :=
∫ n+1
n (n−s − x−s) dx which is holomorphic on Re(s) > 0. For each fixed s

with Re(s) > 0 and x ∈ [n, n+ 1],

∣∣n−s − x−s
∣∣ = ∣∣∣∣∫ x

n
st−s−1 dt

∣∣∣∣ ≤ ∫ x

n

|s|
|ts+1|

dt =

∫ x

n

|s|
t1+Re(s)

dt ≤ |s|
n1+Re(s)

.

Therefore

|ϕn(s)| ≤
∫ n+1

n

∣∣n−s − x−s
∣∣ dx ≤ |s|

n1+Re(s)
.

Now for any s0 with Re(s0) > 0, let ϵ := Re(s0)/2 and U := B<ϵ(s0) so for each n ≥ 1,

sup
s∈U
|ϕn(s)| ≤

|s0|+ ϵ

n1+ϵ
=:Mn.

Since
∑

n≥1Mn = (|s0| + ϵ)ζ(1 + ϵ) converges,
∑

n≥1 ϕn converges locally normally on Re(s) > 0. By the

Weierstrass M -test,
∑

n≥1 ϕn converges to ϕ(s) = ζ(s)− 1
s−1 and it is holomorphic on Re(s) > 0.

We next show there are no zeros on the line Re(s) = 1 (much weaker than the Riemann hypothesis, but
needed for the prime number theorem).

Lemma 17.4 (Mertens)

For x, y ∈ R with x > 1, we have
∣∣ζ(x)3ζ(x+ iy)4ζ(x+ 2iy)

∣∣ ≥ 1.

Proof. We have

log |ζ(s)| = −
∑
p

log
∣∣1− p−s

∣∣
= −

∑
p

Re log(1− p−s)

=
∑
p

∑
n≥1

Re(p−ns)

n
,

using that log |z| = Re log z and log(1− z) = −
∑

n≥1
zn

n . Plug in s = x+ iy to get

log |ζ(x+ iy)| =
∑
p

∑
n≥1

cos(ny log p)

npnx
,
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since Re(p−ns) = p−nxRe(e−iny log p) = p−nx cos(−ny log p) = p−nx cos(ny log p). Then

log
∣∣ζ(x)3ζ(x+ iy)4ζ(x+ 2iy)

∣∣ = ∑
p

∑
n≥1

3 + 4 cos(ny log p) + cos(2ny log p)

npnx

≥ 0

by the double angle identity cos(2θ) = 2 cos2 θ−1 =⇒ 3+4 cos θ+cos 2θ = 2(1+cos θ)2 ≥ 0. Exponentiating
yields

∣∣ζ(x)3ζ(x+ iy)4ζ(x+ 2iy)
∣∣ ≥ 1.

Corollary 17.5

ζ(s) has no zeros on Re(s) ≥ 1.

Proof. By the Euler product (Theorem 17.2), we already know that there are no zeros on Re(s) > 1. Now
suppose ζ(1 + iy) = 0 for some y ∈ R. We know y ̸= 0, since there is a pole at s = 1, so there is no pole at
1 + 2iy. Then

lim
x→1+

∣∣ζ(x)3ζ(x+ iy)4ζ(x+ 2iy)
∣∣ = 0.

because at x = 1, ζ(x)3 has a pole of order 3, ζ(x+ iy)4 has a zero of order 4, and ζ(x+ 2iy) has no pole.
However, this contradicts Lemma 17.4.

17.2 Prime theorem theorem

Definition 17.6 (prime counting function). π(x) :=
∑

p≤x 1.

π:R→ Z≥0 counts the number of primes up to x.

The prime number theorem (PNT) says that

π(x) ∼ x

log x
,

which means limx→∞
π(x) log x

x = 1. A more precise statement is that

π(x) ∼ Li(s) :=

∫ x

2

dt

log t

(logarithmic integral).

Definition 17.7 (log-weighted prime counting function). ϑ(x) :=
∑

p≤x log p

ϑ(x) should be asymptotic to x.

Theorem 17.8 (Chebyshev)

π(x) ∼ x
log x if and only if ϑ(x) ∼ x.

Proof. Since 0 ≤ ϑ(x) ≤ π(x) log x, we have ϑ(x)
x ≤ π(x) log x

x . For ϵ ∈ (0, 1),

ϑ(x) ≥
∑

x1−ϵ<p≤x

log p

≥ (1− ϵ)(log x)(π(x)− π(x1−ϵ))

≥ (1− ϵ)(log x)(π(x)− x1−ϵ)
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so π(x) ≤ 1
1−ϵ

ϑ(x)
log x + x1−ϵ and

ϑ(x)

x
≤ π(x) log x

x
≤ 1

1− ϵ
ϑ(x)

x
+

log x

xϵ
,

where log x
xϵ → 0 as x→∞. We can make ϵ→ 0.

The goal now is to show that ϑ(x) ∼ x. It’s easy to show combinatorially that ϑ(x) = O(x), and even that
ϑ(x) ≤ (4 log 2)x, but we need to replace the constant by 1 and show the lower bound.

Lemma 17.9

Let f :R≥1 → R be nondecreasing. If
∫∞
1

f(t)−t
t2

dt converges, then f(x) ∼ x.

We want to apply the lemma to f = ϑ. Define

H(t) := ϑ(et)e−t − 1.

The change of variables t 7→ eu implies
∫∞
1

ϑ(t)−t
t2

dt converges if and only if
∫∞
0 H(u) du converges.

Definition 17.10 (Laplace transform). For a piecewise continuous function h:R≥0 → R, the Laplace
transform Lh is the complex function

Lh(s) :=
∫ ∞

0
e−sth(t) dt.

It is holomorphic on Re(s) > 0 for any c ∈ R for which h(t) = O(ect).

The Laplace transform satisfies

• L(g + h) = Lg + Lh and L(ah) = aLh.

• If h(t) = a is constant, then Lh(s) = a
s .

• L(eath(t))(s) = L(h)(s− a) for all a ∈ R.

Now define
Φ(s) :=

∑
p

p−s log p.

Lemma 17.11

L(ϑ(et))(s) = Φ(s)
s is holomorphic on Re(s) > 1.

Proof. Since ϑ(et) = O(et), we know L(ϑ(et)) is holomorphic on Re(s) > 1. Let pn be the nth prime and
p0 := 1, so ϑ(et) is constant on t ∈ (log pn, log pn+1) and∫ log pn+1

log pn

e−stϑ(et) dt = ϑ(pn)

∫ log pn+1

log pn

e−st dt =
1

s
ϑ(pn)(p

−s
n − p−s

n+1).
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Then

(Lϑ(et))(s) =
∫ ∞

0
e−stϑ(et) dt =

1

s

∞∑
n=1

ϑ(pn)(p
−s
n − p−s

n+1)

=
1

s

∞∑
n=1

(ϑ(pn)− ϑ(pn−1))p
−s
n (ϑ(p0) = 0)

=
1

s

∞∑
n=1

p−s
n log pn

=
Φ(s)

s
.

Now the Laplace transform of H(t) = ϑ(et)e−t − 1 is

LH(s) = L(ϑ(et)e−t)(s)− (L1)(s) = L(ϑ(et))(s+ 1)− 1

s
=

Φ(s+ 1)

s+ 1
− 1

s

on Re(s) > 0, where the last equality is by Lemma 17.11.

Lemma 17.12

Φ(s)− 1
s−1 extends to a meromorphic function on Re(s) > 1

2 and a holomorphic function on Re(s) ≥ 1.

Proof. Recall from analytic continuation (Theorem 17.3) that ζ(s) extends to a meromorphic function on

Re(s) > 0 with only a simple pole at s = 1 and no zeros on Re(s) > 1. Thus ζ′(s)
ζ(s) is meromorphic on

Re(s) > 0, with only a simple pole at s = 1 and residue −1. We have

−ζ
′(s)

ζ(s)
= (log ζ(s))′

=
(
− log

∏
p

(1− p−s)−1
)′

=
(∑

p

log(1− p−s)
)′

=
∑
p

p−s log p

1− p−s

=
∑
p

log p

ps − 1

=
∑
p

( 1

ps
+

1

ps(ps − 1)

)
log p

= Φ(s) +
∑
p

log p

ps(ps − 1)
.

The RHS converges absolutely to a holomorphic function on Re(s) > 1
2 ; the LHS is meromorphic on

Re(s) > 0, and on Re(s) ≥ 1 it has a simple pole at s = 1 with residue 1. Then we have the desired for
Φ(s)− 1

s−1 .
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Corollary 17.13

The functions Φ(s + 1) − 1
s and (LH)(s) = Φ(s+1)

s+1 − s both extend to meromorphic functions on

Re(s) > −1
2 that are holomorphic on Re(s) ≥ 0.

Proof. The function
Φ(s+ 1)

s+ 1
− 1

s
=

1

s+ 1

(
Φ(s+ 1)− 1

s

)
− 1

s+ 1

is meromorphic on Re(s) > −1
2 and holomorphic on Re(s) ≥ 0 because both summands are.

Theorem 17.14 (Newman)

Let f :R≥0 → R be bounded and piecewise continuous. Suppose Lf extends to a holomorphic function
g(s) on Re(s) ≥ 0. Then

∫∞
0 f(t) dt converges to and equals g(0).

Theorem 17.15 (Prime number theorem)

π(x) ∼ x

log x
.

