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1 Absolute Values and discrete valuations

1.1 Absolute values on a field

Definition 1.1 (absolute value). An absolute value on a field k is a map |-|: kK — R>o such that for all
z,y €k,

L. |[z]| =0 <= z=0

2. |zy| = |=||y|

3. o+ yl < o] + |yl

4. (optional, implies 3) |z + y| < max(|z|,|y])-

If 4 holds, then the absolute value is non-archimedean; otherwise it is archimedean.

Example 1.2
The normal absolute value on R is archimedean because |1+ 1| £ [1].

The trivial absolute value with |z| = 1 for all z € k* and |0| = 0 is non-archimedean.

Lemma 1.3
|-| is non-archimedean if and only if for all for all n > 1,

14+ +1] <1
—_—

n

Proof. See pset 1. OJ

Corollary 1.4
1. In a field of positive characteristic, every absolute value is non-archimedean.

2. The only absolute value on a finite field is the trivial absolute value.

Proof. 1. We use Lemma 1.3. In a field of characteristic p, all elements n = 1 + --- 4+ 1 lie in F,, and
satisfy n? = n, so |n|’ = |n| and |n| =0 or 1.

2. If k is finite with say cardinality ¢, then 29 = z for all z € k, so |z|? = |z| and |z| = 1 for all z £ 0. O

Definition 1.5 (equivalent). Two absolute values |-|, |-|" on k are equivalent if there exists a € R+ such
that |z| = |z|* for all z € k.

1.2 Absolute values on QQ

We denote usual absolute value on Q C R by |-| . It is archimedean, since |1 + 1| > max(|1], |1|).

There are other absolute values as follows. We write x € Q* as v = + Hq q“ for primes ¢ and e, € Z.
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September 4, 2025 18.785 Number Theory I

Definition 1.6 (p-adic valuation). Fix a prime p. The p-adic valuation v,:Q — Z U {oo} is defined by
Vp (:l: qu‘l) =ep, Up(0):=o00.
q
The p-adic absolute value is defined by
‘:I;|p = p_VP(I)

where p~>° = 0.

Theorem 1.7 (Ostrowski)

Every nontrivial absolute value on Q is equivalent to || p for some p < oo.

Theorem 1.8 (Product formula)
For all z € Q,

IT =1, = 1.

p<oo

Proof. See pset 1. O

1.3 Discrete valuations

Definition 1.9 (valuation). A waluation on k is a group homomorphism v: k* — R such that for all

x,y € k, we have
v(z +y) 2 min(v(z), v(y)).

We can extend v to a map k — R U {oo} by defining v(0) = oc.

We can then define a non-archimedean absolute value by |z|, == ¢*(®) for any 0 < ¢ < 1.

Intuitively, if p™ | z and p™ | y, then x 4 y is divisible by min(p™, p™). For the p-adic absolute value, we let
—1
c=p .

Definition 1.10 (value group, discrete valuation). The value group of v is the image of v in R. A discrete
valuation is a valuation with value group precisely Z.

Definition 1.11 (valuation ring given k,v). The valuation ring of k with respect to v is the set

A={zek:v(z) >0}

Definition 1.12 (DVR 1). A discrete valuation ring (DVR) is an integral domain A that is the valuation
ring of its fraction field £ = Frac A with respect to some discrete valuation.

Remark 1.13. A DVR is not a field. By definition, v(Frac A) = Z, but v(A) = Z>o.

For all # € k*, we have v(1) = v(1) — v(z) = —v(z), so at least one of # and 1 lies in A. Then z € A is
invertible if and only if v(x) = 0, and

A*={z €k :v(z)=0}.
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Definition 1.14 (valuation ring). A waluation ring is an integral domain A with fraction field &£ such
that for all € k, either z € A or 27! € A.

Now suppose A is a DVR. Any element 7 € A with v(7) = 1 is called a uniformizer, and uniformizers exist
because v(A) = Z>¢. If we fix a uniformizer 7 € A, then every z € k™ can be written uniquely as x = ur”
for n = v(z) and a unit v = z/7" € A*. This implies A is a UFD, and in fact a PID whose ideals are
(1) D (7) D (7%) D -+ D (0), where

(") ={a € A:v(a) >n}.

There is a unique maximal ideal

m=(m)={a€ A:v(a) > 0}.

Definition 1.15 (local ring, residue field). A local ring is a ring A with a unique maximal ideal m. The
residue field is A/m.

Given a DVR A with unique maximal ideal m, define v: A — Z>( by letting v(a) be the unique integer n with
(a) = m"™. We can extend v to a discrete valuation on k by v(a/b) = v(a) —v(b),and A ={z € k : v(z) > 0}
is the valuation ring from Definition 1.11.

Example 1.16
The p-adic valuation v: Q — Z U {oo} has valuation ring Z,) = {§ : a,b € Z,p { b} with maximal ideal
m = (p) and residue field Z,)/(p) =~ F,,.

Example 1.17
The field of Laurent series k((t)) has valuation v: k((t)) — Z U {oc} defined by

V( Z ant”> = ng

n>ng

for an, # 0. This measures the “order of vanishing at 0.” The valuation ring is k[[¢]].

1.4 Discrete valuation rings

The following are nice properties of DVRs.

e Noetherian: Every increasing sequence of ideals I; C I C --- stabilizes (ACC). Equivalently, every
ideal is finitely generated.

e PID: Every ideal is principal.
e Jocal: Unique maximal ideal.

e dimension one: The Krull dimension, which is the maximum length of a chain of prime ideals (0) C
P C P, C -+ is one.

e regular: If local, dim 4 m/m? = dim A.

e integrally closed (normal): Every nonzero element of Frac A that is the root of a monic polynomial
f € Alz] lies in A.

e mazimal: No rings between A and Frac A.
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Theorem 1.18
For an integral domain A, TFAE:

e AisaDVR.

e A is a Noetherian valuation ring that is not a field.

e A is a local PID that is not a field.

e A is an integrally closed Noetherian local ring of dimension one.

e A is a regular Noetherian local ring of dimension one.

e A is a Noetherian local ring with nonzero principal maximal ideal.

e A is a maximal Noetherian ring of dimension one.

1.5 Integral extensions

Definition 1.19 (integral over). Given a ring extension A C B, an element b € B is integral over A if it
is the root of some monic polynomial f € A[z]. B is integral over A if all b € B are.

Proposition 1.20
Let a, 8 € B be integral over A C B. Then a + 8 and «af are also integral over A.

Definition 1.21 (integral closure). Given a ring extension B/A, the ring A= {be B:bintegral over A}
is the integral closure of A in B. If A = A, then A is integrally closed in B. An integral domain A is
integrally closed if it is in Frac A.

Proposition 1.22
Given ring extensions A C B C C, if C/B and B/A are integral, then C'/A is integral.

Corollary 1.23
The integral closure of A C B is integrally closed in B.

Proof. Let A’ be the integral closure of A in B, and let A” be the integral closure of A’ of B. By Propo-
sition 1.22, A” is integral over A. Every element of B that is integral over A lies in A’ by definition, so
A" c A’ which shows A" = A”. O

Proposition 1.24
7 is integrally closed.

Proof. If = € Q is integral over Z with gcd(r, s) = 1, then it satisfies a monic polynomial

r\n ryn—1 r
() s () e () o
S S S

with a; € Z. Clearing denominators shows s | ", which means s = £1 and % € Z. O
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Corollary 1.25

The same proof works for any UFD where r 1. s makes sense. In particular, any PID is integrally closed.

Example 1.26

Z[\/5] is not a UFD (and thus not a PID), because it is not integrally closed. Consider ¢ = % which
is a root of 22 — x — 1 and thus integral over Z[/5], but ¢ ¢ Z[/5].

Definition 1.27 (number field, ring of integers). A number field is a finite extension K of Q. The ring
of integers Ok of a number field is the integral closure of Z in K.

Example 1.28

For K = Q[v/5], the ring of integers is Z[HQ*/E] (not Z[v/5], which is not integrally closed).

Definition 1.29 (order). An order in a Q-algebra K of dimension r is a subring of K that is a free
Z-module of rank 7.

Ok is an order in K, and in fact the mazimal order (it contains every order in K).

Proposition 1.30

Let A be an integrally closed domain with fraction field K. Let o € L/K with minimal polynomial
f € K|z], where [L : K] < oo. Then « is integral over A if and only if f € A[z].

Proof. If f € Alx], then « is integral over A, as the minimal polynomial is monic. Now suppose « is integral
over A, and let g € A[z] be monic with g(a) = 0. Over K|z], we can factor

fa) =] — ).

%

For each o, there is an embedding K (o) = K[z]/(f) — K sending o +— «;. In K, we have g(o;) = 0 since
f(a;) =0 and f | g. Thus, each o; € K is integral over A (as g € A[z]) and lies in the integral closure of
Ain K. All coefficients of f are sums of products of the c; and thus elements of A that lie in K. We have
A=ANK as A is integrally closed in K, so f € Alzx]. O

Example 1.31

We saw 1+T\/g that is integral over Z. What about HT\ﬁ? Its minimal polynomial in Q[z] is 2° —z— 3 ¢
Z[z], so it is not integral over Z by Proposition 1.30.

2 Localization

2.1 Localization of a ring

We can think of Q :=7Z x Zy/~ where (a,s) ~ (¢’,s') <= as’ =ds.
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Definition 2.1 (localization). Let A be a ring and S C A be a multiplicative subset, meaning that
it is closed under finite products (including the empty product which is 1). The localization of A at
S, denoted S™'A or A[S™!], is the ring with the following universal property: there is a morphism
1A — S71A with ¢(S) C (S71A)* such that given ¢: A — B with ¢(S) C B*, then there exists a
unique map S~'A4 — B making the following diagram commute.

A—? 4B

T
L P
l 03

S—1A

By the universal property, S™'A is unique if it exists. For existence, consider S7'A = A x S/~ where
(a,s) ~ (b,t) <= there exists v € S such that (at — bs)v = 0. We also denote (a,s) by a/s. Define
1A — ST'A by a — (a,1) = a/1. We can check S7'A is a ring and ¢ is a ring homomorphism with
L(S) C (S71A)X, as (s/1)(1/s) = s/s=1/1 = 1.

We now check the universal property. If ¢: A — B is a homomorphism with ¢(S) C B*, we claim that
there is a unique map 7: S~'A — B satisfying ¢ = 1o, as

(a/s) = m((a)u(s)™) = m(e(a)m(e(5)) ™" = p(a)p(s) ™
is uniquely determined.

Remark 2.2. If A is an integral domain then ¢ is injective, and we can simplify the equivalence relation
as (a,s) ~ (b,t) < at = bs.

Given two multiplicative sets S C T, we have S~'(A) ¢ T~!(A). In particular, S~'A C Frac A, where
Frac A is A localized at A_.

Localization yields a local ring (in the cases we care about), which is the reason behind its name.

2.2 ldeals in localizations

Let ¢: A — B be a ring homomorphism. If b is a B-ideal, then ¢ ~!(b) is an A-ideal, sometimes denoted b,
and called the contraction of b to A. When A C B is a subring, then b = b N A. If a is an A-ideal, then
©(a) is not necessarily a B-ideal, but it generates a B-ideal a® called the extension of a to B.

We are interested in the case 1: A — S~'A with A a domain, so ¢ is injective and can be viewed as inclusion.
If A C B, then
a“=aB=(ab:a€cabe B). (2.1)

In general, a C ¢ 1 ((p(a))) = a® and b = (¢ ~1(b)) C b. Usually a C a®: take for example B = S71A
with an S # 0, so a® = aB = B and a®° = BN A = A, but we need not have a = A. However, when
B = S7'A, we always have b% = b.

Remark 2.3. In the context of (2.1), if a = (ay, ..., ay) is finitely generated, then a® = aB = (a4, ...,a,)
is also generated by the same elements. For B = S~'A, we have b = b°, meaning that every B-ideal
is the extension of an A-ideal. Thus if A is a Noetherian domain (all ideals finitely generated), then so
is every localization S~'A, and if A is a PID, then so is S~ A.
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Theorem 2.4
Let S be a multiplicative subset of a domain A. There is a 1-to-1 correspondence between

{prime ideals of S~ A} +— {prime ideals of A that don’t intersect S}

given by q+— qN A and pS—1A < p.

Let p C A be a prime ideal so that S = A — p is a multiplicative set. Let
Ap:{%:aeA,bgép}/w
denote the localization of A at A —p.

Warning 2.5. For § € Frac A, it is not true that § € A, <= b ¢ p. It can be true that § ~ z—/l where
bepandb¢p. For example, taking A =7Z and p = (3), we have % = % In general, A need not be a

UFD, so there is no canonical way to pick a representative for each element in S~A.

Example 2.6

Let A =k[z] and p = (x —2). Then Ay, = {f € k(x) : f is defined at 2}. A is a PID, so A, is PID with
a unique maximal ideal pA, = {f € k(z) : f(2) = 0}. Hence A, is a DVR (Theorem 1.18), and the
valuation on k(x) = Frac A measures the “order of vanishing” of f at 2. The residue field is A, /pA, ~ E,
with quotient map f +— f(2).

Example 2.7

Let p € Z be prime, so Zy,) = {§ : a,b € Z,p t b}. Z is a PID, so Z, is a PID with unique maximal
ideal (p)Zp), and thus a DVR. The valuation on Q = FracZ is the p-adic valuation. The residue field
is Zp)/(p)Z ) =~ F, with quotient map Z,) — F, as reduction mod p.

These are essentially the same example, with reduction mod (z — 2) and reduction mod p. Note Z,) # Z,
which will later denote the p-adic integers.

2.3 Localization of modules

Definition 2.8 (localization of module). The localization S™1M of an A-module M with respect to a
multiplicative set S C A is an S~!A-module equipped with an A-module homomorphism ¢: M — S~ M
satisfying the following universal property: if N is an S~!A-module and ¢: M — N is an A-module
homomorphism, then ¢ factors uniquely through S—'M.

M —2 3N

/)r
L e
l =\

S—IMm

We use the same construction: S~'M = M x S/~ where (a,s) ~ (b,t) <= there exists v € S such that
(at — bs)v = 0. In other words, S~™'M = M ®4 S~'A is the base change of M from A to S™'A.

The map ¢: M — S~1M is injective if and only if M =% M is injective for all s € S. This is a strong
condition that does not hold in general, even when A is a domain, but it holds for the cases we care about.
In particular, if A lies in a field K and M lies in a K-vector space, then t: M — S~1M is injective, and we
can view M as a submodule of S~!M.
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Proposition 2.9
Let A be a subring of a field K, and M be an A-module in a K-vector space V. Then

M= (] Ma= () M,

meMax A peSpec A

We will use this a lot, since many things are easy to check locally on M, but hard to check in general.