Proof. H(t) := ϑ(et)e−t − 1 is piecewise continuous and bounded by Chebyshev (Theorem 17.8), and LH
extends to a holomorphic function on Re(s) ≥ 0 by Corollary 17.13. By Newman (Theorem 17.14),∫ ∞

0
H(t) dt =

∫ ∞

0
(ϑ(et)e−t − 1) dt

converges. Replacing t with log x shows that∫ ∞

1

(
ϑ(x)

1

x
− 1

)dx
x

=

∫ ∞

1

ϑ(x)− x
x2

dx

converges, which implies ϑ(x) ∼ x by Lemma 17.9.

Remark 17.16. The currently known bound π(x) = Li(x)+O( x
exp((log x)3/5+o(1))

) is subexponential, so it

is better than any polynomial bound O( x
(log x)n ) with n ≥ 1. Assuming the Riemann hypothesis, which

states that all zeros of ζ(s) in 0 < Re(s) < 1 have real part 1
2 , we get π(x) = Li(x) + O(x1/2+o(1)).

More generally, if there are no zeros with real part greater than some c > 1
2 (say c = 0.999), then

π(x) = Li(x) +O(xc+o(1)) which would beat the current record which has held for 50+ years.

18 The functional equation

Recall that last time we proved that ζ(s) extends to a meromorphic function on Re(s) > 0. It only has a
simple pole at s = 1 and no zeros on Re(s) ≥ 1. Today we derive a functional equation between ζ(s) and
ζ(1− s) which extends ζ(s) to a meromorphic function on C.
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18.1 Fourier transform and Poisson summation

Definition 18.1 (Schwartz function). A Schwartz function on R is a complex-valued C∞ function
f :R→ C that decays rapidly to 0: for all m,n ∈ Z≥0,

sup
x∈R

∣∣∣xmf (n)(x)∣∣∣ <∞.
The Schwartz space S(R) of all such functions is a (non-unital) C-algebra of infinite dimension.

Example 18.2

Examples of Schwartz functions include any compactly-supported C∞-function and the Gaussian g(x) =
e−πx2

.

Nonexamples include polynomials, 1
1+x2n , and e

−x2
sin(ex

2
).

S(R) is closed under differentiation, multiplication by polynomials, and linear change of variables. It is also
invariant under convolution: if f, g ∈ S(R), then f ∗ g ∈ S(R), where

(f ∗ g)(x) :=
∫
R
f(y)g(x− y) dy.

Definition 18.3 (Fourier transform). The Fourier transform of f ∈ S(R) is

f̂(y) :=

∫
R
f(x)e−2πixy dx,

which is also a Schwartz function.

We can recover f from f̂ by

f(x) =

∫
R
f̂(y)e2πixy dy.

The maps f 7→ f̂ and f̂ 7→ f are thus inverse linear operators on S(R). We also have

f̂ ∗ g = f̂ ĝ, f̂g = f̂ ∗ ĝ,

so the Fourier transform is an isomorphism of (non-unital) C-algebras (S(R),+,×)→ (S(R),+, ∗).

Lemma 18.4

For all a ∈ R>0 and f ∈ S(R), f̂(ax)(y) = 1
a f̂(

y
a).

Proof. By the substitution t = ax,

f̂(ax)(y) =

∫
R
f(ax)e−2πixy dx =

1

a

∫
R
f(t)e−2πity/a dt =

1

a
f̂
(y
a

)
.

Lemma 18.5

For all f ∈ S(R), we have d
dy f̂(y) = −2πi x̂f(x)(y) and

d̂
dxf(x)(y) = 2πiyf̂(y).
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The Fourier transform is compatible with the inner product ⟨f, g⟩ =
∫
R f(x)g(x) dx on L2(R) in that

⟨f, g⟩ =
∫
R
f(x)g(x) dx =

∫
R

∫
R
f̂(y)g(X)e2πixy dxdy =

∫
R
f̂(y)ĝ(y) dy = ⟨f̂ , ĝ⟩

which is known as Parseval’s identity. The case of g = f is Plancherel’s identity :

||f ||22 = ⟨f, f⟩ = ⟨f̂ , f̂⟩ = ||f̂ ||
2
2.

Theorem 18.6 (Poisson summation)

For all f ∈ S(R), ∑
n∈Z

f(n) =
∑
n∈Z

f̂(n).

Proof. Because f ∈ S(R), both sums are absolutely convergent. Let F (x) :=
∑

n∈Z f(x + n) which is a
periodic C∞-function, so it has a Fourier series expansion F (x) =

∑
n∈Z cne

2πinx. The coefficients are

cn =

∫ 1

0
F (t)e−2πint dt =

∫ 1

0

∑
m∈Z

f(t+m)e−2πint dt =

∫
R
f(t)e−2πint dt = f̂(x).

Then ∑
n∈Z

f(n) = F (0) =
∑
n∈Z

cn =
∑
n∈Z

f̂(n).

Lemma 18.7

The Gaussian function g(x) = e−πx2
satisfies ĝ = g.

Proof. Note that g satisfies g′+2πxg = 0 with g(0) = 1. Multiplying by −i and taking the Fourier transform
yields

0 = −i(ĝ′ + 2πx̂g) = −i(2πiyĝ + iĝ′) = ĝ′ + 2πyĝ,

where the second equality is by Lemma 18.5. Thus, ĝ satisfies the same ODE and has the same initial value
ĝ(0) =

∫
R e

−πx2
dx = 1.

Definition 18.8 (Jacobi theta function). Θ(τ) :=
∑

n∈Z e
πin2τ .

The sum is absolutely convergent on im τ > 0 and is periodic mod 2: Θ(τ + 2) = Θ(τ).

Lemma 18.9

For all a ∈ R>0, we have Θ(ia) = 1√
a
Θ( ia).

Proof. Let g(x) := e−πx2
and h(x) := g(

√
ax) = e−πx2a. By Lemma 18.4 and the fact that ĝ = g,

ĥ(y) = ĝ(
√
ax)(y) =

1√
a
ĝ
( y√

a

)
=

1√
a
g
( y√

a

)
.

Now letting τ = ia and using the Poisson summation (Theorem 18.6) so

Θ(ia) =
∑
n∈Z

e−iπ2a =
∑
n∈Z

h(n) =
∑
n∈Z

ĥ(n) =
∑
n∈Z

1√
a
g
( n√

a

)
=

1√
a
Θ
( i
a

)
.
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18.2 Gamma function and functional equation

Definition 18.10 (Mellin transform). The Mellin transform of f :R>0 → C is

M(f)(s) :=

∫ ∞

0
f(t)ts−1 dt

whenever the integral converges.

It is holomorphic on Re(s) ∈ (a, b) wherever
∫∞
0 |f(t)| t

σ−1 dt converges for all σ ∈ (a, b).

Definition 18.11 (Gamma function). The Gamma function is

Γ(s) :=M(e−t)(s) =

∫ ∞

0
e−tts−1 dt.

The Gamma function is the Mellin transform of e−t and is holomorphic on Re(s) > 0.

Integrating by parts,

Γ(s) =
tse−t

s

∣∣∣∣∞
0

+
1

s

∫ ∞

0
e−tts dt =

Γ(s+ 1)

s
.

There is a simple pole at s = 0 with residue 1, so

Γ(s+ 1) = sΓ(s)

for Re(s) > 0. In particular for all integers n > 0,

Γ(n+ 1) = n! Γ(1) = n! .

We can also extend Γ(s) to a meromorphic function on C with simple poles at 0,−1,−2, . . . (and no others).

Theorem 18.12 (Euler’s reflection formula)

Γ(s)Γ(1− s) = π
sin(πs) are meromorphic functions with simple poles on Z and no others.

Corollary 18.13

Γ(s) has no zeros on C.

Example 18.14

Letting s = 1
2 , we have Γ(12) =

√
π.

Define
F (s) := π−sΓ(s)ζ(2s)

which is holomorphic on Re(s) > 1
2 . In this region, we have an absolutely convergent sum

F (s) = π−sΓ(s)
∑
n≥1

n−2s =
∑
n≥1

(πn2)−sΓ(s) =
∑
n≥1

∫ ∞

0
(πn2)−sts−1e−t dt.

Substituting t = πn2y so dt = πn2dy,

F (s) =
∑
n≥1

∫ ∞

0
(πn2)−s(πn2y)s−1e−πn2yπn2 dy =

∑
n≥1

∫ ∞

0
ys−1e−πn2y dy.
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By Fubini–Tonelli, we can swap the sum and integral:

F (s) =

∫ ∞

0
ys−1

∑
n≥1

e−πn2y dy.

Since Θ(iy) =
∑

n∈Z e
−πn2y = 1 + 2

∑
n≥1 e

−πn2y, we have

F (s) =
1

2

∫ ∞

0
ys−1(Θ(iy)− 1) dy

=
1

2

(∫ ∞

0
ys−1Θ(iy) dy − 1

s
+

∫ ∞

1
ys−1(Θ(iy)− 1) dy

)
.

Substituting t = 1
y into the first integral yields∫ ∞

0
ys−1Θ(iy) dy =

∫ 1

∞
t1−sΘ

( i
t

)
(−t−2) dt

=

∫ ∞

1
t−s−1Θ

( i
t

)
dt

=

∫ ∞

1
t−s− 1

2 (Θ(it)− 1) dt+

∫ ∞

1
t−s− 1

2 dt

=

∫ ∞

1
t−s− 1

2 (Θ(it)− 1) dt− 1
1
2 − s

.

For the third equality, we use Θ( it) =
√
tΘ(it).