Proof. M C (), M is clear because ¢ is injective in this case. For the reverse direction, suppose x € [, M,
and consider the A-ideal a := {a € A : ax € M}. For each maximal ideal m, write x = m/s for some m € M,
s € A—m. Then sx € M so s € a. However, s ¢ m, so a Z m. This is true for all maximal ideals m, so
a=Aand 1€ a. Thus 1z € M, as desired.

For the second equality, every prime ideal p lies in some maximal ideal m for which My, C M,, so (), Mm C

Ny Mp. Also every maximal ideal is prime, so (), Mw 2 [, M. O

An important special case is K = FracA and V = L/K. When L = K, M C K is an A-submodule of K.
In particular, every A-ideal I is an A-submodule of K = Frac A. Localizing I at p is the same as extending
I'to AC Ay

]p:{Z:iEI,SEAp}z{f:iEI,aGA,sEAp}:IAp.

Corollary 2.10

For an integral domain A, every A-ideal I satisfies

I= () In= (] &

meMax A pESpec A

Example 2.11
For A =7, we have Z =, Z¢) € Q.

3 Dedekind domains

Proposition 3.1 (Dedekind domain)
Let A be a Noetherian domain. TFAE:

1. For every nonzero p € Spec A, A, is a DVR.
2. A is integrally closed and has Krull dimension dim A < 1.
If either holds, A is called a Dedekind domain (DD).

The second best thing to being a DVR is for all localizations to be DVRs.

Proof. If A is a field, then 1 and 2 both hold: there are no nonzero p, and fields are integrally closed with
dimension 0. Now assume A is not a field and let K = Frac A.
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=): Every chain of prime ideals (0) C p; C --- C p,, corresponds to a chain in A, _, and conversely such a
y p p Pn y
chain can be contracted to A. Thus,

dim A = sup{dim A : p € Spec A} =1,

assuming that all A, are DVRs. To show A is integrally closed, consider any € K integral over A which
means it is integral over every A, D A. However, the A, are integrally closed in Frac A, = Frac A (by being
DVRs), so z € (), Ay, = A, and A is integrally closed.

(«<): We claim that the following properties are preserved by localization:
e no zero divisors

e Noetherian

dim < 1 (dimension can only decrease upon localization)

integrally closed.

To prove the last item, suppose € K is integral over A,. Then 2" + Z:—_Ix"_l 4+ -+ %8 = 0 for some

a; € A, s; € A—p. Let s = sp---8p—_1, SO we can clear denominators By multiplying by s" and get a
polynomial for sx with coefficents in A, so sx is integral over A. Thus sz € A, by the assumption that A is
integrally closed. Then % = x € A, so Ay is integrally closed. O

Corollary 3.2
Every PID is a Dedekind domain. In particular, Z and k[z] are Dedekind domains.

PIDs are integrally closed and have dimension < 1.

Remark 3.3. Every PID is a UFD and a DD, but not every UFD is a DD. For example, take k[z, y] which
has dimension 2. Also, not every DD is a UFD, e.g. Z[v/—13] because 14 = (1++/—13)(1—v/—13) = 2-7.

3.1 Fractional ideals

Definition 3.4 (fractional ideal). A fractional ideal of a Noetherian domain A is a finitely generated
A-submodule of Frac A.

The following is the motivation behind the name “fractional.”

Lemma 3.5

Let A be a Noetherian domain, K = Frac A, and I C K be an A-module. Then [ is finitely generated
if and only if al C A for some nonzero a € A.

Proof. (=): If %, e Z—Z generate I as an A-module, then al C A for a = s1 -+ Sp.

(<): If al C A, then al is an ideal and is finitely generated, since A is Noetherian. If (ai,...,a,) = al,

then (%, ..., %) generate I as an A-module. O
Corollary 3.6

Every fractional ideal of A can be written as %I for some nonzero a € A and A-ideal I.
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Definition 3.7 (principal fractional ideal). A fractional ideal is principal if it is generated by one element.
Let (x) := 2 A denote the principal fractional ideals for z € K = Frac A.

We can add and multiply fractional ideals in the same way as normal ideals:
I+J=(G+j:iel,jeJ)
IJ=(j:iel,jel).
However, there is a new division operation
I+J={zreK:zJ I},
called “the quotient of I by J.” It is not the same as a quotient of A-modules, e.g. Z/Z = {0}, but Z+7Z = Z.

Lemma 3.8

Let I, J be fractional ideals of a Noetherian domain A, with J # (0). Then (I = J) is a fractional ideal
of A.

Proof. I+ J is closed under addition and multiplication by A, and hence is an A-module. We need to check
that it is finitely generated.

First suppose that I, J are A-ideals. For nonzero j € J C A, we have j(I = J) C I C A by definition; then
take generators of I and divide them by j to obtain finitely many generators for I = J. In general, choose
a,b € A such that al C A and bJ C A. Then I + J = abl + abJ where now abl, abJ are A-ideals. O

Definition 3.9 (invertible). A fractional ideal is invertible if IJ = A for some fractional ideal J.

Inverses are unique if they exist: J =JA = JIJ = AJ =J.

Lemma 3.10
A fractional ideal I of A is invertible if and only if I(A + I) = A, in which case A + I is the inverse.

Proof. (=): Note I(A+I) C A by definition. Suppose IJ = A so that J C A=+ I. Then
A=TJCI(A=1I)C A4,

solJ=I(A+1)=A, and J = A+ I by uniqueness.

The reverse direction is immediate. O

Example 3.11 (noninvertible fractional ideal)
Let A = Z + 2iZ which is a subring of Z[i] C Q[i]. Let I = 2Z][i] so that A +~ I = Z[i]. However,
I(A+1I)=2Z[i] ¢ A.

In a DD, all fractional ideals will be invertible, so we had to find a weird example.
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3.2 ldeal class group

Fractional ideal multiplication is commutative and associative (w.r.t. addition). Thus, the nonzero fractional
ideals of a Noetherian domain form an abelian monoid under multiplication with A = (1). The subset of
invertible fractional ideals is an abelian group.

Definition 3.12 (ideal group). Let A be a Noetherian domain. The ideal group of A, denoted Z4, is the
group of invertible fractional ideals.

Every nonzero principal fractional ideal (z) is invertible, since (z)(1) = A. Products of principal fractional
ideals are principal: (z)(y) = (zy). Thus, the principal fractional ideals are a subgroup P4 C Zg4.

Definition 3.13 (ideal class group). The quotient cl(A) = Z4/P4 is the ideal class group of A.

This is also known as the Picard group Pic(A) for a Noetherian domain.

Remark 3.14. The ideal class group cl(A) is trivial if and only if A is a PID.
It turns out that a DD is a UFD if and only if cl(A) is trivial, i.e. if and only if it is a PID.

4 Properties of Dedekind domains

Let A be a Noetherian domain. Today we will present eight equivalent definitions for DDs and show that
our original definition in Proposition 3.1 satisfies them. Pset 2.1 shows the reverse direction.

Lemma 4.1
Let I, J be fractional ideals in A and p be a prime ideal. Then Iy, J, are fractional ideals of A, with

Proof. Because I is finitely generated as an A-module, I, = I A, is finitely generated as an Ap-module and
is a fractional Ay-ideal by Definition 3.4. The same is true for Jj.

1. U+ J)y=U+J)Ay =TA, + JA, = I, + J,. For the second equality, C is clear, and 2 follows from
using common denominators.

2. (IJ), = (IJ)A, = I,J,. For the second equality, C is clear, and O follows from using common
denominators.

Actually, all three parts hold for any multiplicative subset S of A; the fact that S = A — p was not used.

Theorem 4.2

In a Noetherian domain A, a fractional ideal I is invertible if and only if its localization at every maximal
(or prime) ideal is invertible.
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Proof. (=) Suppose [ is invertible, so (A + I) = A by Lemma 3.10. For any maximal ideal m, we have
In(An = Iy) = Ay by Lemma 4.1, so I, is invertible.

(<) Now suppose I, is invertible for all m € Max A. Then

IA+D) =(IA+D)m = Vn(An +In) = An = A

m

by Corollary 2.10 and Lemma 4.1.

The same proof works for prime ideals instead of maximal ideals. O

Corollary 4.3

In a Dedekind domain A, every nonzero fractional ideal I is invertible.

Proof. The localizations A, at nonzero prime ideals are DVRs. In particular, they are PIDs in which every
nonzero fractional ideal I, is invertible. Then by Theorem 4.2, I is invertible. O

Lemma 4.4

In a Noetherian local domain A, a nonzero fractional ideal I is invertible if and only if it is principal.

Proof. (<) If I = (z) is principal, then it is invertible with inverse ().

x
(=) Now suppose I is invertible, and let m be the maximal ideal of A. We have II-! = A so there
is some linear combination Z?:l a;bi = 1 with a; € I, b; € I"!'. Note that each summand a;b; lies in
IT7! = A. At least one summand a;b; must be a unit because each element in a local ring is a unit or in
m, but Y ab; =1 ¢ m. Say a1by € AX. For every x € I, we have a1biz € (a1) because by € I71 and
biz € A. Then x = (a1b1) ta1b1x € (a1), which shows I C (a1). As (a1) C I by construction, I = (a;) is
principal. O

Corollary 4.5

In a Noetherian domain A, a nonzero fractional ideal I is invertible if and only if it is locally principal,
i.e. all localizations at maximal ideals are principal.

Proof. Combine Theorem 4.2 and Lemma 4.4. O

Lemma 4.6
Let A be a DD and a € A nonzero. The set of p € Spec A containing a is finite.

Proof. Consider subsets S,T of T, with

S={I€Zy:(a) CICA}
T={I€Ty:ACIC (a"H}.

S and T are nonempty because they both contain A, and define partial orders by inclusion. Consider the
bijections ¢1: S — T with I +— I~! and g: T — S with I — al where ¢ is order reversing and ¢y is order
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preserving. Then ¢ = @9 0 (1 is an order-reversing bijection of S. Since A and thus S satisfies ACC by
being Noetherian, ¢(5) satisfies DCC.

Now suppose a lies in infinitely many distinct prime ideals pq,p2,.... Then

pr2op1Np22p1NpaNpg 2 ---

is a descending chain in S as (a) is contained in all intersections, the ideals are finitely generated (fractional)
because p; is, and fractional ideals are invertible in a DD by Corollary 4.3. The chain stabilizes, so there is
some n > 1 for which

PrePn—1 CP1N- - NPp1 =p1 M- NPy C P

In other words, p,, contains some p; and there is a chain

(O) gp] C pn

contradicting dim A < 1. Note that (0) C (a) C p; is how a is used. O

Corollary 4.7

Let I be a nonzero ideal in a DD A. The number of prime ideals that contain I is finite.

Proof. Pick an element of I and apply Lemma 4.6 to it. Ul

Example 4.8

A = CJt] is a DD with uncountably many prime ideals p, = (¢t — r) for r € C. By Lemma 4.6, any
nonzero f € C[t] lies in finitely many p,. In other words, there are finitely many r € C for which
f(r) =0, and f has finitely many roots. (This is a sledgehammer.)

Let p be a nonzero prime ideal in a DD A with K = Frac A. Let m be a uniformizer for the DVR A;, and
let I be a nonzero fractional ideal of A. Then I, is a nonzero fractional ideal of A, and of the form (7™)
for some n € Z. Extend the valuation vp: K — Z U {oo} to fractional ideals via v, (/) = n and 1,((0)) = oo.
Then v,((z)) = vp(x). The map

Vp:Za — 7, I— (1)

is a group homomorphism, i.e. v,(IJ) = (1) + vp(J). It is order-reversing with respect to the partial
ordering on 74 by inclusion and the usual order on Z: if I C J, then vy(1) > vyy(J).

Lemma 4.9
Let p be a nonzero prime ideal of a DD A. For any ideal I C A, v,(I) =0 if and only if I Z p.

In particular, if q # p is another nonzero prime ideal of A, then v4(p) = v,(q) =0, by dim A < 1.

Proof. If I C p, then v,(I) > vp(p) = 1 is nonzero. If I Z p, then pick a € I —p so that
0=1p((a)) = () = rp(A) =0,

where we note 4, = (7°) so 1,(A) = 0. O
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Corollary 4.10
For any I € Z4, we have v,(I) = 0 for all but finitely many nonzero p € Spec A.

In particular, for all x € K* we have v,(z) = 0 for all but finitely many p.

Proof. If I C A, then this follows from Corollary 4.7 and Lemma 4.9. In general for a fractional ideal é]
with a € A, I C A, we have v,(31) = 14,(I) — vp(a) = 0 — 0 = 0 for all but finitely many p. O

Theorem 4.11
The ideal group Z4 for a DD A is isomorphic to the free abelian group generated by the nonzero prime

ideals of A. The isomorphism Z4 ~ @p £(0) Z is given by
I'—(...,p(),...)
[Te < C.oepn)
p

In particular, every ideal in a DD has a unique factorization into prime ideals.

Writing I = [], p* and J =[], pfr. we have

1J = Hpeb+fp
p
(I+J)=]]p> %
p

I+J=]]pminerd) = ged(1, )
p

I0J = ]]pmh) =lem(I, ).
p

Then J D I if and only if e, > f,, for all nonzero p € Spec A. So J 2 I if and only if J divides I. It is always
true that to divide (JH = I) implies to contain (J D I), but the reverse is only true for DD.

Proof. The map is well defined because all but finitely many entries of the direct sum are 0 by Corollary 4.10.

As the maps I — 1,(I) and p® < ey, are group homomorphisms, both maps in the theorem statement for
Za ~ €D, Z are group homomorphisms. The forward map is injective because if 14, (I) = v;(J), then I, = Jp.
If this holds for every p then I =\, I, =, Jp, = J.

For surjectivity, given (..., ep,...) with all but finitely many entries zero, consider Hp per. It is indeed true
that vq(I[, p) = >, epra(p) = 4. m

Corollary 4.12
A DD is a UFD if and only if it is a PID, or equivalently if and only if cl(A) is trivial.

Proof. PIDs are UFDs, so it remains to show the other direction. It suffices to show that every prime ideal
is principal. Suppose p is a nonzero prime ideal in a DD that is a UFD. Pick a nonzero element a € p and
let @ = p1---pn be the factorization of a into irreducibles in the UFD A. Then p contains and therefore
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divides (a) = (p1) -+ (pn), so p divides and therefore contains some (p;). However, (p;) is a nonzero prime
ideal (because p; is irreducible) so p = (p;) is principal. O

Here is a summary of the properties of a Dedekind domain from

Theorem 4.13 (Dedekind domain)
For an integral domain A, TFAE:

1.

A is an integrally closed Noetherian domain of dimension at most one.

. A is Noetherian and its localizations A, at nonzero prime ideals are DVRs.
. Every nonzero ideal in A is invertible.
. Every nonzero ideal in A is a (finite) product of prime ideals.

2
3
4
d.
6
7
8

A is Noetherian and “to contain is to divide” holds for A-ideals.

. For every ideal I C A there is an ideal J C A such that IJ is principal.
. Every quotient A/I of A by a nonzero ideal I is a principal ideal ring.

. For every nonzero ideal I C A and nonzero a € I we have I = (a,b) for some b € I.

5 Separability and étale algebras

5.1 Separability

For a polynomial f =Y, a;z’ € Afz], define f':= ", ia;z""1 € Alx].

Definition 5.1 (separable polynomial). Let K be a field. A polynomial f € K[x] is separable if as ideals
(f, ) = (1). Otherwise, f is inseparable.

Example 5.2

For K = F(t), the polynomial 2P — t is inseparable.

Definition 5.3 (separable element). Let L/K be an algebraic extension. We call a € L separable if
f(a) =0 for some separable f. We say that L/K is separable if every o € L is separable over K.

Lemma 5.4

An irreducible polynomial f € K|[x] is inseparable if and only if f" = 0.

Proof. Since f’ has lower degree than f, it has common roots with f irreducible if and only if f' =0. [

Corollary 5.5

Let f € K[z] be irreducible and char K = p. Then f(z) = g(z*") for some separable g and n > 0
(uniquely determined by f).
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Corollary 5.6
If char K = 0, then every irreducible f € K|[z] is separable.

Lemma 5.7

Let L = K(«a) be an algebraic extension of K in K, and let f € K[z] the minimal polynomial of « over
K. Then

#Homp (LK) = #{B €K : f(8) = 0} < [L: K] = deg

with equality if and only if « is separable over K.

Proof. Each element of Homg (L, K) is uniquely determined by the image of «, which must be sent to a
root 3 of f(x) in K. The number of roots equals [L : K| = deg f when f, and thus «, is separable over
K. O

Definition 5.8 (separable degree). Let L/K be a finite extension of fields. The separable degree of L/K
is
[L: K]s = #Homg (L, K).

The inseparable degree of L/K is
[L:K];=[L:K]/[L:K]s.

The inseparable degree turns out to be an integer (Corollary 5.24).

Theorem 5.9

Let L/K be an algebraic extension and ¢x: K — Q be an embedding into an algebraically closed field.
Then ¢x extends to an embedding ¢r: L — €.

Proof. We use Zorn’s lemma. Define a partial ordering on the set F of pairs (F, ¢p) where
e F/K is a subextension of L/K,
o op: F'— Q extends ¢i: K — €.

We say (F1, ¢, ) < (Fa, ¢r,) whenever F} C Fy and ¢, extends ¢,. Note F is nonempty because (K, ¢x) €
F. For any totally ordered chain C C F, there is a maximal element (E, ¢g) with E .= [ J{F : (F,¢r) € C},
and ¢p: E — Q by = +— ¢p(x) for any F > z.

By Zorn’s lemma, F contains a maximal element (M, ¢pr); we claim that M = L. Suppose not, and let
a € L — M. Consider F = M(«) C L, where M C M(«). Extend ¢y to ¢ by letting ¢ be any root of
an(f), where a(f) € Q[z] is obtained by applying ¢y to the minimal polynomial f € M[x] of « over M.
Then (M, ¢pr) is dominated by (F, ¢r), a contradiction. O

Lemma 5.10

Let L/F/K be a tower of finite extensions and K be an algebraic closure containing L. Then

# Homg (L, K) = # Homg (F, K)# Homp(L, K).
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Corollary 5.11
Let L/F/K be a tower of finite extensions. Then

=
|
[

=
i
E
7

Theorem 5.12
Let L/K be a finite extension. TFAE:

1. L/K is separable.

2. [L:K]s=[L:K].

3. L = K(«) for some a € L separable over K.

4. L ~ K|z]/(f) for some irreducible separable f € K|[z].

Corollary 5.13
Let L/K be a finite extension. Then [L : K], < [L : K] with equality if and only if L/K is separable.

Corollary 5.14
Let L/F/K be a tower of algebraic extensions. L/K is separable if and only if L/F and F/K separable.

Corollary 5.15

Let L/K be an algebraic extension. Then F := {« € L : « separable over K} is a separable field
extension.

Definition 5.16 (separable closure). Let L/K be an algebraic extension.
F :={a € L: a separable over K}

is the separable closure of K in L. When L is an algebraic closure, it is called the separable closure of
K and denoted by K®°P.

Definition 5.17 (perfect). A field is perfect if every algebraic extension is separable.

Example 5.18
Characteristic 0 fields and finite fields are perfect.

Definition 5.19 (separably closed). K is separably closed if no nontrivial separable extensions of K exist.

The following theorem can be used to show that finite fields are perfect.
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Theorem 5.20

If char K = p > 0, then K is perfect if and only if K = K?, or equivalently, if and only if x — «P is an
automorphism.

Definition 5.21 (purely inseparable). An algebraic extension is purely inseparable if [L : K]s = 1.

The trivial extension is separable and purely inseparable. From Example 5.2 P — ¢ is a purely inseparable
extension of degree p.

Proposition 5.22

Let char K = p > 0. If L/K is a purely inseparable extension of degree p, then L = K(al/p) ~
K[z]/(zP — a) for some a € K — KP.

Theorem 5.23

Let L/K be an algebraic extension and F' be the separable closure of K in L. Then L/F' is purely
inseparable.

Proof. If L/ K is separable, then we are done because L = F' and the trivial extension L/L is purely separable.
Otherwise, we have char K = p > 0. Fix an algebraic closure K of K containing L. Let @ € L — F have
minimal polynomial f over F. By Corollary 5.5, we can write f(x) = g(2P") with g € K|[x] separable and
n > 0. We need deg g = 1, as otherwise there would be a separable element not in F. Then f(z) = 2" —a
for some a € F, or f(x) = 2P" —a?" = (x — a)P" for some a € F. Thus

#Homp(F(a), K) = 1.

Since f only has one root, there is only one place to send . We can continue this process if there are more
elements in L — F'(a), and the upshot is that

[L:F]s=#Homp(L,K)=1

which is the definition of purely inseparable. O

Corollary 5.24

Every algebraic extension L/K can be written uniquely as L/F/K with F//K separable and L/F purely
inseparable.

Proof. Take F' to be the separable closure of K in L. OJ

Corollary 5.25
The inseparable degree is a power of char K = p. (This is also true for p = 0, using 0° = 1.)
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5.2 Etale algebras

Every finite separable extension L/K looks like L = K[z]/(f) for some f € K[z].

Let f = f1--- fn be the irreducible factorization in K[z]|. Suppose f is separable so that the f; are distinct.
Then
K[z]/(f) = K[z]/(f1 - fn) = Klz]/(f1) x -+ X K[z]/(fn)

by the Chinese remainder theorem. This is a finite product of finite separable extensions of K.

Definition 5.26 (étale). An étale K-algebra is a K-algebra L which is isomorphic to a finite product
of finite separable field extensions.

Remark 5.27. Finite products and finite direct sums are same as K-vector spaces but not as K-algebras.
A direct sum sends 1+ (1,0,...,0), but for a homomorphism we need 1~ (1,...,1). Products have
projection maps, so it’s important we are using X.

Example 5.28
If K = K®°P, then every étale K-algebra is isomorphic to K™ = K x --- x K for some n > 1.

Etale algebras are semisimple algebras. A simple ring is nonzero and has no nonzero proper ideals, and a
semisimple ring is a finite product of simple rings. Note that a commutative ring is simple if and only if
it is a field. Ideals in a semisimple commutative ring R = [[ R; are a product of some of the R;.

Proposition 5.29

Let A =[] K; be a K-algebra that is a product of field extensions K;/K. Every surjective homomor-
phism ¢: A — B of K-algebras corresponds to a projection onto a subproduct.

Corollary 5.30

The decomposition of an étale K-algebra into a product of fields is unique up to isomorphism.

Definition 5.31 (base change). Let ¢: A — B be a ring homomorphism (so B is an A-module). Let M
be any A-module. The base change of M from A to B is the B-module M ® 4 B with b(m®?b') := m@bl'.

If M is an A-algebra, then M ® 4 B is a B-algebra.

Example 5.32

Proposition 5.33

Suppose L is an étale K-algebra and K'/K is any field extension. Then L ® i K’ is an étale K'-algebra
with the same dimension as L.

Proof. WLOG L is a field, or L is a product of fields and we can apply this reasoning to each factor.
Then L ~ K|[z]|/(f) for some irreducible separable f. Let f = f1---f, € K'[z] be the factorization into
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irreducibles. Then

Lok K' ~ K'[z]/(f) ~ HK'[l‘V(fi)

because f is separable. Thus L @k K’ is an étale K’'-algebra, and the dimension is preserved: dimg L =
deg f = dimg K'[z]/(f). O

Example 5.34

Any finite dimensional R-vector space V is an étale R-algebra (say ~ R™ with multiplication defined
component-wise w.r.t. some basis). Then V ®r C ~ C" is an étale C-algebra of the same dimension.

Corollary 5.35

Let L = K[z]/(f) be a finite separable extension of K with f € K[x] irreducible and separable. Let
K'/K be any field extension, and let f = f;--- f, be the factorization of f into distinct irreducible
fi € K'[z]. Then there is an isomorphism of étale K’-algebras

Lok K' = K'lz]/(f) ~ HK'[iv]/(fi)-

Theorem 5.36
Let L be a commutative K-algebra of finite dimension and assume dim L < #K. TFAE:

1. L is an étale K-algebra.

2. Every element of L is separable over K.

3. L®g K' is reduced for every extension K'/K.

4. L ®k K' is semisimple for every extension K'/K.

5. L = K[x]/(f) for some separable f € K|[z].

Definition 5.37 (reduced). An ring element o € R is nilpotent if o™ = 0 for some n. R is reduced if it
contains no nonzero nilpotents.

6 Dedekind extensions

6.1 Norm and trace

Definition 6.1 (norm, trace). Let B/A be an extension of rings with B a free A-module of finite rank
(so B =~ A™). Then the norm Np,4(b) and trace Tp,4(b) are the determinant and trace of the A-linear
map

BX% B, 1 ba

As maps, we have Np, 4: B* — A* (multiplicative group) and Tg,4: B — A (additive group).

For = (x1,x2) € By X Bo,

Np,xB,/a(x) = Np,sa(x1) Np, 4(72)
Tp xBoja(®) = Tpgya(x1) + Tp,/a(z2).
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Example 6.2
Let A =R and B = C which has an A-module basis of {1,7}. Let b = 24 3i. Then

. 2 -3

. 2 -3
T((:/R(Q -+ 31) =tr <3 9 > =4.

Norm and trace are well-behaved with respect to base change.

Lemma 6.3

Let B/A be a free A-module of rank n. Given ¢: A — A’, the base change B = B®4 A’ is a free
A’-module of rank n. Then

o(Npja(b)) =Np 4 (db®1)

©(Tpya(b)) =T a(d®1).

Theorem 6.4
Let K be a field with 2 as the separable closure, and let L be an étale K-algebra. Then

Np/k(a) = H o(a)

oc€Homg (L,Q)
Tyx(@= Y o).
o€Homg (L,Q2)
Proof. L®, Q= 1[,Q2=Q"sends a ® 1+ (o1(),...,on()). O

Proposition 6.5
Let L/K be a finite extension of fields and K be an algebraic closure containing L. Suppose o € L*
has minimal polynomial f € K[z] where f(x) = H;i:l(x — ;) € K], e = [L : K(a)]. Then

d

d
Np/k(a) = Haﬁ Tr/k(a) = ezai.
=1

=1

In particular, if f(z) = Z?Zl a;x’, then Ny /pc (o) = (—1)%a§ and Tr k(o) = —eaq1
Proof. See pset 3.5. OJ

Corollary 6.6

Let A be a domain with K = Frac A, and let L/K be a finite extension. If o € L is integral over A,
then NL/K(a) S A and TL/K(a) € A.

Page 24 of 109



September 23, 2025 18.785 Number Theory I

Proof. This follows from Ny, (o) = (—1)%qg and Tp k(o) = —eaq—1 in Proposition 6.5, and how « integral
over A means f(z) = Ele a;z' € Alx] by Proposition 1.30. O

Theorem 6.7 (Transitivity of norm and trace)
Given C'/B/A where C is free of finite rank over B, and B is finite rank over A, then

Ngja =NpjaoNg/p
Tc/a=TgaoTco/p

6.2 Dual modules, pairings, and lattices
Definition 6.8 (dual module). For an A-module, M, its dual module is the A-module
MY = Hom (M, A)

with scalar multiplication (af)(m) = af(m).
Given ¢: M — N, there is a natural map ¢¥: NV — MV defined by ¢"(g)(m) = g(p(m)) for g € NV.

The dual preserves the identity morphism and is compatible with composition, so we get a covariant functor
from the category of A-modules to itself. It is also compatible with sums: (M & N)¥ ~ MY @& NV with
inverse maps ¢ — (m +— ¢(m,0),n — ¢(0,n)) and ((m,n) — ¢(m) +1p(n)) <= (¢, ).

Remark 6.9. If A is a field and M is finitely generated (i.e. finite dimensional vector space), then M"Y
is the dual space and M"YV ~ M. However, this is not true in general.

Proposition 6.10
Let A be an integral domain with K = Frac A, and let M be a nonzero A-submodule of K. Then

MY~A+M:={zecK:zMC A}.

In particular if M is an invertible fractional ideal, then MY ~ M~ and MYV ~ M.

Example 6.11

As a Z-module, Q is not finitely generated. However, Q" = {0} because there are no nontrivial Z-linear
homomorphisms Q — Z. Consequently QY = {0} (although as Q-modules, Q ~ Q¥ ~ Q""). Similarly,
the dual of any finite abelian group (Z-module) is {0}, as is its double dual.

Theorem 6.12
Let M be a free A-module of rank n. Then MV is also a free A-module of rank n, and each A-basis

(e1,...,en) of M uniquely determines a dual basis (e, ..., e)) with € (e;) = d;;.

Proof. If n = 0, then M = M"Y = {0}. Now assuming n > 1, fix ¢ = (ey,...,e,) an A-basis for M. For
a = (ay,...,a,) € A", define f, € MV by f,(e;) = a; and extending A-linearly. The map a — f, is an
A-module map A" — MY with inverse f +— (f(e1),..., f(en)), so it’s an isomorphism and M ~ A™.
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Now let e := f; where i =(0,...,0,1,0,...,0) € A". Then e" = (eY,...,eY) is an A-basis for M" since

rn
(1,...,7) is a basis for A", and e)(e;) = d;;. The basis e is uniquely determined by e: it must be the
image of (1,...,n) under a — f,. O

Definition 6.13 (bilinear pairing). Let M be an A-module. A bilinear pairing on M is an A-linear map
(-,): M x M — A, meaning for all A € A and u,v,w € M that
(u+v,w) = (u,w) + (v, w)
(v,v+w) = (u,v) + (u,w)
(Au, v) = (u, Av) = X(u,v).
It is
o symmetric if (v, w) = (w,v)
o skew-symmetric if (v, w) = —(w,v)
e alternating if (v,v) = 0 (equivalent to skew-symmetric if char A # 2)
e nondegenerate if the induced map p: M — M"Y by m + (n — (m,n)) has trivial kernel

e perfect if the induced map is an isomorphism.