All together,

F (s) =
1

2

∫ ∞

1
(ys−1 + y−s− 1

2 )(Θ(iy)− 1) dy − 1

2s
− 1

1− 2s

on Re(s) > 1
2 . Note that F (s) = F (12 − s) for s ̸= 0, 12 . F (s) was originally defined on Re(s) > 0, but we

can now extend it to a meromorphic function on C with poles at s = 0, 12 .

Definition 18.15 (completed zeta function). Z(s) := π−s/2Γ( s2)ζ(s).

Z(s) is meromorphic on C and satisfies Z(s) = Z(1 − s). It has simple poles at 0, 1 and no others. The
only zeros on Re(s) > 0 are the zeros of ζ(s), so all zeros lie in the critical strip 0 < Re(s) < 1

2 .

We can use the functional equation to extend ζ(s) to a meromorphic function on all of C. Recall that ζ(s)
has a pole at s = 1 and zeros at −2,−4,−6, . . . (called trivial zeros of ζ).

Page 87 of 109



18.785 Number Theory I November 20, 2025

Example 18.16

We compute ζ(0) with the functional equation. First,

ζ(s) =
Z(s)

π−
s
2Γ( s2)

=
Z(1− s)
π−

s
2Γ( s2)

=
π

s−1
2 Γ(1−s

2 )

π−
s
2Γ( s2)

ζ(1− s) =
πs−

1
2Γ(1−s

2 )

Γ( s2)
ζ(1− s).

We know that

1 = lim
s→1+

(s− 1)ζ(s) = lim
s→1+

(s− 1)πs−
1
2Γ(1−s

2 )

Γ( s2)
ζ(1− s).

When s = 1, we have Γ(12) =
√
π which cancels out with πs−

1
2 . Using Γ(z) = 1

zΓ(z+1) to shift Γ(1−s
2 ),

we have

1 = lim
s→1+

(s− 1)
2

1− s
Γ
(3− s

2

)
ζ(1− s) = −2Γ(1)ζ(0) = −2ζ(0),

so ζ(0) = −1
2 .

18.3 Gamma factors and holomorphic zeta function

From the formula Γ(2z) = π−
1
2 22z−1Γ(z)Γ(z + 1

2), the functional equation is often written as

ζ(s) = 2sπs−1 sin
(πs
2

)
Γ(1− s)ζ(1− s).

Define the Gamma factor ΓR(s) := π−
s
2Γ( s2) which corresponds to the ∞ place of Q. Then

Z(s) = ΓR(s)
∏
p

(1− p−s)−1.

Theorem 18.17 (Analytic continuation II)

The function ξ(s) :=
(
s
2

)
ΓR(s)ζ(s) is holomorphic on C and satisfies ξ(s) = ξ(1 − s). All zeros lie in

0 < Re(s) < 1. Note:
(
s
2

)
:= s(s−1)

2 .

Note that ζ(s) = ζ(s). There are no zeros on the real line (we didn’t prove this, but it’s supposedly not
hard), so we can restrict our attention to the upper half plane. Let N(T ) be the number of zeros of ξ(s) in
the rectangle R = (0, 1) + i(0, T ). By Cauchy’s argument principle, we have

N(T ) =
1

2πi

∫
∂R

ξ′(s)

ξ(s)
ds

(provided there are no zeros on Re(s) = T ). One can use this to show that N(T ) ∼ 1
2πT log( T

2πe).

One can compare N(T ) to the number of zeros of the Hardy Z-function e−θ(t)ζ(12 + it) in 0 ≤ t < T where

θ(t) := arg(Γ(2it+1
4 ))− log π

2 t. For T ≤ 1013, all zeros lie on the critical line.

19 Dirichlet’s theorem

19.1 Infinitely many primes
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Theorem 19.1 (Dirichlet 1837)

For all coprime integers a,m > 0, there are infinitely many primes p ≡ a (mod m).

To motivate the proof, we first give a (silly) proof of there being infinitely many primes. It suffices to show
that ζ(s) =

∏
p(1− p−s)−1 diverges for s→ 1+. We already know this because ζ(s) has a pole at s = 1, but

we reprove it in a different way. Take logarithms to obtain

log ζ(s) = −
∑
p

log(1− p−s) =
∑
p

p−s +O(1)

as s → 1+, since − log(1 − x) = x + O(x2) as x → 0, and
∑

pO(p−2s) = O(1) for Re(s) > 1
2 + ϵ. The

following theorem estimates
∑

p≤x
1
p .

Theorem 19.2 (Mertens 1874)

As x→∞, we have

1.
∑

p≤x
log p
p = log x+R(x) with |R(x)| < 2.

2.
∑

p≤x
1
p = log log x+B +O( 1

log x) where B = 0.261497 . . . (Merten’s constant).

3.
∑

p≤x log(1−
1
p) = − log log x− γ +O( 1

log x) where γ = 0.577216 . . . (Euler’s constant).

Remark 19.3. Part 2 with o( 1
log x) instead of O( 1

log x) is equivalent to the prime number theorem.

19.2 Dirichlet characters

Definition 19.4 (arithmetic function). An arithmetic function is a function f :Z→ C.

A function f is multiplicative if f(1) = 1 and f(mn) = f(m)f(n) for all gcd(m,n) = 1, and totally
multiplicative if f(1) = 1 and f(mn) = f(m)f(n) for all m,n ∈ Z.

Definition 19.5 (m-periodic). For m ∈ Z>0, a function f is m-periodic if f(n+m) = f(n) for all n ∈ Z.
The least such m is the period of f .

Definition 19.6 (Dirichlet character). A Dirichlet character is a periodic, totally multiplicative, arith-
metic function χ:Z→ C.

The function 1 : n 7→ 1 is the trivial Dirichlet character (unique Dirichlet character with period 1). Everym-
periodic Dirichlet character induces a group character on (Z/mZ)×, i.e. a homomorphism (Z/mZ)× → C×.
Conversely, every group character on (Z/mZ)× can be extended to a Dirichlet character χ with χ(n) = 0
for all gcd(m,n) ̸= 1 (extension by zero).

Definition 19.7 (of modulusm). A Dirichlet character of modulus m is anm-periodic Dirichlet character
that is the extension by zero of some character on (Z/mZ)×. Equivalently, it is an m-periodic Dirichlet
character χ with χ(n) = 0 for all gcd(m,n) ̸= 1.

Dirichlet characters of modulus m form a group under pointwise multiplication, isomorphic to the character
group of (Z/mZ)×.
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Lemma 19.8

Let χ be a Dirichlet character of period m. Then χ is a Dirichlet character of modulus m′ if and only
if m | m′ and m′ | mk for some k ∈ Z>0.

Definition 19.9 (induced). Let χ1, χ2 be Dirichlet characters of moduli m1,m2 with m1 | m2. If
χ1(n) = χ2(n) for all n ∈ (Z/m2Z)×, then χ2 is induced by χ1.

Definition 19.10 (primitive). A Dirichlet character not induced by any character other than itself is
primitive.

Lemma 19.11

A Dirichlet character χ2 of modulus m2 is induced by some Dirichlet character χ1 of modulus m1 | m2

if and only if χ2 is constant on residue classes of (Z/m2Z)× that are equivalent modulo m1.

When this holds, χ1 is uniquely determined.

Definition 19.12 (principal). A Dirichlet character induced by the trivial character 1 is principal. Let
1m denote the principal Dirichlet character of modulus m; it corresponds to the trivial character on
(Z/mZ)×.

Lemma 19.13

If χ is a Dirichlet character of modulus m, then
∑

n∈Z/mZ χ(n) ̸= 0 ⇐⇒ χ = 1m.

Proof. Orthogonality of characters.

Proposition 19.14

Let G be a finite abelian group. For all g1, g2 ∈ G, we have

⟨g1, g2⟩ :=
1

#G

∑
χ∈Ĝ

χ(g1)χ(g2) =

{
1 if g1 = g2

0 else
.

For all χ1, χ2 ∈ Ĝ,

⟨χ1, χ2⟩ :=
1

#G

∑
g∈G

χ1(g)χ2(g) =

{
1 if χ1 = χ2

0 else
.

Theorem 19.15

Every Dirichlet character χ is induced by a primitive χ̃ that is uniquely determined by χ.

Proof. Partially order the Dirichlet characters with χ1 ⪯ χ2 if χ1 induces χ2. Let χ be a Dirichlet character
of period m, and consider X := {χ′ : χ′ ⪯ χ}. Each χ′ ∈ X has period m′ | m, and there is at most one
χ′ ∈ X for each m′ | m (so X is finite). Suppose χ1, χ2 ∈ X have periods m1,m2, so m1,m2 | m. Let
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m3 := gcd(m1,m2) | m, so we have a commutative diagram of reduction maps.

(Z/mZ)× (Z/m1Z)×

(Z/m2Z)× (Z/m3Z)×

Since χ is constant on residue classes of (Z/mZ)× that are congruent mod m1, or mod m2, it is constant on
residue classes congruent mod gcd(m1,m2) = m3. Thus there is a unique Dirichlet character χ3 of modulus
m3 that induces χ1, χ2, χ, so χ3 ∈ X. Therefore every pair χ1, χ2 ∈ X has a lower bound χ3 under ⪯
and with respect to the total ordering by period. Thus X contains a unique minimal element (w.r.t. both
orderings) inducing everything, and it must be primitive.

Definition 19.16 (conductor). The conductor of χ is the period of the unique primitive χ̃ inducing χ.

Corollary 19.17

If χ is a Dirichlet character of modulus m, then
∑

n∈Z/mZ χ(n) ̸= 0 if and only if χ has conductor 1.