Example 6.14

Perfect implies nondegenerate, but the converse is not true. For example, (x,y) := 2zy is nondegenerate
but not a perfect pairing on Z.

Proposition 6.15

Let M be a free A-module of rank n with a perfect pairing (-,-). For each A-basis (e1,...,e,) of M
there is a unique A-basis (e}, ...,e},) of M with (e}, e;) = ;.

Definition 6.16 (lattice). Let A be an integral domain, K = Frac A, and V be a K-vector space. A
(full) A-lattice in V is a finitely generated A-submodule M in V that spans V as a K-vector space.

Remark 6.17. A-lattices do not need to be free A-modules, although this is true for A = Z or another
PID.

Definition 6.18. Let A be a Noetherian domain and K = Frac A. Let V be a K-vector space with a

perfect pairing (-,-). If M is an A-lattice in V, its dual lattice (with respect to the perfect pairing) is
the A-module

M*={zeV:(x,m)e A Yme M}.

M* is an A-submodule, and in fact M* ~ M. In particular, this implies M* is finitely generated.

Theorem 6.19
M* is an A-lattice in V isomorphic to M.
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Corollary 6.20

If My, My are A-lattices in K-vector space Vi, Vo with pairings (-,-)1 and (-, )2, then (-,-)1 + (-,)2 is a
perfect pairing on Vi @ Vo, and (M & N)* ~ M* & N*.

Corollary 6.21

If M is a free A-lattice in V with basis (eq, ..., ey), then M* is also a free A-lattice with basis (e, ..., e)
satisfying (e}, e;) = d;;.

Is M** = M? No in general, but yes if A is a DD and the perfect pairing is symmetric.

Lemma 6.22

Let S be a multiplicative set of a Noetherian domain A, and let M be an A-lattice in Frac A-vector
space V. Then S~'M and S~!M* are S~!A-lattices in V with (S™1M)* = S~ M*.

Proposition 6.23

Let A be a DD and K = Frac A. Let V be a K-vector space of finite dimension with a symmetric
perfect pairing. For an A-lattice M in V', we have M*™ = M.

Proof. 1t suffices to show that (M**), = M, for all maximal ideals p. We have (M**), = M, by Lemma 6.22,
so it suffices to prove the proposition with A replaced by A, which is a DVR.

Thus we may assume A is a DVR; as M and M* are torsion-free modules over a PID, they are free A-
modules. Choose an A-module basis (eq, ..., ey,) for M. Let (e],...,e};) be the unique A basis for M* with
(e7,ej) = 6;5. Now let (e]*,...,en*) be the unique A-basis for M** with (ej*,eX) = §;;. By symmetry,

»“n 7 j
(e, e;> = 0;j, s0 €; = e;* by uniqueness. Since M and M™** have the same basis, they are equal. O
6.3 Extensions of Dedekind domains

Proposition 6.24

Let A be a DD and K = Frac A. Let L/K be a finite extension and B be the integral closure of A in
L. (AKLB setup)

Every z € L can be written as g with b € B,a € A. In particular, B spans L as a K-vector space.

Proof. For a € L, we clear denominators in its minimal polynomial over K to get
9(2) = ana” + a1z 4 -+ ag

with a; € A. We can make this monic by replacing z with i and multiplying by a”~! to get
Gnp,

_ x _ _ _
a1y <) = 2"+ ap 12"+ anan 22" 2 4+ 4 aLag.

This has a,« as a root, so apa € B and a = % for some b € B and a,, € A.

B generates L as a K-vector space, as a = b- i for i € K. Also B C L C Frac B implies L = Frac B. [

Page 27 of 109



18.785 Number Theory I September 25, 2025

Proposition 6.25
AKLB. Then Ny, /i (b) € A and Tp/k(b) € A for all b € B.

Definition 6.26 (trace pairing). Let B/A be a ring extension with B a free A-module of finite rank.
The trace pairing on B is (x,y)g/a = Tp/a(wy). (Think B=L, A=K.)

Theorem 6.27

Let L be a commutative K-algebra of finite dimension. The trace pairing (-,-)r/x is a symmetric
bilinear pairing. It is a perfect pairing if and only if L is a finite étale K-algebra.

Proposition 6.28
AKLB. B is an A-lattice in L. In particular, it is finitely generated as an A-module.

Proof. Let (e1,...,e,) be a basis for L inside B. Let M C B be the A-span of this basis. The dual lattice
M* contains
B*:={zxeL:(x,b)/x €A, Vbe B}.

By Proposition 6.25, B C B*, so
MCBCB*CM".

M* is an A-lattice by Theorem 6.19, hence finitely generated and Noetherian. All of its A-submodules
including B are finitely generated in L, i.e. an A-lattice. OJ

Theorem 6.29
AKLB. B is a DD.

In particular, B is integrally closed, a finitely generated Noetherian ring, and dim B < dim A < 1.

The ring of integers of a number field is a DD, as it is the integral closure of Z.

In the AKLB setup, recall that A is a DD, K = Frac A, and L/K is finite separable. B is the integral
closure of A in L and also a DD with L = Frac B.

As shorthand, “prime of A/B/K/L” means a nonzero prime ideal, or a maximal ideal. From now on we
assume A # K because DD stuff becomes trivial in that case.

Let p be a prime of A, and suppose its extension in B factors as

pB= ] o

qESpec B

Definition 6.30 (ramification index, residue degree). The exponent eq in this factorization is the ramifi-
cation index of q. The residue degree is fq == [B/q: A/p].

More specifically, we can write eq/, and f;/, if we have a tower of extensions. For just one extension B/A,
it is unambiguous because each q¢ C B has one p C A lying underneath it by p = qN A (although p may
have multiple q lying over it).
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Lemma 6.31

Let C/B/A be a tower of DDs corresponding to M/L/K a tower of finite separable extensions (B,C
are the integral closures of A in L, M). If v is a prime of M above q a prime of L above p a prime of K

(@=tNB,p=tNA),then e, = e;/qq/p and fr/p = fr/qfq/p-

Example 6.32
Let A=7Z, K =Q, and L = Q(¢), where [L : K] = 2. Then B = Z[i].

The prime p = (5) C Z factors in Z[i] as
BZ[i] = (2 +1)(2 — 9),
80 €(244) = 1 and e(y_;) = 1 because they have exponent 1. The residue field A/p = Z/(5) is isomorphic
to IF5, as is B/q = Z[i]/(2 + i), so f(o44) = 1 and similarly fo_; = 1.
The prime p = (7) C Z stays prime in Z[]:

Then e(7) = 1 and f(7) = 2 because Z/(7) ~ F7 but Z[i]/(7) ~ F49. It is a degree 2 extension of F7, and
in general B/q is an extension of A/p.

The prime p = (2) C Z factors as
2Z[i] = (1 + 1)

Here e(144) = 2 and f(144) = 1 because Z/(2) ~ Fo ~ Z[i] /(1 + 1).
We compute Zq‘p eqfy:

D eqfy=1-1+1-1=2

al(5)
D eqfy=1-2=2
al(7)
D eqfy=2-1=2
al(2)

In all cases, it equals [L : K] = [Q(4) : Q] = 2, which is not a coincidence.
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Example 6.33
Let A = R[z], K = R(x), and L = K (V23 + 3x). Then B = R[z,y]/(y*> — 23 — 37), and [L : K] = 2

because we're adjoining a square root.
The prime (z — 1) factors in B as

(z-1)=(z-Ly-2)(z—1Ly+2)
since y? —4 =23 +3x —4 € (x —1). Then €(z—1y+2) = 1 and f(y_1y+9) = 1 because [B/(z — 1,y —2) :
A/(z—-1)]=[R:R]=1.
The prime (z+1) remains prime in B because y> = —4 has no solutions in R. Then ez+1) = 1, fat1) = 2.
The prime (z) factors in B as

(z) = (z,9)*

50 €(ay) = 2 flwy = 1-

Lemma 6.34

AKLB. Let p be a prime of A. The dimension of B/pB as an A/p-vector space is equal to [L : K], the
dimension of L as a K-vector space.

Proof. Localize “at p”: B, :== S™'B as an A-module where S = A —p. Then A,/pA, = S~1A/(pS~LA) ~
A/p and By /pB, = S~'B/(pS~'B) ~ B/pB. We have reduced to showing the lemma for for A a DVR, and
in particular a PID.

By Proposition 6.28, B is finitely generated as an A-module, and torsion free by being an integral domain
containing A. By the structure theorem, B is free of finite rank over A. On the other hand, we know by
Proposition 6.24 that B spans L, so any A-basis for B is a K-basis for L.

This means B has rank n = [L : K| as a free A-module. Then pB ~ pA™ ~ (pA)"™ is an isomorphisms of
A-modules, and B/pB ~ A" /(pA)" ~ (A/p)"™ is an isomorphism of A/p-modules. O

Example 6.35
Let A = Z, B = Z]i], and consider p = (2). Then pB = 2Z][i]

= (1+14)? and B/pB = Z[i]/(1 +14)? is
ring of cardinality 4 and an Fy-algebra isomorphic to Fa[z]/(x?).

Theorem 6.36
AKLB. For every prime p of A, we have . eqfq = [L : K].

We write q | p as shorthand for q | pB.

Proof. By the Chinese remainder theorem, we have

B/pB ~ B/l_[qeCI ~ HB/qeq.

qlp qlp
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By the above Lemma 6.34, we know
[L:K]=[B/pB: Alp
=Y [B/q%: A/p]

qlp

= Zeq[B/q  A/pl,

qlp

where the last equality is from B/q® having dimension e as a B/g-vector space. Indeed,
9 = {z € B : yy(z) > eq}.

Letting 7 € q be a uniformizer for By (we can assume it lies in q by multiplying by units), the images of
(n0, 7!, .., w7 1) in B/q% is a B/g-basis for B/q%. -

Corollary 6.37

AKLB. Let p be a prime of A. Then g, := #{q € Spec B : q | p} is an integer in [1,n] where n = [L : K],
as are eq and fq for each q | p.

Definition 6.38 (totally ramified, unramified). AKLB. Let p be a prime of A.
o L/K is totally ramified at q if eq = [L : K] is as large as it can be. Equivalently, f; = g, = 1.
o L/K is unramified at q if e; = 1 and B/q is separable over A/p.

e L/K is unramified above p if it is unramified at all q | p. Equivalently, B/pB is a finite étale
algebra over A/p.

Definition 6.39. When L/K is unramified above p we say
e p remains inert if ¢ = pB is prime (equivalently eq = g, =1, fy = [L : K]).
o p splits completely if g, = [L : K] (equivalently eq = fg =1 for all q | p).

7 ldeal norms

Recall for a ring extension B/A with B free of finite rank, we defined the norm map Ng,4: B — A by

Np,a(b) = det(B =% B).

7.1 Module index

Let A be a DD with K = Frac A. Let V be a K-vector space of dimension n, and let M, N be A-lattices in
V. Ay is a DVR and thus PID, so by the structure theorem M, ~ A} ~ N, are free (there is no torsion in

a vector space). Choose ¢,: M, = Ny, and let ¢Zp be the unique extension of ¢, to V' — V.
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Definition 7.1 (module index). The module index is the principal fractional Ap-ideal generated by
det d;p:
[My = Npla, = (det @)

Note det qu is nonzero because ggp is invertible. The fractional ideal generated by det qu depends only
on M, and Ny, not any choices for ¢y.
In general, for A not necessarily a DVR, the module index is the A-module

[M : N]a = (\[Mp : Nyla,-
p

Each [M,, : Np]a, is an A-submodule of K (not necessarily finitely generated). The intersection [M : N4 is
clearly an A-submodule of K, and it turns out to finitely generated and nonzero.

Claim 7.2 — [M : N]4 is a nonzero fractional ideal whose localizations agree with [M, : Np]a,, i.e.
([M : Nla)p = [My : Npla,-

The case of when M ~ A™ ~ N are free is easy. Then we could fix a global determinant ¢ and (det QAS),J =

(det ép). In general, M, N are just A-lattices, and we would potentially choose a different ép for each p.
The proof involves a gluing argument. As a sketch, M, N are locally free so we can pick a,...,a, € A
generating the unit ideal such that each M [a%} is a free A[a%_]—module. Do the same thing for B with b;.
Claim 7.2 implies that [M : N]4 € Z4 is a fractional ideal. For M, N, P A-lattices in V' (no containments

assumed), we can take products
[M : NJao[N : Ply=[M : Pla.

Taking P = M yields
[M : NJA[N : Mg =[M: M]s = A.

where for the second equality we can take ¢ = id. Thus [M : N]4 and [N : M]4 are inverses in Z4.
If N C M, then [M : N]4 is indeed an ideal (not just a fractional ideal).

Remark 7.3. In the special case when V = K,
[M:N]g=N~+ M.

Example 7.4

Note that the order of M and N are swapped above. For example, [Z : 2Z]z = ([Z : 2Z]) = (2), but
Z+2Z=(1)+(2) = (3)

7.2 Ideal norm

AKLB. The inclusion A C B induces a homomorphism Z4 — Zg by I — I B. We wish to define an inverse
map Np/a:Zp — Za.

Definition 7.5 (ideal norm). AKLB. The ideal norm Nga:Ip — L4 is given by I — [B : I]a. We
extend Np, 4 to the zero ideal by Np,4((0)) = (0).
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Proposition 7.6
AKLB. For all a € L, the ideal norm is compatible with the field norm: Ng,4((a)) = (N7 g (a)).

Proof. We have

Npja((a)) = [B:aBla
= ﬂ [By : aBy)a,

peEMax A
= (det(L =% L))
= (Np/k(a))
since each B, SN aBj is an isomorphism of free Ay-modules. O

Proposition 7.7
AKLB. The map Np/a:Zp — 14 is a group homomorphism.

Proof. For all I,J € Ig, we have

Npja(1J) ﬂNBp/Ap(IpJp)
p

=\ NB,/4,Is)Np,, 4, (o)
p

= Np/a(I)Np/a(J)
where we use the fact that Np ,4,:Zp, — Za, is a homomorphism: All elements of Zp, are principal, so by
Proposition 7.6, N, /4, is a group homomorphism because Ny is. O
Corollary 7.8

AKLB. For all I,J € Ip,
[I:J]a=Ngja(I""J) = Npgja(J +1I).