This is rephrasing Lemma 19.13.

Corollary 19.18

Let M(m) denote the set of Dirichlet characters of modulus m, X(m) denote the set of primitive
Dirichlet characters with conductor dividing m, and Ĝ(m) denote the character group of (Z/mZ)×.
There are canonical bijections M(m)

∼−→ X(m)
∼−→ Ĝ(m) with χ 7→ χ̃ 7→ (n 7→ χ(n)).

Remark 19.19. Since M(m) is a group, we can make X(m) into a group via χ̃1χ̃2 := χ̃1χ2. However,
note that χ̃1χ2 is not necessarily the pointwise product of χ̃1 and χ̃2; it is the unique primitive character
inducing χ̃1χ̃2.

19.3 Dirichlet L-functions

Definition 19.20 (Dirichlet L-function). The Dirichlet L-function associated to a Dirichlet character χ
is

L(s, χ) :=
∏
p

(1− χ(p)p−s)−1 =
∑
n≥1

χ(n)n−s.

The sum and product converge on Re(s) > 1.

Note that
L(s,1) = ζ(s) = L(s,1m)

∏
p|m

(1− p−s)−1.

Then L(s,1m) has a simple pole at s = 1 like ζ(s) with residue

ress=1 L(s,1m) = lim
s→1+

(s− 1)ζ(s)
∏
p|m

(1− p−s) =
∏
p|m

(1− p−1) =
ϕ(m)

m
.
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Proposition 19.21

Let χ be a nonprincipal Dirichlet character of modulus m. Then L(s, χ) extends to a holomorphic
function on Re(s) > 0.

Proof. Define T :R≥0 → C by x 7→
∑

0<n≤x χ(n). Then

T (x+m)− T (x) =
∑

x<n≤x+m

χ(n) =
∑

n∈Z/mZ

χ(n) = 0,

so T is periodic modulo m, hence bounded. Integrating by parts,

L(s, χ) =
∑
n≥1

χ(n)n−s

=

∫ ∞

0
x−s dT (x)

= x−sT (x)
∣∣∣∞
0
−
∫ ∞

0
T (x) d(x−s)

= 0−
∫ ∞

0
T (x)(−sx−s−1) dx

= s

∫ ∞

0
T (x)x−s−1 dx

which is holomorphic on Re(s) > 0 since it is the limit of uniformly converging ϕn(s) := s
∫ n
0 T (x)x

−s−1 dx
(here we use T bounded).

Remark 19.22. If f, g: [a, b]→ R with g′ continuous, then
∫ b
a f dg =

∫ b
a f(x)g

′(x) dx.

19.4 Primes in arithmetic progressions

To prove Dirichlet’s theorem, it suffices to show that
∑

p≡a (mod m) p
−s is unbounded as s → 1+. Consider

the indicator function
1

ϕ(m)

∑
χ∈X(m)

χ
(p
a

)
=

{
1 if p ≡ a (mod m)

0 else

where p
a is done mod m. As s→ 1+,∑

p≡a (mod m)

p−s =
∑
p

p−s 1

ϕ(m)

∑
χ∈X(m)

χ
(p
a

)
=

∑
χ∈X(m)

χ( 1a)

ϕ(m)

∑
p

χ(p)p−s

=
∑

χ∈X(m)

χ( 1a)

ϕ(m)
(logL(s, χ) +O(1))

=
log ζ(s)

ϕ(m)
+

∑
χ∈X(m),χ ̸=1

χ( 1a)

ϕ(m)
logL(s, χ) +O(1).
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The key claim is that L(1, χ) ̸= 0 for all nonprincipal χ. Then logL(s, χ) = O(1) as s→ 1+, so∑
p≡a (mod m)

p−s =
log ζ(s)

ϕ(m)
+O(1).

This is unbounded as s→ 1+, since log ζ(s) is. Also, Mertens’ theorem implies that∑
p≤x,p≡a (mod m)

1

p
∼ log log x

ϕ(m)
,

so there are infinitely many primes p ≡ a (mod m).

Definition 19.23 (Dirichlet, natural density). The Dirichlet density of a set of primes S is

d(S) := lim
s→1+

∑
p∈S p

−s∑
p p

−s
.

The natural density of S is

δ(S) := lim
x→∞

#{p ≤ x : p ∈ S}
#{p ≤ x}

.

For S = {p ≡ a (mod m)}, we have

d(S) = lim
s→1+

∑
p≡a (mod m) p

−s∑
p p

−s
= lim

s→1+

log ζ(s)/ϕ(m)

log ζ(s)
=

1

ϕ(m)
,

independent of a. Note this is weaker than the prime number theorem for arithmetic progressions, which
states

π(x;m, a) := {p ≡ a (mod m) : p ≤ x} ∼ 1

ϕ(m)
π(x),

where π(x;m, a) is the number of primes p ≤ x with p ≡ a (mod m).

20 Analytic class number formula

Definition 20.1 (Dedekind zeta function). The Dedekind zeta function of a number field K is

ζK(z) :=
∑
a

N(a)−z =
∏
p

(1−N(p)−z)−1

where a ranges over nonzero OK-ideals and p ranges over nonzero prime ideals.

The product converges absolutely on Re(z) > 1.

Theorem 20.2 (Analytic class number formula)

Let K be a number field with r real and s complex places of degree n = r+2s. Then ζK(z) extends to
a meromorphic function on Re(z) > 1 − 1

n that is holomorphic except for a simple pole at z = 1 with
residue

lim
z→1+

(z − 1)ζK(z) =
2r(2π)shKRK

wK |DK |
1
2

where hK := #cl(σK) is the class number, RK is the regulator, wk is the number of roots of unity, and
DK := discOK is the absolute discriminant.
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Example 20.3

For K = Q, we have n = 1, r = 1, s = 0, h = 1, w = 2, D = 1, R = 1. Then ζQ(z) = ζ(z) is holomorphic

on Re(z) > 1− 1
1 = 0 except for a simple pole at z = 1 with residue limz→1+(z−1)ζQ(z) =

21(2π)0·1·1
2·|1|

1
2

= 1.

20.1 Lipschitz parameterizability

Definition 20.4 (Lipschitz continuous). Let X,Y be metric spaces. A function f :X → Y is Lipschitz
continuous if there exists c ∈ R>0 such that for all u, v ∈ X, d(f(u), f(v)) ≤ cd(u, v).

Definition 20.5. A set B in a metric space X is d-Lipschitz parameterizable if it is the union of the
images of a finite number of Lipschitz continuous functions fi: [0, 1]

d → X.

Recall the asymptotic notation f(t) = g(t) +O(h(t)) means lim supt→∞

∣∣∣f(t)−g(t)
h(t)

∣∣∣ <∞.

Lemma 20.6

Let S ⊆ Rn be a measurable set whose boundary ∂S := S−S◦ is (n− 1)-Lipschitz parameterizable. As
t→∞,

#(tS ∩ Zn) = µ(S)tn +O(tn−1).

It reduces the problem of counting lattice points to computing the measure of S.

Corollary 20.7

Let Λ be a lattice in V ≃ Rn, and let S ⊆ V be a measurable set whose boundary is (n− 1)-Lipschitz
parameterizable. Then as t→∞,

#(tS ∩ Λ) =
µ(S)

covol(Λ)
tn +O(tn−1).

Proof. If Λ ⊆ Zn, then it follows from the above lemma. Also if the corollary holds for sΛ for some s > 0,
then it holds for Λ, since #(tS ∩ sΛ) = #( tsS ∩ Λ). For any Λ, we can pick s such that sΛ is very close to
a sublattice of Zn; e.g. take s to be the product of all denominators in rational approximations of the real
coefficients of an R-basis for Λ.

20.2 Counting algebraic integers of bounded norm

Recall the unit group K×
R of KR := K ⊗Q R is the locally compact group

K×
R ≃

∏
ν|∞

K×
ν ≃

∏
real ν|∞

R× ×
∏

complex ν|∞

C×.

There is a natural embedding K× ↪→ K×
R by x 7→ (xν) where ν ranges over the r + s archimedean places of

K. Then we can view K× as a subgroup of K×
R that contains all nonzero elements of OK . We also defined

Log:K×
R → Rr+s by (xν) 7→ (log ||xν ||ν). From Proposition 16.8, there is an exact sequence

1→ µK → O×
K

Log−−→ ΛK → 0
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where ΛK is in the trace zero hyperplane Rr+s
0 = {x ∈ Rr+s : T(x) = 0}. The regulator RK is the covolume

of ΛK in Rr+s
0 where Rr+s

0 has measure induced by any coordinate projection Rr+s → Rr+s−1 ≃ Rr+s.
Dirichlet’s unit theorem says that O×

K = U × µK where µK are the roots of unity and U ⊆ O×
K is the free

Z-module of rank r + s− 1.

We want to estimate
#{a : N(a) ≤ t}.

To simplify matters, start with the principal ideals a = (α), so we want to estimate #{(α) : N(α) ≤ t}. For
nonzero α, α′ ∈ K×, (α) = (α′) ⇐⇒ α

α′ ∈ O×
K is a unit. So equivalently, we consider

{α ∈ K× ∩ OK : N(α) ≤ t}/O×
K ,

where S/O×
K for S ⊆ K×

R means α ∼ α′ ⇐⇒ α = uα′ for some u ∈ O×
K . Now defining

K×
R,≤t := {x ∈ K

×
R : N(x) ≤ t} ⊆ K×

R ⊆ KR,

we want to estimate #(K×
R,≤t ∩ OK)/O×

K . Now replace O×
K with U ⊆ O×

K , so there is a wK-to-1 map

(K×
R,≤t ∩ OK)/U → (K×

R,≤t ∩ OK)/O×
K , and we now want to estimate #(K×

R,≤t ∩ OK)/U .