Proof. The second equality is because J ~ I = I~'.J by B DD. For the first equality,

[ J]a :[[ BlalB J}A
1

N

1]
= A(I 1)NB/A(J)
sall™

Corollary 7.9
AKLB. Ng/a(I) = (Np/g(a) :a € 1) for all I € Zp.
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N
The new part that we did today is the map L* IR K

Np/x
KX ¢ s LX LX s KX
l(x) W l(y) l(””)
I—IB Npa
IA —_— IB IB —_— IA

Composing the top row K* < L* — K* corresponds to exponentiating by n = [L : K| (pset 2), and same
for the bottom row.

7.3 ldeal norm in number fields

Specialize the AKLB setup to A = Z, K = Q, and B = Oy, the ring of integers of some number field L
(finite extension of Q). For some q € Max B, let (p) = qN Z. Writing N in place of Ng,4, we have

where f = [B/q: Z/pZ)].
Definition 7.10 (absolute norm). The absolute norm is

N(q) =[O : dlz = ([OL : ).

Proposition 7.11

More generally for any nonzero Op-ideal a, define
N(a) = ([Of : a]).

If b C a are nonzero fractional ideals of Op, then [a : b]z = ([a : b]).

The absolute norm N:Zp, — Zz can be viewed as a map Zp, — Qs because fractional ideals of Z can
be identified with a positive rational number. When a = (a) is a principal fractional ideal, then we write

N(a) = N((a)) = [Nz /q(a)|.

7.4 Dedekind—Kummer

AKLB. Recall that we assume L/K is separable, so L = K («) for some a € L (or even « € B by clearing
denominators). However, it is not always true that B = A[a], such as when A = Z, K = Q, L = Q(/5),

then B = Z[H'T‘/g] not Z[v/5]. However if B = Ala] for some a € B, then we call B (and L) monogenic. In

our example, B and L are still monogenic.
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Theorem 7.12 (Dedekind—Kummer)

AKLB. Let L = K(«) for a € B. Let f € A[z] be the minimal polynomial of «. Let p be a prime of
A and suppose

f=g{" g7 € (A/p)lz]
is the factorization of the mod p reduction of f into monic irreducibles g; € (A/p)[z]. Let
qi = (p, gi(a))
where g; € A[z] is any lift of g;. If B = A[a], then
pB=ay'-qp

and fq, = degg;.
This might be on the midterm for small p.

Example 7.13

Let A=7, K = Q, and L = Q((5) which is a degree 4 extension. So a = (5 and f(z) = a*+23+22+z+1.
By pset 4.2, B = O, = Z[(5], and we can use Dedekind—Kummer to factor any prime of Z in Of.

(2)
(5)
Q(¢s)-

e (11): f(z) = (x —4)(x — 9)(z — 5)(z — 3) (mod 11) so

1Z[¢s] = (11,5 — 4)(11,¢5 — 9)(11, ¢ — 5)(11,¢5 — 3)

is irreducible in Fo[x], so e = 1 and fo = 4. (2) is an inert prime in Q((s).

[ ]
o (z) = (z — 1)* (mod 5), so 5Z[¢5] = (5,¢; — 1)* and e = 4, f = 1. (5) is totally ramified in

o f
: F

and eq = 1, fy =1 for each q. (11) splits completely.
e (19): f(z) = (2?2 + 5z +1)(z2 — 42+ 1) (mod 19) so

19Z(C5) = (19, ¢ + 55 + 1)(19, ¢ — 4¢s + 1)

and eq = 1, fy = 2 for each q.

Proof. We first show that each g, is prime in B. From B = Ala] ~ Alz]/(f), we have
B Ale] Alz] (A/p)lz]  _ (A/p)le]

12
l

g (p,gi(a) — (f(@)p,gi(2) — (f(x),g:(x)  (g:(x))
because g; | f. Also, g; is irreducible, so the last quotient is a field and q; C B is a maximal ideal. Thus g;
is a prime over p with f;, = degg;.
We use unique factorization into prime ideals after we know q; is prime. The ideal

[Ta =TT =T[5 + (i)

K3 K3

is divisible by pB, because all terms in the expansion have pB in it except the last term which is

[T(gi(@)® = (f(a)) = (0) (mod pB).

)
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The g,(x) are distinct in (A/p)[z]/(f(z)) ~ Alz]/(p, f(z)) ~ Ala]/pA[a], so the g;(«) are distinct mod
pB = pA[a]. This implies the g; are all distinct primes of B. Also e; > ¢4, (the ramification index) and
{qa | p} C {qi}i in order for [], q;" to be divisible by pB. We already noted that each q; | p, so indeed

{alp}={aiks.
It remains to show e; = eg,. From

NB/A(H%) Npa(a)™ = [[e")" Hp“deggl:deegf:p[L:m,

7

we see » . eifq, =[L: K] = Zq‘p eqfq so we need e; = eg; or the LHS would be too big. O

7.5 Conductor of a ring

Definition 7.14 (conductor). Let S/R be an extension of commutative rings. The conductor of R in S
is the largest S-ideal that is an R-ideal. Equivalently, it is the ideal

c={aeS:aSCR}={aec R:aSCR}.

When R is an integral domain, the conductor of R is the conductor of R in its integral closure.

Example 7.15
The conductor of Z C Z[i] is (0). Z[i] is “too far away” from Z, as multiplying by ¢ will not land in Z.

The conductor of Z[v—3] C Z[(3] is (2,1 + v/—3) = 2Z[(3]. Note it is principal in Z[(3] but not in
Z[v=-3].

Lemma 7.16

Let R be a Noetherian domain with integral closure S. The conductor of R in .S is nonzero if and only
if S is finitely generated as an R-module.

Definition 7.17 (order). An order O is a Noetherian domain of dimension 1 whose conductor is nonzero,
or equivalently, whose integral closure is finitely generated as an O-module.

Example 7.18
Any DD that is not a field is an order.

In AKLB assuming L # K, B is finitely generated as an A-module and thus over every intermediate
ring between A and B. If Aa] and B have the same fraction field, then A[a] is an order in B. So the

conductor of A is nonzero.

Definition 7.19 (A-order). Let A be a Noetherian domain with K = Frac A, and let L be a K-algebra
of finite dimension (not necessarily commutative). An A-order in L is an A-lattice that is a ring.

All A-orders are orders in AKLB, since A-lattices have to span.

An A-order is mazimal if it is not properly contained in another A-order. When A is a DD, every A-order
is contained in a maximal A-order. In AKLB, B is the unique maximal A-order in L.
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Definition 7.20 (prime to). Let A be a Noetherian domain and J an A-ideal. A fractional ideal I is
prime to J if IA, = Ay for all p O J. Let Ij C Z4 be the fractional ideals prime to J.

Theorem 7.21

AKLB. Let O be an order with integral closure B. Let ¢ be any ideal of B contained in the conductor
of O. The map q — q N O induces a group homomorphism Zj; — Zf,, and both groups are isomorphic
to the free abelian group generated by their prime ideals. In particular, every fractional ideal I € Z,
has a unique factorization into prime ideals [, p;* that matches IB =[], q;* with p; = q; N O.

Corollary 7.22

The assumption B = Ala] in the Dedekind—Kummer theorem can be replaced by “pB is prime to the
conductor of Afa].”

Remark 7.23. For A = Z and L = Q(«), the ideal pOp, is prime to the conductor of A[«] if and only if
p does not divide [Of, : A[a]].

8 Galois extensions

Definition 8.1 (left G-module). Let G be a group. A left G-module is an abelian group M equipped
with a left G-action compatible with the group structure: o(a-b) = o(a) - o(b) for all a,b € M.

AKLBG setup: AKLB and L/K Galois with Gal(L/K) = G. We show that Zp is a left G-module.

Theorem 8.2
AKLBG. For each I € Zp and o € G, define o(I) = {o(x) : © € I}. Then o(I) € Zp and this defines
a G-action on Zp.

Moreover, the restriction of this action to Spec B is a G-set, i.e. G sends prime ideals to prime ideals.

Proof. We first claim that o(B) = B. Every b € B is the root of some monic f € A[z]. Then

0=0(0) =a(f(b)) = f(o(b)),
so o(b) is another root of f. Thus o(b) € B, and o(B) C B. We analogously have 0 ~1(B) C B, so B C o(B).

Since [ is a finitely generated B-module in L, o(I) is a finitely generated o(B)-module (i.e. B-module), so
o(I) € Ig. As o((0)) = (0), o permutes the nonzero fractional ideals Zp. To see that o is a group action,
we have

(or)(I) ={(o7)(x) :x €I} ={o(r(z)):x € [} =0o(7(])).

To see that Zp is a left G-module, let I,J € Zg and 0 € G. Each x € I.J has the form x = a1b1 +- - - 4+ anby,
with a; € I,b; € J. As o(z) = o(a1)o(b1) + -+ + o(an)o(by) € o(I)o(J), o(IJ) C o(I)o(J). Applying
the same argument to o(I),o(J),o~! yields o0~ (o(I)o(J)) C IJ. Thus o(IJ) = o(I)o(J) and Ip is a left
G-module.

For the second part, let q € Zp be a prime ideal, and let o(q) = qf' - - - q%* be the unique factorization in B.
Then
q=0"" (@) 0 (qn),
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but since q is prime, we need n = 1 and e; = 1. Then o(q) = q; is a nonzero prime ideal, and Spec B is a
G-set. O

Recall that q | p for q € Spec B, p € Spec A means ¢ is in the prime factorization of pB (or p = ANgq). In
other words, {q | p} is the fiber of Max B — Max A above p. If pB =[], q;’, then

pB = a(pB) = [J ol

implying that o can only permute the primes above a given p. G therefore acts on {q | p}, and it turns out
this action is transitive.

Corollary 8.3
AKLBG. For all p € Max A, G acts transitively on {q | p}.

Proof. Let {q|p} ={q1,...,9,}. FSOC suppose q1, g2 lie in distinct G-orbits. By the Chinese remainder
theorem, we have

B/ay- - qn = B/a1 x -+ X B/qpn.

Choose b € B such that b =0 (mod q2) and b =1 (mod o(qy)) for all o € G (by assumption o(q1) # g2 for
any o € G). Then b € q2 and

Nyg®) =] e®)=1 (modq)
ceG

8o Nk (b) ¢ q1 N A =p. This contradicts Ny, /x(b) € Np i (q2) = pfa2 Cp. O

Corollary 8.4

AKLBG. The residue field degrees f; := [B/q: A/p] and the ramification indices eq := v4(pB) are the
same for all q | p.

Proof. For each o € G, we have an isomorphism B/q >~ B/o(q) that fixes A/p, so fq = f,(q). From o(p) = p
and o(B) = B, we have o(pB) = pB and

eq = Vq(pB) = v4(c(pB)) = Vq<HU(t)e‘) = Vq<HteG*1(r)> = €p-1(q)- O

tlp tlp

This means we can unambiguously define f, := f; and e, := eq. Recall g, = #{q | p}.

Corollary 8.5

Proof. This follows from Theorem 6.36 and Corollary 8.4. O
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Example 8.6

If n =[L: K] is a prime number, the possibilities are
® ¢, = n, so p is totally ramified in L.
e fy, =n, so p is inert.
® g, = n, so p splits completely.

In the last two cases, we assume B/pB is a finite étale A/p-algebra, which is automatically true when
A/p is finite (hence perfect).

8.1 Decomposition and inertia groups

Definition 8.7 (decomposition group). AKLBG. The decomposition group Dy is the G-stabilizer of g.

Lemma 8.8

AKLBG. Let p € MaxA. The Dy for q | p are conjugate subgroups of G with #D; = e, f, and
(G : Dq] = gp.

Proof. Note that stabilizers of elements in an orbit are always conjugate. The orbit-stabilizer theorem says
[G : Dg| = gp, the size of the orbit {q | p}. Then #Dy = e, f, is deduced from Corollary 8.5. O

Now fix g | p. Each o € G induces & € Homy,,(B/q,B/o(q)). For o € Dy, we have o(q) = q, so
G € Auty,(B/q). The map o + & defines a group homomorphism

mq: Dg — AutA/p(B/q),

as o7(T) = o7(x) = o(7(z)) =a(r(x)) = a(T(x)).

Proposition 8.9

AKLBG. Let q | p be a prime of B. The homomorphism 7q: Dg — Aut4,,(B/q) defined by o — 7 is
surjective, and B/q is a normal extension of A/p.

Proof. Let F be the separable closure of A/p in B/q. For b € F, pick b € B such that b= b (mod q). By
CRT, we can find b = 0 (mod 0~!(q)) for all ¢ € G — Dy, as the maximal ideals q, 0~1(q) are all distinct
and thus coprime. Then o(b) =0 (mod q), and we let

g(@) =[] (= —ob)) € Ala].
oelG

Let g € (A/p)[z] be the reduction mod p. By construction, g(b) = 0 and g splits completely in (B/q)[z].
This holds for every b € F*, so F' is a normal (hence Galois) extension of A/p. Then Gal(F/(A/p)) ~
Auty/,(B/q), since F is the separable closure.

For ¢ € G — Dq we have G(b) = 0, so 0 is a root of g with multiplicity at least m = #(G — Dg). The
remaining roots are 5(b) for o € Dy, which are Gal(F/(A/p))-conjugates of B. Thus g(x)/z™ is a polynomial
dividing a power of the minimal polynomial f(x) of b. However, the minimal polynomial is irreducible, so
g(z)/x™ is a power of f(z). In other words, every Gal(F/(A/p))-conjugate of b is of the form &(b) for some
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o € Dy. Applying this to the b such that F' = (A/p)(b) (by the primitive element theorem) shows that
mq: Dg — Aut 4/, (B/q) is surjective.

To show B/q is normal, proceed as above, replacing F' with B/q. For b € B, define g € Alz] and g € (A/p)[z]
as before to show every b € B/q is a root of a polynomial in (A/p)[z] that splits completely in (B/q)[z]. O

Definition 8.10 (inertia group). AKLBG. The inertia group I, is the kernel of the surjective homo-
morphism 7q: Dy — Aut 4/, (B/q).

Corollary 8.11
For all q | p € Max B, we have an exact sequence

1—=1;— Dy — AutA/p(B/q) — 1,
and #I, = eq[B/q : A/pl;.
We have shown that B/q is always a normal extension of A/p. Now suppose it is also a separable extension
(which always holds when A/p is finite). Then
Dq/Iq = Auty/p(B/q) = Gal((B/q)/(A/p))-

Proposition 8.12
AKLBG. Let q € Max B with q | p and B/q a separable extension of A/p. We have a tower of field
extensions K C LPs C L1a C [ with

e = [L s L] = #1,

fo = LT LP9] = #Dy/#1,

gp = [LP" - K] = #{q | p}.

LPa is the decomposition field at q, and L' is the inertia field at q.
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Proposition 8.13

AKLBG. Suppose there is a field F with K C E C L. For q € Max B, define qg = qN E. Let
p=qN K. Then

I,(L/E) = I,(L/K) N Gal(L/E)
Dy(L/E) = Dy(L/K) N Gal(L/E).

If E/K is also Galois like L/ K, then we get a commutative diagram

where Gy(e) is Gal of the residue field.

Definition 8.14. AKLBG. Let I, be the group generated by I, for q | p, and let D, be the group
generated by Dy, called the inertia group and decomposition group of p.

Proposition 8.15

The inertia field L’ and decomposition field L are always Galois extensions of K.

If A/p is perfect, then the inertia field L’ is the largest subfield in which p is unramified. The decom-
position field LP» is the largest subfield in which p splits completely.

8.2 Frobenius elements

Now assume that A/p is finite (and thus B/q) for all primes p of K. We write F; = B/q and F, = A/p.
Recall the exact sequence

1 — I, — Dy = Gal(F,/F,) — 1

where 7y sends o +— @ for @ € Homy,(B/q, B/o(q)) satisfying 7(7) := o(z).

If p (equivalently q) is unramified, then I; = 1 and we have an isomorphism
mq: Dg = Gal(Fq/Fy).
Gal(Fq/Fy) is the cyclic group of order f, = [Fq : Fy] generated by the Frobenius automorphism

T — m#F".
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Definition 8.16 (Frobenius element). The Frobenius element is w3 ' (z z#%) € Dy, denoted o4 or
Froby.

Definition 8.17 (Frobenius class). AKLBG with finite residue fields. Let p be an unramified prime of
A. The Frobenius class is the G-conjugacy class Frob, = {oq : q | p}.

If G is abelian, then each conjugacy class consists of a single element and Frob, = {Frob,} is a singleton.

Proposition 8.18

AKLBG with finite residue fields. Let q | p be unramified. The Frobenius element Frob is the unique
element o € G such that for all # € B we have o(x) = 7™ (mod q).

This is saying Froby can be characterized without looking at the exact sequence.

Proof. Frobg satisfies this, so we just need to show uniqueness. Suppose o € G has this property. Then if
z € q we have z = 0 (mod q) = o(z) = 27 =0 (mod q) so o(z) € q and o € Dy (stabilizers). The
isomorphism 7y: Dq — Gal(F,/F,) maps both o and Frobg to o — 27, so they are the same. O

8.3 Artin symbols

Throughout this section, assume AKLBG with finite residue fields.

Definition 8.19 (Artin symbol). For each unramified q € Max B, the Artin symbol is (L/TK> = Froby.

Proposition 8.20

p splits completely in L if and only if (L/TK> =1 for all q | p.

Proof. p splits completely <= epf, =1 <= #Dy = 1by Lemma 8.8 <= Froby = 1as Dy = (Froby). O

We extend (L/—K) to Z3, the fractional ideals coprime to S where S D {p ramified} (i.e. 14(I) = 0 for all

q
p € S). When Gal(L/K) is abelian, Frobq is equal for all q | p and we write (L/TK>

Definition 8.21 (Artin map). The Artin map is the homomorphism

<L/.K> .75 — Gal(L/K)

This group homomorphism is remarkable because Ij doesn’t know anything about L. By understanding
structure of subgroups of I4, we can understand all abelian extensions of K.
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9 Complete fields and valuation rings

9.1 Completions

Recall that a metric on a set X is a function d: X x X — Ry satisfying
L. d(z,y) =0 <= z=y
2. d(z,y) = d(y, )
3. d(z,z) < d(z,y) + d(y, 2).

If also d(z, z) < max{d(z,y),d(y, z)}, then d is a non-archimedean metric.

There is a topology on X generated by open balls

Bop(z) ={y € X :d(z,y) <7}
where 7 € Ryg and z € X. It is Hausdorff. The closed balls

Bep(z) ={y € X :d(z,y) <7}

are closed in this topology.

Every absolute value |-| on a ring X induces a metric via

d(l‘,y) = "T - y’ ’
although not every metric comes from an absolute value.
Definition 9.1 (convergence, Cauchy, complete). In a metric space X, a sequence (z,) converges (to x)

if there exists © € X such that Ve > 0, IN € Z~( such that d(z,,z) < € for all n > N. The limit z is
unique if it exists.

The sequence (zy,) is Cauchy if Ve > 0, AN € Z~ such that d(z,, z,) < € for all m,n > N. Convergent
sequences are Cauchy, but the converse is not always true.

If every Cauchy sequence converges, then X is complete.

Definition 9.2 (topological group). An abelian group G is a topological group if it is a topological space
in which the group operations G x G — G by (x,y) + = +y and G — G by x — z~! are continuous.

A commutative ring R is topological ring if it is a topological space in which addition and multiplication
R X R — R are continuous. Note R* might not be a topological group.

A field K is a topological field if it is a topological ring, and its unit group K* is a topological group.

Definition 9.3 (equivalent). In a metric space X, two Cauchy sequences (z,), (y,) are equivalent if
d(Zpn,yn) — 0 as n — oo.

This is an equivalence relation on Cauchy sequences, and let [(x,,)] denote the equivalence class.
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Definition 9.4 (completion). The completion of a metric space X is the metric space X whose elements
are equivalence classes of Cauchy sequences with

d([(zn)], [(yn)]) = Hm_d(zn, yn).

n—oo
We embed X in X via z — 7 = [(2,2,2,...)].
If X is a topological ring, we extend the ring operations to X via [(€n)] + [(yn)] = [(xn + yn)] and
[(zn)][(yn)] == [(znyn)]- Then 0 := 0 and 1 := 1. If d comes from an absolute value |-| on X, then we
define
@]l = lim Ja].

If |- arises from a discrete valuation v on a field K, meaning |z[ = ¢” (@) for some 0 < ¢ < 1, we can extend
v to X by defining
v([(zy)]) == lim v(z,) €Z

n—o0

for [(x,)] # 0, and as usual v(0) := co. The sequence of integers v(x,) is eventually constant, so it converges

to an integer. We will have
()] = (@),

Proposition 9.5

K be a topological field under the metric induced by ||, and let K be its completion. Then K is
complete and has the following universal property: every embedding of K into a complete field L can
be uniquely extended to an embedding K<L (as topological fields, so it’s continuous). This extension
is an isomorphism when K is dense in L. Up to canonical isomorphism, K is the unique topological
field with this property.

Theorem 9.6 (Weak approximation)

Let K be a field and |-|;,...,|:|, be pairwise nonequivalent nontrivial absolute values on K. Let
at,...,an € K and €1,...,€, > 0. Then there exists x € K such that |z — a;|; < ¢ for 1 <i < n.

Corollary 9.7

Two absolute values on a field K induce the same topology if and only if they are equivalent.

“Completion is like localization but on steroids.”
Unintuitive facts about a non-archimedean topology on X:

e We can have B, (z) = Bes(z) for r # s, such as when |-|: X — R>( comes from a discrete valuation
and has a discrete image (powers of c¢).

e Every point in an open ball is a center, i.e. B<,(y) = B<,(x) for all y € b,(x).

Any two open balls are either concentric or disjoint.

e Every open ball is closed, and every closed ball is open.

X is totally disconnected, meaning singletons are the only connected components.
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9.2 Valuation rings in complete fields

We now consider absolute values induced by a discrete valuation v: K* — Z. Picking 0 < ¢ < 1 and defining

yields a nontrivial non-archimedean absolute value. Let K, = K be the completion with respect to I-],-
Different choices of ¢ yield equivalent absolute values and do not change the topology or K.

The valuation ring
A, =f{a e K, (@) 20} = {a € K, : [o], < 1)

which is a closed (and thus open) ball. It is thus complete as a closed subset of a complete topological space.

Proposition 9.8

Let K be a field with absolute value |-|,, induced by discrete valuation v. Let A be the valuation ring
and 7 be a uniformizer. The valuation ring A, of K, is a complete DVR with uniformizer 7, and we
have an isomorphism of topological rings

A, ~ lim Ajn"A.

n—oo

Proof. Read carefully in the notes. It’s important that the isomorphism is of topological rings (not just
rings). A key step is that (7" A, = {0}. O

Example 9.9
For K = Q, let v, be the p-adic valuation and |:1:\p = p~ (@) The completion of Q with respect to Hp

is Q = Qp (p-adic numbers). The valuation ring of Q is the local ring Z,), so the valuation ring of Q
is Zy (p-adic integers): taking = = p as the uniformizer, we have

Zpy ~ Jm L) [ D" Ly == lim Z/p"Z ~ ZLp.
n—oo

n—oo

Example 9.10

For K = F,(t), let v; be the t-adic valuation and |z|, :== ¢~*(*). The completion of F,(t) with respect
to ||, is Fy((2)). The valuation ring of Fy(t) is Fy[t](+), so the valuation ring of F,((t)) is F,[[t]]: taking
7 =t as the uniformizer, we have

Fyltle = lim Fyltl/t"Fyltl = lm Fylt]/t"F,[t] = F,[[t]).

n—00 n—o0
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Example 9.11
The isomorphism Z, QZ/ p"Z gives a canonical way to represent a € Z, as a sequence (a,) with
ant+1 = ap (mod p ) nd 0 < a, < p". For example in Z7, we have

2=(2,22...)
2002 = (0, 42, 287, 2002, 2002, . . . )
-—2::(5 47,341,2399, 16805, . .. )
= (4,25,172,1201,8404, .. .)
(3,10, 108, 2166, 4567, . ...)
{ 4,39,235,235,12240, ...

= (4,46, 95,1124, 15530, ...).

To compute 27!, we find 27! = 4 (mod 7), etc. For /2, we see that 32 = 42 = 2 (mod 7), then lift to
mod 49 etc.

Z7 turns out to not be algebraically closed, e.g. there is no 5th root of 2 (mod 7).

There is redundancy as knowing a,, determines all a1,...,a,—1. A more compact way to represent is the

following.

Definition 9.12 (p-adic expansion). Let a = (a,) be a p-adic integer with a,, € [0,p" — 1]. The p-adic
expansion is (bg, b1, ba,...) with by = a1 and b, = (ap+1 — an)/p™.

Example 9.13

The sequences from before become
2=(2,0,0,...)
2002 = (0,6,5,5,0,0,...)
—2:(5666 )

= (4,3,3,3,.
3,1,2,6,1,2,1,2,4,6,...)

{4540545420 J)

=(4,6,1,3,6,4,3,5,4,6,...).

Addition in Z, is done by adding p-adic expansions (bg,b1,...) + (co,c1,...) component-wise mod p and
carrying to the right. Multiplication is by formal power series multiplication (> b,p™)(>_ cnp™).
9.3 Extending valuations

Definition 9.14 (extends). Let L/K be a finite separable extension, and let 11 and vs be discrete
valuations on K and L respectively. If vo| = e for some e € Z~q, then vy extends vy with index e.
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Theorem 9.15

AKLB. Let p be a prime of A. Then for all q | p, the discrete valuation v, extends v, with index e,
and every discrete valuation on L that extends v} arises this way. In other words, the map q+ 14 is a
bijection from {q | p} to valuations of L extending vj.

10 Local fields and Hensel’'s lemmas

10.1 Local fields

Definition 10.1 (global field). A global field is a finite extension of Q or Fy(t).

Definition 10.2 (local field). A local field is a field with a nontrivial absolute value that is locally
compact in the induced topology, meaning every point lies in a compact neighborhood.

Example 10.3
R and C are local fields, and in fact the only archimedean local fields. QQ is not a local field.

It turns out that local fields are the completion of a global field with respect to some absolute value.

Lemma 10.4

Let K be a field with a nontrivial absolute value. Then K is a local field if and only if every (equivalently,
any) closed ball is compact.

Proof. (=) Suppose K is a local field. For all z € K, the map x — x + z is continuous, so it suffices to show
that every closed ball about 0 is compact. 0 lies in a compact neighborhood containing a closed ball B<4(0)
which is compact. Now fix @ € K* with |a| > 1. The map = — ax is continuous and || is multiplicative,
80 B<|qns(0) is compact for every n > 1. Then every closed ball B<,(0) about 0 is compact, because it is a
closed subset of some B, n4(0) with increasing radii |a[" s.

(<) This is immediate. “Any” implies “every” because we can replace B<s(0) with any closed ball. O

Corollary 10.5
If K is a local field, then K is complete.

Proof. Suppose not, and consider a Cauchy sequence (x,) in K converging to x € K — K. Pick N € L~
such that |z, — 2| < % for all n > N. Consider S := B<i(zy). Then (z,,) has a convergent subsequence
in S C K, contradicting the fact that S is compact (Lemma 10.4). (We are using the fact that in a metric
space, compact implies sequentially compact.) O

This is another proof that Q is not a local field.
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Proposition 10.6

Let K be a field with absolute value |-|,, induced by a discrete valuation. Let A = {x € K : |z|, < 1} be
the valuation ring with uniformizer 7. Then K is a local field if and only if K is complete and A/7 A
is finite.

Proof. (=) After Corollary 10.5, it remains to show that A/mA is finite. We know that A = B<;(0) is
compact. The cosets x + mA of the subgroup mA C A are open balls B.j(x) since y € x + 7 A if and only if
|z —y|, < ||, < 1. The cosets {z + 7A : z € A} form an open cover of A, which is compact, so there is a
finite subcover. Thus, A/7A is finite.

(<) K complete implies A complete, and we have A = A~ Hm A/m™A. Each quotient A/7™A is finite
and therefore compact, so the inverse limit A is compact. Then A is a compact closed ball, which implies
K is a local field by Lemma 10.4. d

Corollary 10.7
Let L be a global field with |-|,, any nontrivial absolute value. Then the completion L, is a local field.

Proof. We know L/K is a finite extension where K = Q or F,(¢). Then A = Z or F[t] is a DD, as is its
integral closure B inside L. If |-|, is archimedean, then K = Q, and L, is a finite extension of R. Then L,
is R or C, both of which are local fields.

Now suppose |-|, is non-archimedean, and we claim it is induced by a discrete valuation. Let
C={rel:|z|<1}, m={zrel:|z|, <1}

Note m # 0. The restriction of |-, to K is still non-archimedean, and from pset 1 we know that it is induced
by a discrete valuation. In particular, |z|, <1 for all z € A, so A C C. C is integrally closed in its fraction
field L (true in general for valuation rings), so B C C. Let ¢ = m N B which is a maximal ideal of B. The
DVR B, is contained in C' C L, and in fact we must have B; = C because there are no rings properly
between a DVR By and its fraction field L. Then ||, ~ |'|Vq

The residue field By/qB; ~ B/q is finite, since B/q is a finite extension of the finite field A/p, where
p =qNA. Now consider the completion L, with valuation ring B,. Taking a uniformizer m of ¢ C B as a
uniformizer for B,, we have

B/q~ By/qBq ~ By/nBq ~ B, /7B,

so B,/mB, is finite. Thus L, is complete with an absolute value induced by a discrete valuation and finite
residue field, which implies it is a local field (Proposition 10.6). O

Proposition 10.8

A locally compact topological vector space over a nondiscrete locally compact field has finite dimension.