Recall for x = (xν) ∈ K×
R , the norm map N:K×

R → R×
>0 is defined by

N(x) :=
∏
ν|∞

||xν ||ν =
∏
ν real

|xr|R ×
∏

ν complex

|xν |2C

and satisfies T(log x) = logN(x) for all x ∈ K×
R . Now define the surjective homomorphism γ:K×

R → K×
R,1

by x 7→ xN(x)−
1
n . Then Log(K×

R,1) = Rr+s
0 . Fix a fundamental domain F for ΛK in Rr+s

0 , so S :=

γ−1(Log−1(F )) is a set of unique coset representatives for K×
R /U . Defining S≤t := {x ∈ S : N(x) ≤ t} ⊆ KR,

we want to estimate the cardinality of S≤t ∩ OK . Now OK is a lattice in KR and tS≤1 = S≤tn , so we can

estimate S≤t = t
1
nS≤1 using S≤1, as long as the boundary of S≤1 is (n− 1)-Lipschitz parameterizable which

we now show.

Since ker(Log) = {±1}r × U(1)s where U(1) ⊂ C is the unit circle, we have a continuous isomorphism of
locally compact groups

K×
R = (R×)r × (C×)s

∼−→ Rr+s × {±1}r × [0, 2π)s

x = (x1, . . . , xr, z1, . . . , zs) 7→ (Log x)× (sgnx1, . . . , sgnxr)× (arg z1, . . . , arg zs).

The set S≤1 has 2r connected components, one for each element of {±1}r. Parameterize each component
using n real parameters:

• r+s−1 parameters in [0, 1) encoding points in F as R-linear combinations of Log(ϵ1), . . . ,Log(ϵr+s−1)
where ϵ1, . . . , ϵr+s−1 is a basis for U .

• s parameters in [0, 1) encoding elements of U(1)s (take the angle and scale by 2π).

• 1 parameter in (0, 1] encoding the nth root of the norm.

We thus have a continuously differentiable bijection from C = [0, 1)n−1 × (0, 1] ⊆ [0, 1]n to each of the
2n components of S≤1. The boundary ∂C = ∂[0, 1]n is (n − 1)-Lipschitz parameterizable, and thus each
component of S≤1 and S≤1 itself are (n− 1)-Lipschitz parameterizable.

We now can apply Corollary 20.7 to get

#(S≤t ∩ OK) =
µ(S≤1)

covol(OK)
(t1/n)n +O

(
(t1/n)n−1

)
=
µ(S≤1)

|DK |
1
2

t+O
(
t1−1/n

)
. (20.1)
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Next we compute µ(S≤1). Recall the normalized Haar measure µ on KR =
∏

ν|∞Kν ≃ Rr×Cs. In terms of
the Lebesgue measures dx on R and dA on C, we have µ = (dx)r(2dA)s (get a 2 by taking derivative of the
square). Now define the map R× ∼−→ R×{±1} by x 7→ (log |x| , sgnx), so ±eℓ ← [ (ℓ,±1) and dx 7→ eℓdℓµ{±1}.

Define C× ∼−→ R× [0, 2π) by z 7→ (2 log |z| , arg z), so eℓ/2+iθ ←[ (ℓ, θ) and 2dA 7→ 2eℓ/2d(eℓ/2) = eℓdℓdθ where
dℓ is the Lebesgue measure on R, µ{±1} is the counting measure on {±1}, and dθ is the Lebesgue measure
on [0, 2π). All together, we have a map

K×
R

∼−→ Rr+s × {±1} × [0, 2π)s

µ 7→ eT (•)µRr+sµr{±1}µ
s
[0,2π).

Finally, consider the change of coordinates

Rr+s → Rr+s−1 × R
x = (x1, . . . , xr+s) 7→ (x1, . . . , xr+s−1, y := T(x))

eT(x)µRr+s 7→ eyµRr+s−1dy.

We thus have a bijection

S≤1
∼−→ F + (−∞, 0]

(
1

n
, . . . ,

1

n
,
2

n
, . . . ,

2

n

)
× {±1}σ × [0, 2π)s

x = N(x)
1
nγ(x) 7→ Log(x) + logN(x)

(
1

n
, . . . ,

1

n
,
2

n
, . . . ,

2

n

)
× (sgnx1, . . . , sgnxr)× (arg z1, . . . , arg zs).

Then K×
R

∼−→ Rr+s−1 ×R× {±1}r × [0, 2π)s and S≤1
∼−→ π0(F )× (−∞, 0]× {±1}r × [0, 2π)s. By definition,

RK = µRr+s−1(π0(F )), so

µ(S≤1) =

∫ 0

−∞
eyRK2r(2π)s dy = 2r(2π)sRK .

Plugging this into (20.1) yields

#(S≤t ∩ OK) =
2r(2π)sRK

|DK |
1
2

t+O(t1−
1
n ).

20.3 Proof of the analytic class number formula

Theorem 20.8

Let K be a number field of degree n. As t→∞, the number of nonzero OK-ideals a of norm N(a) ≤ t
is

2r(2π)shKRK

wK |DK |
1
2

t+O
(
t1−1/n

)
.

Proof. By the wK-to-1 map S≤t ∩ OK → (K×
R,≤t ∩ OK)/O×

K , we know

#{(α) ⊆ OK : N(α) ≤ t} = 2r(2π)sRK

wK |DK |
1
2

t+O
(
t1−1/n

)
. (20.2)

It remains to show that the nonzero ideals a of norm N(a) ≤ t are asymptotically equidistributed among
ideal classes. Given an ideal class [a] ∈ clOK , multiplication by a gives a bijection

{ideals b ∈ [a−1] : N(b) ≤ t} ×a−→ {nonzero principal ideals (α) ⊆ a : N(α) ≤ tN(a)}
→ {nonzero α ∈ a : N(α) ≤ tN(a)}/O×

K .
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Let S[a],≤t denote the last set. Replace OK with a in (20.2) to get

#S[a],≤t =
2r(2π)sRK

wK covol(a)
tN(a) +O

(
t1−1/n

)
where covol(a) = covol(OK)N(a) so it cancels and covol(OK) = |DK |

1
2 . Summing over ideal classes yields

the desired equation.

Lemma 20.9

Let a1, a2, . . . be a sequence in C and σ ∈ R. If a1 + · · · + at = O(tσ) as t → ∞, then
∑
ann

−s is
holomorphic on Re(s) > σ.

Lemma 20.10

Let a1, a2, . . . be a sequence in C satisfying a1 + · · ·+ at = ρt+O(tσ) for ρ ∈ C× and σ ∈ [0, 1). Then∑
ann

−s converges on Re(s) > 1 and has a meromorphic continuation to Re(s) > σ that is holomorphic
except a simple pole at s = 1 with residue ρ.

Proof of the analytic class number formula (Theorem 20.2). Recall we are trying to prove that ζK(z) ex-
tends to a meromorphic function on Re(z) > 1 − 1

n that is holomorphic except for a simple pole at z = 1
with residue

lim
z→1+

(z − 1)ζK(z) = ρK :=
2r(2π)shKRK

wK |DK |
1
2

.

We have ζK(z) =
∑

aN(a)
−z =

∑
t≥1 att

−z where at = #{a : N(a) = t}. By Theorem 20.8,

a1 + · · ·+ at = #{a : N(a) ≤ t} = ρKt+O(t1−
1
n )

as t → ∞. By the above lemmas, ζK(z) =
∑
att

−z extends to a meromorphic function on Re(z) > 1 − 1
n

with a simple pole at z = 1 of residue ρK .

Remark 20.11. Hecke showed that ζK(z) can be extended to all of C. Moreover, letting ΓR :=
π−z/2Γ( z2) and ΓC(z) := ΓR(z)ΓR(z + 1) = 2(2π)−sΓ(z), then the completed zeta function ξK(z) :=

|DK |z/2 ΓR(z)
rΓC(z)

sζK(z) satisfies the functional equation ξK(z) = ξK(1− z).

Note if K = Q(ζm) is a cyclotomic field, then ζK(s) =
∏

χ L(s, χ). See notes to conclude the proof of
Dirichlet’s theorem.

21 Ring of adeles

21.1 Restricted product

Recall Z ↪→ Ẑ := lim←−n
Z/nZ ≃

∏
p Zp. We know the Zp are compact topological groups (B1 in Qp) so the

product Ẑ is compact. However,
∏

pQp is a product of locally compact groups but is not locally compact.
The problem is that the product topology is too weak. Recall on (Xi)i∈I , the product topology is the
weakest topology making πi: (Xi)i∈I → Xi continuous, generated by π−1

i (Ui) with Ui ⊆ Xi open. So each
open set is a union of

∏
i∈S Ui ×

∏
i/∈S Xi for some finite subset S ⊆ I.
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Definition 21.1 (restricted product). Let (Xi)i∈I be topological spaces and Ui ⊆ Xi be open sets. The
restricted product is the topological space∏∐

i∈I
(Xi, Ui) := {(xi) : xi ∈ Xi and xi ∈ Ui for almost all i ∈ I} ⊆

∏
i∈I

Xi.

A basis of open sets is

B :=
{∏

i∈I
Vi : Vi ⊆ Xi open ∀i ∈ I, Vi = Ui for almost all i

}
.

The projections πi:
∏∐
(Xi, Ui)→ Xi by (xi) 7→ xi are continuous. Note

∏
i∈I Ui ⊆

∏∐
(Xi, Ui) ⊆

∏
Xi where

the first containment is open, but
∏

i∈I Ui might not be open in the larger
∏
Xi, because the restricted

product topology is finer than the product topology.

Each x ∈ X :=
∏∐
(Xi, Ui) determines some finite S(x) := {i ∈ I : xi /∈ Ui}. Given a finite S ⊆ I, define

XS := {x ∈ Xi : S(x) ⊆ S} =
∏
i∈S

Xi ×
∏
i/∈S

Ui.

Then XS ∈ B, and we can view XS as a subspace of X or as a direct product. Note that XS ⊆ XT whenever
S ⊆ T , so we can partially order the finite S ⊆ I by inclusion. Then the {XS :S ⊆ I finite} with inclusion
maps {iST :XS ↪→ XT | S ⊆ T} form a direct system with

lim−→
S

XS :=
⊔
XS/∼

where x ∼ iST (x) for all S ⊆ T . It turns out that

lim−→
S

XS ≃
∏∐

(Xi, Ui).

Proposition 21.2

Let (Xi)i∈I be a family of locally compact topological spaces and (Ui)i∈I be a family of open Ui ⊆ Xi

with almost all compact. Then X :=
∏∐
(Xi, Ui) is locally compact.

Proof. Take a finite S ⊆ I and consider XS :=
∏

i∈S Xi ×
∏

i/∈S Ui. XS is locally compact because it is a
finite product of the locally compact spaces

∏
i∈S Xi and the compact space

∏
i/∈S Ui. Then X is locally

compact by direct limits.

Alternatively, because each x ∈ X lies in some XS , in that XS it has an open neighborhood containing a
compact neighborhood, and this carries over to X.

21.2 Ring of adeles

For non-archimedean ν, we let Oν be the valuation ring of Kν , while for the finite number of archimedean
ν, we just define Oν := Kν .

Definition 21.3 (adele ring). Let K be a global field. The adele ring of K is the restricted product

AK =
∏∐

ν∈MK

(Kν ,Oν) :=
{
(aν) ∈

∏
ν

Kν : aν ∈ Oν for almost all ν
}
.
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For any finite set of places S, the subring of S-adeles is

AK,S :=
∏
ν∈S

Kν ×
∏
ν /∈S

Oν .

Then AK ≃ lim−→S
AK,S , so AK is also a topological ring. The canonical embedding K ↪→ Kν induces

K ↪→ AK by x 7→ (x, x, x, . . . ). The image of K in AK is the subring of principal adeles.

Example 21.4

For K = Q, AQ is the union of R ×
∏

p∈S Q ×
∏

p/∈S Zp for S a finite set of primes. Equivalently,
AQ = {a ∈

∏
pQp : ||a||p ≤ 1 for almost all p}.

Proposition 21.5

AK is locally compact and Hausdorff.

Thus, the additive group of AK is a locally compact group, so it has a Haar measure µ which we normalize
as follows:

• µν(Oν) = 1 for all non-archimedean ν

• µν(S) = µR(S) for Kν ≃ R

• µν(S) = 2µC(S) for Kν ≃ C.

A basis for the σ-algebra of measurable sets is
∏

ν Bν with Bν ⊆ Kν measurable, µν(Bν) <∞, and Bν = Oν

for almost all ν. Define
µ
(∏

ν

Bν

)
:=

∏
ν

µν(Bν).

The embedding K ↪→ AK makes AK a K-vector space. For a finite extension L/K, the base change AK⊗KL
is an L-vector space. The topology on AK ⊗ L is the product topology on [L : K] copies of AK .

Proposition 21.6

Let K be a global field and L/K be a finite separable extension. There is a natural isomorphism of
topological rings AL ≃ AK ⊗K L such that the following diagram commutes.

L K ⊗K L

AL AK ⊗K L

∼

∼

Corollary 21.7

If [L : K] = n, then AL ≃ A⊕n
K restricts to L ≃ K⊕n.

Theorem 21.8

For each global field L, the principal adeles L ⊆ AL are a discrete cocompact subgroup of the additive
group AL.
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Proof. Let K be a rational subfield of L (so K = Q or Fq(t)). By Corollary 21.7, if the theorem holds for
K then it holds for L, so it suffices to consider L = K. Identify K with its image in AK .

For discreteness, because K is a topological group, it suffices to show that 0 is isolated. Consider the open
set

U := {a ∈ AK : ||a||∞ < 1, ||a||ν ≤ 1 ∀ν <∞}.

The product formula says that ||a|| = 1 for all nonzero a ∈ K, but not for any nonzero a ∈ U . Then
U ∩K = {0}.
For cocompactness, we want AK/K to be compact. Consider W := {a ∈ AK : ||a||ν ≤ 1 ∀ν}, and let
U∞ := {x ∈ K∞ : ||x||∞ ≤ 1}. Then W = U∞ ×

∏
ν<∞Oν ⊆ AK,{∞} ⊆ AK is a product of compact sets

and is compact. Thus, the image of W in AK → AK/K is compact, so we need the map to be surjective.

Letting a = (aν) ∈ AK , we want to show a = b + c for some b ∈ W and c ∈ K. For ν < ∞, let xν ∈ K be
defined as

• xν := 0 if ||aν ||ν ≤ 1 for almost all ν

• otherwise, choose xν ∈ K such that ||aν − xν || ≤ 1 and ||xν ||w ≤ 1 for w ̸= ν.

To show xν exists, first suppose aν = r
s ∈ K with r, s ∈ OK coprime. Let p be the maximal ideal of Oν

(DVR). Then pν(s) and p−ν(s)(s) are coprime, so r = r1 + r2 with r1 ∈ pν(s), r2 ∈ p−ν(s)(s). Consequently,
aν = r1

s + r2
s with ν( r1s ) ≥ 0 and w( r2s ) ≥ 0 for w ̸= ν. Letting xν = r2

s , then ||aν − xν ||ν =
∣∣∣∣ r1

s

∣∣∣∣
ν
≤ 1 and

||xν ||w =
∣∣∣∣ r2

s

∣∣∣∣
w
≤ 1 for all w ̸= ν.

We can approximate any a′ν ∈ Kν by such an aν ∈ K with ||a′ν − aν ||ν < ϵ for all ϵ > 0. Construct
xν similarly, so ||aν − xν ||ν ≤ 1 and ||a′ν + xν ||ν ≤ 1 + ϵ by the triangle inequality. Taking ϵ → 0 forces
||a′ν + xν ||ν ≤ 1 since ||·||ν is non-archimedean hence discrete.

Now let x :=
∑

ν<∞ xν ∈ K, and choose x∞ ∈ OK such that ||a∞ − x− x∞||∞ ≤ 1. For a∞− x ∈ Q∞ = R,
take x∞ ∈ Z in [a∞ − x − 1, a∞ − x + 1). For a∞ − x ∈ Fq(t)∞ = Fq((t

−1)), take x∞ ∈ Fq[t] to be the
polynomial of least degree such that a∞ − x− x∞ ∈ Fq[[t

−1]].

Finally, let c :=
∑

ν≤∞ xν ∈ K ⊆ AK and b := a − c, so it remains to show b ∈ W . For ν < ∞, we have
xw ∈ Oν for all w ̸= ν and

||b||ν = ||a− c||ν =
∣∣∣∣∣∣a− ∑

w≤∞
xw

∣∣∣∣∣∣
ν
≤ max(||aν − xν ||ν ,max{||xw||ν : w ̸= ν}) ≤ 1

by the non-archimedean triangle inequality. For ν =∞, ||b∞|| = ||a∞ − c||∞ ≤ 1 by the choice of x∞.

Lemma 21.9 (Adelic Blichfeldt–Minkowski lemma)

Let K be a global field. There is a constant BK > 0 such that for all a ∈ AK with ||a|| > BK , there
exists a nonzero principal adele x ∈ K ⊆ AK with ||x||ν ≤ ||a||ν for all ν ∈MK .

Proof. Let b0 := covol(K) which is the measure of any finite region for K in AK under the normalized Haar
measure µ on AK . By Theorem 21.8, K is cocompact so b0 is finite. Let

b1 := µ
({
z ∈ AK : ||z||ν ≤ 1 ∀ν, ||z||ν ≤

1

4
∀ν archimedean

})
.

Note b1 ̸= 0 since only finitely many µ are archimedean. Let BK := b0
b1
> 0.

Suppose a ∈ AK satisfies ||a|| > BK . Then ||a||ν ≤ 1 for almost all ν, so from ||a|| ≠ 0, ||a||ν = 1 for almost
all ν. Consider

T :=
{
t ∈ AK : ||t||ν ≤ ||a||ν ∀ν, ||t||ν ≤

1

4
||a||ν ∀ν archimedean

}
.
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Then µ(T ) = b1 ||a|| > b0 implies T is not contained in any fundamental region for K. There must exist
distinct t1, t2 ∈ T with the same image in AK/K with x = t1 − t2 a nonzero element of K ⊆ AK . In all
cases, we will have ||x||ν = ||t1 − t2||ν ≤ ||a||ν :

||t1 − t2||ν ≤


max(||t1||ν , ||t2||ν) if ν non-archimedean

||t1||ν + ||t2||ν if ν real

(||t1 − t2||1/2ν )2 if ν complex

.