Theorem 10.9

Let L be a local field. If L is archimedean, then L = R or C. Otherwise, L is isomorphic to a finite
extension of Q, or Fy((?)).
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Proof. We know L is complete. If char L = 0 then Q C L which implies R C L if archimedean, or Q, C L if
non-archimedean (pset 1). If char L = p > 0, then F, C L, and L contains a transcendental element s € L,
because no algebraic extension of I}, has a nontrivial absolute value. So IF,(s) C L, which means Fy((¢)) C L
for some ¢ a power of p. In summary, L contains a subfield K isomorphic to

e R if char L = 0 archimedean
e Q, if char L = 0 non-archimedean
e F,((t)) if char L = p > 0.

In all cases, K is a local field and thus locally compact. It is also a finite extension by Proposition 10.8. [

10.2 Hensel's lemmas
Let R be a commutative ring with formal derivatives f — f’ on R[z]. It satisfies the usual properties of

(af +bg)" = af' + by’
(f9)' = flg+ fd
(fog) =(fog)d

for f,g € R[t].

Lemma 10.10
Given f =Y, fiz' € R[z] and a € R, we have

f(@) = f(a) + f'(a)(z — a) + g(2)(z — a)?

for a unique g € R|x].

Proof. By the binomial theorem, we have
f@)=fla+ (z—a)) = Z fila+ (z —a))' = f(a) + f'(a)(z — a) + g(2)(z — ).

O

This is like the Taylor expansion f(z) =), 19(a) (x — a)*, but we should be careful as i! could be a zero

4!

divisor. Actually f® /i! is a well-defined element of R.

Corollary 10.11
We have f(a) = f'(a) = 0 if and only if f(z) = (z — a)?g(z) for some g € R[z].

Definition 10.12 (simple root). If f(a) =0 and f’(a) # 0, then a is a simple root of f.

Lemma 10.13 (Hensel 1)

Let A be a complete DVR with maximal ideal p and residue field k = A/p. Let f € A[z] be monic with
reduction f € k[z] has @ € k as a simple root. Then there exists a lift a € A of @ such that f(a) = 0.

It turns out this lift will also be unique.
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Proof. Work in K = Frac A, and let ap be any lift of @. We construct a Cauchy sequence (a,) such that
each ay, is a root of f mod p*. Fix 0 < ¢ < 1 and define |-| = ¢»(). Since f(ag) € p but f'(ag) ¢ p, we have

|f(a0)] < e < 1and |f(ap)] =1. Let
L )l

| (ao)?
f(an)

Qp41 = An — f’(a )
n

We define

and can show by induction that

1. |an| <1, so0 a, € A.

2. lan —ap| <e<1,s0a, =ap (mod p), and a, is a lift of @.

3. [f'(an)| = |f"(a0)|, so f'(an) | f(an) and an41 is well defined.

4. | f(an)| < €| (ao)|?, so |f(an)| and f(an) converge to 0 rapidly.
Then |ani1 — an| < " — 050 (a,) is Cauchy. The limit a € A (by A complete) is a root of f and satisfies
a = ag (mod p). O

To prove Hensel I, we only needed ¢ < 1, not that @ is a simple root. A seemingly stronger version is the
following, but it turns out they are equivalent.

Lemma 10.14 (Hensel I1)
Let A be a DVR. Let f € Alz], and suppose ag € A satisfies | f(ag)| < |f/(ao)|?. Defining

f(an)

Ap+1 = Gp — f’(a ))
n

the sequence (ay,) is well defined and converges to a unique a € A such that |a — ag| < € :=

|f(an)] < " |f(an)|? for all n > 0.

Lemma 10.15 (Hensel I11)

Let A be a complete DVR with maximal ideal p and residue field k = A/p. Let f € A[z] and [ € k[z].
If f =gh for coprime g, h € k[x], then there exist lifts g,h € A[z] (so g =g (mod p), h = h (mod p))
such that f = gh with degg = degg.

Lemma 10.16 (Hensel-Kiirshak)
Let A be a complete DVR and K = FracA. If f € KJz] is irreducible with leading and constant
coefficients in A, then f € A[z].

Proof. Let p = (m) be the maximal ideal of A and k := A/p. Suppose f = Y1, fiz® is irreducible, so
fo, fn # 0. Let m :== min{v,(f;)}. FSOC suppose m < 0, and let g := 7~ f = > gz’ € Afz]. Then g
is irreducible and gg, g, € p as m < 0 and fy, f, € A. Also, g; is a unit for some 0 < i < n. The reduction
G € k[z] has positive degree, but the constant term is 0, so let @ = ¢ be the largest power of z dividing g
where 0 < d < degg < n. Let v = g/u € k[z], which is coprime to w.

By Hensel III, g = uv for lifts u,v € A[z] with 0 < degu = degu < n, which contradicts ¢ irreducible. [
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Corollary 10.17

Let A be a complete DVR with K = Frac A, and let L/K be a finite extension. Then « € L is integral
over A if and only Ny k() € A.

Theorem 10.18

AKLB. Suppose A is a complete DVR with maximal ideal p. Then B is a DVR whose maximal ideal
q is the unique prime above p.

Proof. There is some q | p by considering the prime factorization of pB. FSOC there exist q1,q2 | p, with
q1 # q2. Choose b € q; — q2 and consider A[b] C B. Then q; N A[b] and g N A[b] are distinct prime ideals
of A[b] containing pA[b]. Both are maximal because they are nonzero and dim A[b] = dim A = 1.

The quotient ring A[b]/pA[b] thus has two distinct maximal ideals. Let f € A[z] be the minimal polynomial

of b over K, and let f € (A/p)[z] be the reduction. Then

(A/p)le] _ Ale] _ Al
(f)y  (f)  pAQY
and (A/p)[x]/(f) has at least two maximal ideals. Then f has to be divisible by at least two irreducible

polynomials, so we can write f = gh for g, h coprime and lift to f = gh which is a contradiction as
degg = degg # 0. O

Remark 10.19. The assumption that A is complete is necessary. For example, if A = Z), K = Q, and
L = Q(i), then B = Z)[i] which is a PID but not a DVR. In particular, (1 +27) and (1 — 2i) are both
maximal.

11 Extensions of complete DVRs

11.1 Norms
AKLB. Let A be a complete DVR, so B is a DVR by Theorem 10.18. We will show that B is also complete.
Definition 11.1 (norm). Let K be a field with absolute value |-|, and let V' be a K-vector space. A
norm on V is a function ||-||: V' — Rx>¢ such that
o |[v]| =0 <= v=0
o || Mv|| = |A|||v|| for all A € K,v € V
o |[v+w|| < ||| + ||w|| for all v,w € V.

The norm induces a topology on V' via d(v, w) = ||[v — wl|.

Example 11.2 (supremum norm)

Let V be a K-vector space with basis (e;). For v € V, let v; € K denote the coefficient of e; in
v =), v;ie;. The supremum norm ||v||, = sup; |v;| is a norm (so every K-vector space has a norm).

If V is a K-algebra, then an absolute value ||-|| on V' is a norm if and only if it extends the absolute value
on K= [[Al[[[v]| = [[Mvl| = [AH[v]] <= [[All = [A].
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Proposition 11.3

Let V be a finite dimensional K-vector space over a complete field K. Every norm on V induces the
same topology, under which V' a complete metric space.

Proof. See pset 6. O

Theorem 11.4

Let (A, p) be a complete DVR with K = Frac A, discrete valuation vy, and absolute value |z, = ¢*» (@)
with 0 < ¢ < 1. Let L/K be a finite extension of degree n. Then

(i) There exists a unique absolute value |z| := ’NL/K@)‘;/TL on L that extends |-[,.

(ii) L is complete with respect to |-|, and the valuation ring {z € L : |z| < 1} is the integral closure
Bof Ain L.

(iii) If L/K is separable, then B is a complete DVR whose maximal ideal q induces

2] = Ja] 1= /e

where e is the ramification index, i.e. pB = g®.

Proof. Tt is not obvious that |-| is an absolute value, but assume that it is for now. For all € K, we have

1/n
p

1/n

|‘T| = ‘NL/K(ZB)‘ = ’wn’p = ’x‘pv

so || extends [|,, and is a norm on L. Since ||, is nontrivial, we have |z|, # 1 for some z € K*. From
2|* = |z|, = [z[ <= a =1, || is the unique absolute value (in its equivalence class) extending |[-|,. Every
norm induces the same topology by Proposition 11.3, so every absolute value on L is equivalent to |-|.

Now we check that |-| is an absolute value.
e |z| =0 <= =z =0 by construction.
e || is multiplicative by construction.

e Triangle inequality: it suffices to show that |z| <1 = |z + 1| < |z| + 1. We have
2| <1 <= |NL/K(az)\p <1 <<= Nyg()eAd < z€B

where the last equivalence is by Corollary 10.17. Finally, x € B <— z+1€ B < |z + 1| <1 by
reversing the above chain of equivalences with = + 1 instead of x. This is in fact even stronger than
the triangle inequality.

This proves (i) and (ii).

For (iii), we now assume L/K is separable. B is a DVR and is complete because it is the valuation ring
of L. Letting q denote the maximal ideal of B, then v extends v, with index ey by Theorem 9.15. So
vg(z) = eqpp(x) for all z € K. Since 0 < ¢!/ < 1, ||y = (c'/€a)%a(®) i an absolute value of L. To show
|| = [[4, it suffices to show by the uniqueness in (i) that |-, extends |-|,. Indeed, for all z € K,

|x|q — c”q(x)/eq — Cl/p(iﬂ) — |:’C|p . D
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Remark 11.5. Another definition of a Henselian valuation ring A is that the absolute value of K can
be uniquely extended to K.

Corollary 11.6

AKLB. Let (A,p) be a complete DVR, and let q | p (which is unique because B is a DVR). Then
ve(x) = fiqup(NL/K(w)) for all z € L.

Proof. vp(Npx(2)) = (N /i ((2))) = p(Np/ i (a79))) = vy (pfas®) = foug(x). [

11.2 Local Dedekind—Kummer theorem

Lemma 11.7 (Nakayama)

Let (A, p) be a local ring, and let M be a finitely generated A-module. If the images of z1,...,z, € M
generate M /pM as an (A/p)-vector space, then x1,...,x, generate M as an A-module.

Corollary 11.8

Let (A,p) be a local Noetherian ring, g € A[z] monic, and B = A[z]/(g(x)). Then every maximal ideal
m of B contains pB.

Corollary 11.9

Let (A,p) be a local Noetherian ring and g € A[z] be monic with reduction g € (A/p)[z]. Let o be
the image of x in the quotient B := A[x]/(¢g(x)). Then the maximal ideals of B are (p,g;(«)) where
91y -5 gm € Alz] are lifts of irreducible g; that divide g.

This is similar to the Dedekind—Kummer theorem.

Proof. B — B/pB gives a 1-to-1 correspondence of maximal ideals, and
B _ Al (A
pB - (pg(x)  (9(2))
The maximal ideals in (A/p)[x]/(g(x)) correspond to irreducible factors of g because (A/p)[z] is a PID. O

Theorem 11.10

AKLB. Let (A,p),(B,q) be DVRs with residue fields k := A/p,¢ = B/q. If {/k is separable, then
B = Ala] for some a € B (monogenic). Moreover if L/K is unramified, then this holds for every lift «
of any generator @ for ¢ = k(a@).

Proof. Let pB =q° and f = [¢: k]. Then ef = n :=[L: K]. Since ¢/k is separable, we can write ¢ = k(ap)
for some @y € ¢ whose minimal polynomial g is separable of degree f. Let g € A[x] be a monic lift of g, and
let ap € B be any lift of agp. If v4(g(ap)) = 1, let o :== ap. Otherwise, let myp be a uniformizer of B and set
a=ay+m € Bsoa=ay (mod q). Writing g(z + m) = g(x) + mog'(z) + m2h(z) for some h € Alz] by
Lemma 10.10, we have

va(9(a)) = vq(g(ao + m0)) = vq(g(co) + mog () + mh(cn)) = 1.

Page 53 of 109



18.785 Number Theory I October 14, 2025

In both cases, m := g(«) is also a uniformizer for B.

Now we claim B = A[a], or equivalently that 1,c,...,a" ! is an A-module basis for B. By Nakayama, it
suffices to show that 1,q,...,a" ! span B/pB as a k-vector space. Since pB = q° = (7°), each element of
B/pB is a coset

b+pB=by+bm+ -+ b 171 +pB

where by, ..., be_1 are determined up to equivalence mod 7B. Now 1,@,...,a’ ! is a basis for B/nB =
B/q=1{=k(ap) and 7 = g(a) so
b+pB = (ap+ara+--+aj_1al™t)

+(af+appia+---+ agf_locf_l)g(a)

oot (o + oot acprad T g(a)

+pB.
Now deg g = f and n = ef, so this expresses b+ pB in the form &’ 4+ pB with b’ in the A-span of 1,...,a" .
Thus B = A[a] by Nakayama.

If L/K is unramified, then ¢/k is separable and e = 1, f = n. We don’t need to require g(«) a uniformizer
and can just take a = oy to be any lift of ag. O

11.3 Unramified extensions of a complete DVR

Now let (A,p) be a complete DVR with K = Frac A and k := A/p. Every finite unramified extension L/K
of degree n yields a corresponding residue field extension ¢/k of degree n that is separable.

Finite unramified extensions L/K form a category Cjf"* whose morphisms are K-algebra homomorphisms.
Finite separable extensions ¢/k form a category C;”” whose morphisms are k-algebra homomorphisms.

Theorem 11.11
Let (A,p) be a complete DVR with K := Frac A and k := A/p. There is an equivalence of categories
F:Cj — C;°P sending each unramified extension L/K to its residue field ¢/k.

Each K-algebra homomorphism ¢: L; — Lo is sent to @: ¢1 — f5 defined in the obvious way: p(a) =
() where o € By is any lift of @ € /1 = B/q1 and ¢(«) is the reduction of p(a) € By to 2 = Ba/qa.

In particular if Ly, Lo have residue fields ¢1, £5, then we have a bijection of sets

HOmK(Ll, LQ) l) Homk(ﬁl, 52).