Theorem 21.10 (Strong approximation)

Let K be a global field. MK = S ⊔ T ⊔ {w} be a partition with S finite. Fix aν ∈ K and ϵν ∈ R>0 for
ν ∈ S. Then there exists x ∈ K such that ||x− aν ||ν ≤ ϵν for all ν ∈ S and ||x||ν ≤ 1 for all ν ∈ T .

Proof. As before, let W := {z ∈ AK : ||z||ν ≤ 1 ∀ν} be a complete set of coset representatives for K ⊆ AK ,
so AK = K +W . Given a nonzero u ∈ K, we also have AK = K + uW : given any c ∈ AK , we can write
u−1c ∈ AK as u−1c = a+ b for a ∈ K, b ∈ W , so c = ua+ ub with ua ∈ K, ub ∈ uW . Now choose z ∈ AK

such that

• 0 < ||z||ν ≤ ϵν for ν ∈ S
• 0 ≤ ||z||ν ≤ 1 for ν ∈ T
• ||z||w > BK

∏
ν ̸=w ||z||

−1
ν .

Then ||z|| > BK so there exists a nonzero u ∈ K ⊆ AK with ||u||ν ≤ ||z||ν for all ν. Define the adele a ∈ AK

with the given aν for ν ∈ S and aν = 0 for all ν /∈ S. From AK = K + uW , we have a = x+ y for x ∈ K,
y ∈ uW , so

||x− a||ν = ||y||ν ≤ ||u||ν ≤ ||z||ν ≤

{
ϵ if ν ∈ S
1 if ν ∈ T

.

22 Idele group, profinite groups, infinite Galois theory

22.1 Idele group

Recall AK =
∏∐

ν∈MK
(Kν ,Oν) is the ring of adeles of a global field K. Consider the unit group

A×
K = {(aν) ∈ AK : aν ∈ K×

ν ∀ν ∈MK , aν ∈ O×
ν for almost all ν ∈MK},

where O×
ν := K×

ν ∩ Oν if ν is nonarchimedean, and O×
ν = R× or C× appropriately if ν is real or complex.

A×
K is not a topological group because the inverse map a 7→ a−1 is not continuous.

Example 22.1

Consider K = Q and for each prime p the adele a(p) = (1, . . . , 1, p, 1, . . . ) ∈ AQ. Every basic open set
containing 1 looks like U =

∏
ν∈S Uν ×

∏
ν /∈S Oν where S ⊆ MK is finite. Since every U contains a(p)

for all sufficiently large p, limp→∞ a(p) = 1. However, a(p)−1 /∈ U as p→∞.

We give the group R× the weakest topology to make it a topological group. Consider the embedding
ϕ:R× → R × R by r 7→ (r, r−1). Declare ϕ:R× → ϕ(R×) to be a homeomorphism (i.e. throw in enough
open sets to make it continuous). Then r 7→ r−1 is continuous because it equals π2 ◦ ϕ.
The topology on A×

K now has basic open sets U ′ =
∏

ν∈S Uν×
∏

ν /∈S O×
ν where Uν ⊆ K×

ν and S ⊆MK finite.
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Definition 22.2 (idele group). Let K be a global field. The idele group of K is the topological group

IK :=
∏∐

ν∈MK

(K×
ν ,O×

ν ).

The canonical embedding K ↪→ AK restricts to K× ↪→ IK .

Definition 22.3 (idele class group). The idele class group is CK := IK/K×.

Remark 22.4. In the literature, the notation IK and A×
K are used interchangeably, but we currently

use A×
K to mean the unit group of AK .

There is a surjective homomorphism

IK ↠ IK , a 7→
∏
p

pνp(a)

where p ranges of primes of K and νp(a) := νp(aw) where w is the place associated to p. The composition
K× ↪→ IK ↠ IK has image as the subgroup of principal fractional ideals PK . This induces a surjective
homomorphism CK ↠ ClK , where CK = IK/K× and ClK = IK/PK .

1 K× IK CK 1

1 PK IK ClK 1

x7→(x)

Proposition 22.5

IK is a locally compact group.

Proof. Each O×
ν = {x ∈ K×

ν : ||x||ν = 1} ⊆ Oν is compact. The K×
ν are locally compact, so IK =∏∐

(K×
ν ,O×

ν ) is locally compact. IK is Hausdorff because its topology is finer than A×
K ⊆ AK which is

Hausdorff by Proposition 21.5.

Proposition 22.6

K× is a discrete subgroup of IK .

Proof (sketch). Consider K× ↪→ K×K ⊆ AK×AK and how a subset of a discrete subset is still discrete.

Remark 22.7. K is cocompact in AK , but K× is not cocompact in IK . Thus CK is locally compact
but not compact.

The norm map restricts to a map ||·|| : IK → R×
>0 by a 7→ ||a|| :=

∏
ν ||a||ν .

Definition 22.8 (1-ideles). The group of 1-ideles is I1K := ker ||·|| = {a ∈ IK : ||a|| = 1}.

I1K contains K× by the product formula.
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Lemma 22.9

I1K has the same topology as a subspace of IK and a subspace of AK .

Theorem 22.10 (Fujisaki)

K× is a discrete cocompact subgroup of I1K .

Proof. K× is discrete in IK by Proposition 22.6, hence in I1K . It suffices to exhibit a compact W ⊆ AK such
that W ∩ I1K surjects onto I1K/K×. Choose a ∈ AK with ||a|| > BK , and let

W := L(a) = {x ∈ AK : ||x||ν ≤ ||a||ν ∀ν ∈MK}.

For u ∈ I1K , we have ||u|| = 1 =⇒
∣∣∣∣ a

u

∣∣∣∣ = ||a|| > BK , so there exists z ∈ K× such that ||z||ν ≤
∣∣∣∣ a

u

∣∣∣∣
ν
for

all ν ∈MK . Then zu ∈W , so u = z−1 · zu and W ∩ I1K surjects onto I1K/K×.

Definition 22.11 (norm-1 idele class group). The compact group C1
K := I1K/K× is the norm-1 idele class

group.

22.2 Profinite groups

Definition 22.12 (profinite group). A profinite group is a topological group that is the inverse limit of
finite groups with the discrete topology.

Given any topological group G, we can take the profinite completion

Ĝ := lim←−
N

G/N ⊆
∏
N

G/N

over finite index open normal subgroups N . Given any group, we can give it the profinite topology by making
every finite quotient discrete. In other words, take all cosets of finite index normal subgroups as a basis.
There is a canonical map G→ Ĝ from the inverse limit.

Example 22.13

• For G finite, G
∼−→ Ĝ is an isomorphism.

• Ẑ := lim←−n
Z/nZ =

∏
p Zp. The map Z→ Ẑ is injective but not surjective.

• Q̂ = {0} because Q has no finite index subgroups other than Q. Thus Q → Q̂ is surjective but
not injective.

Lemma 22.14

G is dense in Ĝ.

Theorem 22.15

G is profinite if and only if it is totally disconnected and compact.
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Corollary 22.16

G profinite implies G
∼−→ Ĝ is an isomorphism.

22.3 Infinite Galois theory

Lemma 22.17

Let L/K be a Galois extension (not necessarily finite) and G := Gal(L/K). Let F/K be a normal
subextension of L/K. Then H := Gal(L/F ) is a normal subgroup of G with fixed field F , and there is
an exact sequence

1→ Gal(L/F )→ Gal(L/K)→ Gal(F/K)→ 1

where the first arrow is inclusion, and the second is restriction. Also,

G/H ≃ Gal(F/K).

We have H ◁ Gal(L/K) with LH = F . It may not be the case that H = Gal(L/F ), as it could be smaller.

Definition 22.18 (Krull topology). For L/K Galois and G := Gal(L/K), the Krull topology on G has
the basis consisting of cosets of HF := Gal(L/F ) for F/K a finite subextension of L/K.

In the Krull topology, every open normal subgroup has finite index, but not every normal subgroup of finite
index is open.

Theorem 22.19

Under the Krull topology, restriction maps induce a natural isomorphism of topological groups

ϕ: Gal(L/K)→ lim←−
F

Gal(F/K)

where F ranges over finite Galois extensions F/K. In particular, Gal(L/K) is profinite with open
normal subgroups of the form Gal(L/F ) for some finite normal F/K.

Theorem 22.20 (Fundamental theorem of Galois theory)

Let L/K be Galois and G := Gal(L/K) with the Krull topology. The maps F 7→ Gal(L/F ) and
LH ←[ H define inclusion-reversing bijections

{subextensions F/K of L/K} ←→ {H ≤ G closed}.

Finite degree n subextensions correspond to index n subgroups, and normal subextensions F/K corre-
spond to normal subgroups H ◁ G such that Gal(F/K) ≃ G/H.

Corollary 22.21

Let L/K be Galois and H ≤ Gal(L/K) with fixed field F . Then H = Gal(L/F ).
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23 Local class field theory

The goal of class field theory is to classify finite abelian extensions.

Definition 23.1 (maximal abelian, unramified extension). Let K be a local field with separable closure
Ksep. The maximal abelian extension of K is

Kab :=
⋃

L⊆Ksep

L/K finite abelian

L.

The maximal unramified extension of K is

Kunr :=
⋃

L⊆Ksep

L/K finite unramified

L.

We have
K ⊆ Kunr ⊆ Kab ⊆ Ksep.

By Theorem 22.19,
Gal(Kab/K) = lim←−

L

Gal(L/K)

where L ranges over finite extensions of K in Kab. Then there is a bijection

{extensions of K in Kab} ←→ {closed subsets of Gal(Kab/K)}

by L 7→ Gal(Kab/L) and (Kab)H ←[ H. Finite abelian L/K correspond to open subgroups of Gal(Kab/K).

Now assume K is a non-archimedean local field with ring of integers OK , maximal ideal p, and residue field
Fp := OK/p. If L/K is finite unramified with residue field Fq := OL/q, then

ϕ: Gal(L/K) ≃ Gal(Fq/Fp) = ⟨x 7→ x#Fp⟩.

In this case, the Artin map
ψL/K : IK → Gal(L/K)

sends p 7→ FrobL/K , where we think of FrobL/K = ϕ−1(x 7→ x#Fp). Since IK ≃ Z, this corresponds to the
quotient map Z→ Z/nZ where n = [L : K]. We can extend the Artin map toK× via ψL/K(x) := ψL/K((x)).
This sends every uniformizer π to FrobL/K .

23.1 Local Artin reciprocity

Theorem 23.2 (Local Artin reciprocity)

Let K be a local field. There exists a unique continuous homomorphism

θK :K× → Gal(Kab/K)

such that for each finite extension L/K in Kab, it induces θL/K :K× → Gal(L/K) by composing θK
with the restriction map resL/K : Gal(Kab/K)→ Gal(L/K). It also satisfies

• If K is non-archimedean and L/K is unramified, then θL/K(π) = FrobL/K for every uniformizer
π of OK .

• θL/K is surjective with kernel NL/K(L×), inducing K×/NL/K(L×) ≃ Gal(L/K).
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The natural map resL/K : Gal(Kab/K)→ Gal(L/K) can be viewed as

• The map induced by σ 7→ σ|L. Note σ(L) = L because L/K is Galois.

• The quotient map Gal(Kab/K) ↠ Gal(Kab/K)/Gal(Kab/L).

• The projection from Gal(Kab/K) = lim←−L
Gal(L/K).

23.2 Norm group

Definition 23.3 (norm group). A norm group in K× is any subgroup N(L×) := NL/K(L×) ⊆ K× with
L/K a finite (abelian) extension.

Corollary 23.4

The map L→ N(L×) induces an inclusion-reversing bijection

{finite L/K in Kab} ←→ {norm groups in K×}

where
N((L1L2)

×) = N(L×
1 ) ∩N(L×

2 ), N((L1 ∩ L2)
×) = N(L×

1 )N(L
×
2 ).

In particular, every norm group has finite index in K×, and every subgroup of K× containing a norm
group is a norm group.

Norm groups N(L×) are open.

Theorem 23.5 (Local existence)

Let K be a local field and H a finite index open subgroup of K×. Then there exists a unique finite
abelian extension L/K with N(L×) = H.

Theorem 23.6 (Main theorem of local class field theory)

The local Artin homomorphism θK induces a canonical isomorphism θ̂K : K̂× ∼−→ Gal(Kab/K) of profinite
groups.

Recall that Gal(Kab/K) = lim←−L
Gal(L/K) and K̂× ≃ lim←−L

K×/N(L×) for finite L/K in Kab, using the
existence theorem (Theorem 23.5).

Let p be the maximal ideal of OK , so we have an isomorphism K× ≃ O×
K×Z by x 7→ (x/pν(x), ν(x)). Taking

profinite completions, K̂× ≃ O×
K × Ẑ, so we have the exact sequences

1 O×
K K× Z 0

1 Gal(Kab/Kunr) Gal(Kab/K) Gal(Kunr/K) 1

∼ θK ϕ

The map ϕ is Z ↪→ Ẑ ≃ Gal(Fp/Fp) ≃ Gal(Kunr/K).

Example 23.7

Take K = Qp and π = p. The decomposition Kab = Kunr ·Kπ is Qab
p =

⋃
nQp(ζpn) ·

⋃
m⊥pQp(ζm).
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24 Global class field theory

Recall the ring of adeles

AK :=
∏∐
ν

(Kν ,Oν) = {(aν ∈
∏
ν

Kν : aν ∈ Oν for almost all ν}

and the idele group

IK :=
∏∐
ν

(K×
ν ,O×

ν ) = {(aν ∈
∏
ν

K×
ν : aν ∈ O×

ν for almost all ν}.

24.1 Idele norm

There is a surjection φ: IK → IK by a 7→
∏

p p
νp(a) for p finite.

1 K× IK CK 1

1 PK IK ClK 1

x7→(x) φ

Definition 24.1 (idele norm). Let L/K be a finite separable extension of global fields. The idele norm
NL/K : IL → IK is defined by sending NL/K(bw) = (aν) where aν :=

∏
w|ν NLw/Kν

(bw).

The idele norm NL/K : IL → IK is compatible with the field norm NL/K :L× → K× on the subgroup of
principal ideles L× ⊆ IL.

L× IL IL

K× IK IK

NL/KNL/K NL/K NL/K

Take quotients to get the following.

CL ClL

CK ClK

NL/K NL/K

24.2 Artin homomorphism

Let K be a global field, ν ∈ MK , and θKν :K
×
ν → Gal(Kab

ν /Kν) be the local Artin homomorphism. For
each finite abelian L/K and each w ∈ML, we compose θKν with Gal(Kab

ν /Kν)→ Gal(Lw/Kν) to get

θLw/Kν
:K×

ν → Gal(Lw/Kν)

with kernel NLw/Kw
(L×

w). Note that every finite separable extension of Kν is Lw for some w | ν in L by
Corollary 12.19.

We define an embedding

φw: Gal(Lw/Kν) ↪→ Gal(L/K)

σ 7→ σ|L
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If ν is a finite place and q is the prime of L corresponding to w | ν, then φw(Gal(Lw/Kν)) = Dq ⊆ Gal(L/K).

The composition φw ◦ θLw/Kν
defines a map K× → Gal(L/K) that is independent of the choice of w | ν.

This is because φw(θLw/Kν
(πν)) = Frobν for every πν , and the πν generate K×

ν . Define

ιν :K
×
ν ↪→ IK
α 7→ (1, . . . , 1, α, 1, . . . )

which is compatible with the idele norm: if w extends ν, then

L×
w K×

ν

IL IK

NLw/Kν

ιw ιν

NL/K

commutes.

Let L/K be a finite abelian extension (i.e. Gal(L/K) is abelian), and pick ν ∈MK and w | ν. Then define

θL/K : IK → Gal(L/K)

(aν) 7→
∏
ν

φw(θLw/Kν
(aν)).

Almost all aν ∈ O×
ν and almost all ν are unramified in L, which implies φw(θLw/Kν

(aν)) = Frob
ν(aν)
ν = 1

for almost all ν. θL/K is well defined, a group homomorphism, and continuous. If L1 ⊆ L2 are two finite
abelian extensions of K, then θL1/K(a) = θL2/K(a)|L1 for all a ∈ IK . The θL/K form a compatible system

of homomorphisms from IK to lim←−L
Gal(L/K) ≃ Gal(Kab/K). By the universal property for profinite

completions, they determine a unique homomorphism θK .

Definition 24.2 (global Artin homomorphism). The global Artin homomorphism is the continuous ho-
momorphism θK : IK → Gal(Kab/K).

Proposition 24.3

Let K be a global field. Then θK is the unique continuous homomorphism IK → Gal(Kab/K) such
that for every finite abelian L/K and w | ν ∈ L, the following diagram commutes.

K×
ν Gal(Lw/Kν)

IK Gal(L/K)

θLw/Kν

ιν φw

θL/K

24.3 Main theorems of global class field theory

Theorem 24.4 (Global Artin reciprocity)

Let K be a global field. Then K× ⊆ ker θK , and we have a continuous homomorphism

θK :CK → Gal(Kab/K)

with the property that for every finite abelian L/K, θL/K :CK → Gal(L/K) obtained by composing θK
with resL/K : Gal(Kab/K) → Gal(L/K) is surjective with kernel NL/K(CL), inducing an isomorphism
CK/NL/K(CL) ≃ Gal(L/K).

Page 108 of 109



December 9, 2025 18.785 Number Theory I

Instead of K× in the local case, we now have CK .

Theorem 24.5 (Global existence)

Let K be a global field. For every finite index open subgroup H ⊆ CK , there exists a unique finite
abelian extension L/K in Kab with NL/K(CL) = H.

Theorem 24.6 (Main theorem of global class field theory)

The global Artin homomorphism θK induces a canonical isomorphism θ̂K : ĈK
∼−→ Gal(Kab/K) of profi-

nite groups. There is an inclusion-reversing bijection

{finite index open subgroups H ⊆ CK} ←→ {finite abelian L/K in Kab}

by H 7→ (Kab)θK(H) and NL/K(CL)←[ L.

Theorem 24.7 (Functoriality)

Let K be a global field and L/K a finite separable extension. The following commutes.

CL Gal(Lab/L)

CK Gal(Kab/K)

θL

NL/K res

θK

24.4 Chebotarev density theorem

Theorem 24.8 (Chebotarev density theorem)

Let L/K be a finite Galois extension with Galois group G. Let C ⊆ G be stable under conjugation.
Let S be the set of primes of K that are unramified in L with Frobp ⊆ C. Then d(S) = #C

#G .

Corollary 24.9 (abelian case)

Let L/K be a finite abelian extension with Galois group G. Then for all σ ∈ G, the Dirichlet density
of the set S of primes p of K unramified in L for which Frobp = {σ} is 1

#G .

It is straightforward to prove the Chebotarev density theorem from the abelian case.
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