Proof (sketch). We can check that F' is well defined. We need to show that it is essentially surjective (every
separable ¢/k is isomorphic to the residue field of some L/K) and fully faithful (bijection of Hom sets).
For essentially surjective, ¢/k separable implies ¢ ~ k(a) = k[z]/(g(x)) for some g monic, separable, and
irreducible of degree n = [¢ : k]. We lift § to a monic, irreducible, separable g € Alx| of degree n. Let
L = K|[z]/(g9(z)) = K(a) where « is the image of z in K[z|/(g(x)). By the Dedekind—Kummer theorem,
(p,g()) = pAla] is the unique maximal ideal of A[a]. Then

B_ Al Al (A,

a  (pgla))  (pg)  (9(z))
L/K has degree [L: K| =degg=[{: k] =n, so L/K is an unramified extension of degree n = [¢ : k].

See notes for fully faithful. O
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Corollary 11.12

AKLB. Let A be a complete DVR with residue field k. Then L/K is unramified if and only if B = A[q]
for some « € L whose minimal polynomial g € A[x| has a separable reduction g € k[z].

Proof. The forward direction was proven in the above theorem. For the reverse direction, note that g must
be irreducible. Then ¢/k is separable and has the same degree as L/K, so L/K is unramified. O

Corollary 11.13

AKLB, A a complete DVR. Let ¢, be a primitive nth root of unity in K, with n coprime to char k.
Then K((,)/K is unramified.

K () is the splitting field of ™ — 1 € K|x|, which is separable because n is coprime to char k.

Corollary 11.14

AKLB, A a complete DVR. Now assume the residue field A/p = F, is finite. Suppose the degree of
L/K is n. Then L/K is unramified if and only if L ~ K((sn—1). When this holds, A[(;»_1] is the
integral closure of A in L, and L/K is Galois with Gal(L/K) ~ Z/nZ.

Definition 11.15 (maximal unramified extension). For L/K separable, the mazimal unramified extension
of K in L is the subfield
U ECL

KCECL
E/K fin. unram.

where the union is over finite unramified subextensions FE/K.

When L = K*°P| this is the mazimal unramified extension of K, denoted K"™.

12 Totally ramified extensions and Krasner’s lemma

12.1 Totally ramified extensions

AKLB. Suppose (4, p) is a complete DVR, so (B, q) is a complete DVR, and [L : K| = e,k f1,/x, where we
write ey g = eq and fr,x = fq. We can uniquely decompose L/K as L/E/K such that /K is unramified
(eE/K = ]., fE/K = fL/K) and L/E is totally ramified (eL/E = eL/Ka fL/E = 1)

Definition 12.1 (Eisenstein). Let (A, p) be a DVR. A monic polynomial
f(@)=2"+an_12" '+ + a1z + ap € Alz]
is Eisenstein if a; € p for 0 <i < n and ag ¢ p? (i.e. vy(ap) = 1 and ag is a uniformizer).

Lemma 12.2 (Eisenstein irreducibility)
If f € A[z] is Eisenstein, then f is irreducible in A[z] and K|x].
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Lemma 12.3

Let A be a DVR and f € A[z] be Eisenstein. Then B = A[rn] := A[z]/(f) is a DVR with uniformizer ,
where 7 is the image of x in A[x]/(f).

Theorem 12.4

AKLB. Let A be a complete DVR and 7 be a uniformizer for B. Then L/K is totally ramified if and
only if B = A[r] and the minimal polynomial of 7 is Eisenstein.

Proof. Let n = [L : K], p be the maximal ideal of A, and q be the maximal ideal of B. Let f € A[z]| be the
minimal polynomial of .

(<) If B = A[r] and f is Eisenstein, then pB = q" by local Dedekind—Kummer (Corollary 11.9). Therefore
vq extends v, with index eq = n, and L/K is totally ramified.

(=) Suppose L/K is totally ramified. Then vq extends v}, with index ey, /x = n, so v4(K) = nZ. The set
{70 7t ..., 7" 1} is linearly independent over K because the 7¢ have distinct valuations modulo ve(K) =
nZ, so L = K(r). Let f =3, a;x" € A[z] be the minimal polynomial of . From v4(a;n") =4 (mod n) for
all 0 <7 < n, we need

vg(ao) = vq(aom®) = v4(anm™) = n < vg(a;m) (0 <i < n)

to get vy(f(m)) = oo. Then vp(ag) = 1 (14 extends v, with index n) and vy(a;) > 1 for 0 < i < n, so f is
Eisenstein. By Lemma 12.3, A[r] C B is a DVR, but DVRs are maximal so A[r] = B. O

Example 12.5

For K = Qs, there are three distinct quadratic extensions: Q3(v/2), Q3(v/3), and Q3(v/6). The extension
Q3(v/2) = Q3(¢g) is the unique unramified quadratic extension of Q3. The other two are ramified and
equal Qs[x]/(2? — 3) and Qs[z]/(z? — 6), where x? — 3 and 2 — 6 are Eisenstein.

Definition 12.6 (tame, wild). AKLB, (A,p) complete DVR, separable residue field extension with
charA/p=p>0. L/K is

e tamely ramified if p { er/x (always true if p = 0). Note that unramified extensions (e;/x = 1)
are tamely ramified.

e wildly ramified if p | er k-
e totally tamely ramified if pter x = [L : K.
e totally wildly ramified if ey i = [L : K] is a power of p.

Since ramification indices multiply in towers, and separability is transitive in towers, we have the following.

Proposition 12.7

Being unramified, tamely ramified, wildly ramified, totally tamely ramified, or totally wildly ramified
are transitive in towers of fraction fields of complete DVRs with separable residue field extensions
(including all local fields).

Remark 12.8. A composite of totally ramified extensions need not be totally ramified. For example,
Q3(v/3,4/6) contains Q3(+/2) which is unramified and not totally ramified.
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Theorem 12.9
AKLB, (A4,p) complete DVR, separable residue field extension. Suppose char A/p = p > 0 does not

divide n = [L : K]. Then L/K is totally tamely ramified if and only if L = K (7r114/ ") for some uniformizer
w4 of A.

Proposition 12.10

Let A be a complete DVR and L be a totally ramified extension of K = Frac A. There is a unique
intermediate field £ such that E/K is totally tamely ramified and L/E is totally wildly ramified.

We can split up any L/K as L/Ey/E\/K where L/Ey is totally wildly ramified, Ey/E; is totally tamely
ramified, and E;/K is unramified.

12.2 Krasner's lemma

Let K be the fraction field of a complete DVR A, with absolute value |-|. Recall that we can uniquely
extend |-| to any finite extension L/K via |z| = ‘NL/K(x)‘l/[L:K] (Theorem 11.4). In particular, this
induces a unique absolute value on K which restricts to |-| on K.

Lemma 12.11
For all @ € K and o € Autg(K), we have |o(a)| = |a.

Proof. Note o and o(av) have the same minimal polynomial f € K[z] because f(o(«)) = o(f(a)) = 0. Then
Nk (o (@) = (=1)"f(0) = Ng(o(a))/k (0(@)), where n = [K(a) : K] = [K(0(e)) : K]. Then

1/n 1/n
lo(a)| = |Ng(o(a))/x (0(a))] m— N ()5 (@) "= al. O

Definition 12.12. For o, € K, we say 8 belongs to a if |3 —a| < |8 — o(a)| for all 0 € Autg(K)
with o(a) # a.

In other words, S is closer to a than a’s Galois conjugates. By the non-archimedean triangle inequality, this
is also equivalent to |5 — a| < |a — o(«)| (each triangle is isosceles and has a shortest side).

Lemma 12.13 (Krasner)
For a, 3 € K, if 3 belongs to « and « is separable over K, then K(a) C K(B).

Proof. Suppose not, so 3 belongs to abut v ¢ K (). Then K (v, 3)/K(B) is a nontrivial separable extension,
so there exists o € Autg(g)(K) such that o(a) # « (send « to a different root of the minimal polynomial of
a over K(f3)). By Lemma 12.11, we have |5 — a| = |o0(8 — a)| = |8 — o(«)| which  belonging to . O

Definition 12.14 (L'-norm). The L'-norm of f =", fiz' € K[z] is
111y =Y Ifil.-

||]]; is a norm on the K-vector space K|[z].
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Lemma 12.15

Let K be a field with absolute value |-, and let f =[], (x — o) € K[z] be monic with roots a; € L.
Extending |-| to L, then |a;| < || f]|; for all a;.

Theorem 12.16 (Continuity of roots)

Let K be the fraction field of a complete DVR and f € KJz| be monic, irreducible, and separable.
There exists 6 = §(f) € Ry such that for every monic g € K[z] with ||f — g||; < 0, every root § of g
belongs to a root « of f for which K () = K(«).

In particular, every such g is separable, irreducible, and has the same splitting field as f.

12.3 Local extensions come from global extensions

Let L be a local field, so it is a finite extension of K = Qp (p < 00) or Fy((t)) by Theorem 10.9. We also
know that the completion of a global field L at some nontrivial absolute value is a local field. Can we find
a global field L such that L is the completion of L? The answer is yes, and in fact there is a more general
statement.

Theorem 12.17

Let K be a g/l\obal field with a nontrivial absolute value |-| and completion K. Every finite separable
extension L/K is the completion of a finite separable extension L/ Ig\ Wit}\l respect to an absglute y\alue
extending |-|. Moreover, we can choose L such that [L : K] = [L : K], in which case L = K - L
(compositum).

Proof. If || is archimedean, then K =Ror C, and L is a trivial or quadratic extension. The only nontrivial
case is when K ~ R and L = K(v/d) ~ C for some d € Zy. Then we can take L := K(+/d) and define

Vi~

If |-| is non-archimedean, then the valuation ring of Kisa complete DVR, and || is induced by the discrete
valuation. By the primitive element theorem, L = K[z]/(f) for some monic irreducible separable f € K[x].
K is dense in K, so we can find a monic g € K[z] C K|z] such that llg— fll; < 6 for any 6 > 0. By
continuity of roots, L=K []/(g) and g is separable and irreducible.

Let L := K[z]/(g). Then [L: K] = degg = [L : K]. The field L contains K and L, and is the smallest field
that does by inspection, so it is the compositum K - L. The absolute value on L restricts to an absolute
value on L extending |-| on K. L is complete, so it contains the completion of L. On the other hand, the
completion of L contains L and K , o it must be L. O

Example 12.18

Let K =Q, K = Q7, and L = K[z]/(23 —2). L/K is Galois, since K contains (3 (we can lift the root 2
of af +x+1 € Fy[z] to a root of 22 + x + 1 € Qr[z] by Hensel’s lemma). Thus x3 — 2 splits completely
in L. However, L = K|[x]/(z® — 2) is not Galois because it does not contain (3.

However, if we replace K with Q((3), then L = K[z]/(23 — 2) is a Galois extension of K.
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Corollary 12.19

For every finite Galois extension E/ K of local fields, there exists a finite Galois extension L/K of global
fields and an absolute value || on L such that L, K are the completions of L, K with respect to ||, ||
restricted to K, and Gal(L/K) ~ Gal(L/K).

Theorem 12.20

AKLB. Let p be a prime of A with pB = qup q
and for each q | p let Ly be the completion of L with respect to || a Let p and q be the maximal ideals
of the valuation rings of K, and L, respectively.

1. Each L,/ K, is a finite separable extension with [Lq : K] < [L : K].

1. Let K, be the completion of K with respect to Hp,

2. Each q is the unique prime above p in Lq/K,.

3. Each q has ramification index eg = eq and residue field degree fz = fj.
4. [Lq: Kp] = eqfy.
5

. The map L ®x K, — []
K,-algebras.

6. If L/K is Galois, then each L,/K, is Galois with Dy ~ D = Gal(Lq/K}) and Ij ~ [;.

qlp L defined by £ ® z — ({,...,lx) is an isomorphism of finite étale

“If you want to know what is happening at p, take the completion.”

Proof. 1. The embedding of fields K < L induces K}, < Lq by sending [(x,,)] — [(x,)]; a sequence that is
Cauchy in K with respect to |-, is also Cauchy in L with respect to |-, because v extends 14,. Then K,
is a topological subfield of Lg, and we claim that [Lq : K] < [L : K] because any K-basis for L spans
L, as a Ky-vector space. Given a Cauchy sequence y := (yn) in L, write yp, = 1,01 + - + Ty nbm
where by, ...,by, is a K-basis for L and z; ; € K. Then letting x1 = (z1,),...,Zm = (Tmn), We can
write [y] = [z1]b1 + - - + [z ]bm as a Kp-linear combination of by, ..., by,.

Since L/K is separable, L is a finite étale K-algebra, and the base change L ® i K, is a finite étale K-
algebra by Proposition 5.33. Consider the Kj-algebra homomorphism ¢q: L&k K — Lq by {®@x +— L.
Since ¢q(b; ® 1) = b; and the b; span Lq as a Kp-vector space, ¢q is surjective. By Proposition 5.29,
L, is isomorphic to a subproduct and thus also a finite étale Ky-algebra. In particular, Lq/K, is
separable.

2. Since K, and L4 are fraction fields of complete DVRs, this follows from Theorem 10.18.
5. Let ¢ =[], #q: L ®K Ky — [y Lq send (( ® x) — (x, ..., ¢x). Then ¢ is a Ky-algebra homomor-
phism. By Proposition 5.33 and part 4,

dimg, (L @k Ky) =dimg L= [L: K] =Y eqfg=Y [Lq: K] = dimg, [ ] Lq. O
alp alp alp

Corollary 12.21
AKLB. For p a prime of A and a € L, we have

Np/k(a) = HNLq/K,, (@), Tr/k(a)= Z T, /K, (@)
qlp qlp
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Corollary 12.22
AKLB. Let ﬁp be the completion of A with respect to Hp and Eq be the completion of B with respect
to |-|,- Then B ®4 A\p =~ Hq|p Eq as Ep—algebras.

Remark 12.23. Localizing and completing is equivalent to completing (and localizing, although it’s not
needed). Both yield complete DVRs.

13 Different and discriminant

13.1 Different

Recall that an A-lattice M in a K-vector space has a dual lattice
M*:={z e L:Tp/g(xm) € A,¥Ym € M},

which is an A-lattice in L isomorphic to M := Hom (M, A). Under AKLB, M** = M.

In particular, every nonzero fractional ideal I of B is finitely generated as a B-module, and thus as an
A-module (B is finite over A). I spans L because B does, so it is an A-lattice in L.

Lemma 13.1
AKLB. If [ € Zg, then I* € Ip.

Proof. We previously showed that the dual lattice I* is a finitely generated A-module. To show that it is a
finitely generated B-module, we need to check that it is closed under multiplication by B. Let b € B and
x € I*. Then for all m € I, we have Ty k((bx)m) = Ty /k(x(bm)) € A since bm € I. This implies bz € I*,
so I* is a fractional ideal. O

Definition 13.2 (different). AKLB. The different Dy (or Dg,4) of L/K is the inverse of B* in Zp.

Explicitly, B* == {z € L : Ty (xb) € A,Vb € B}, and the inverse is
Dy =Dpja =B+ B*={zxeL:xB"CB}.

We know B C B* by Proposition 6.25, so the different Dg,4 = (B*)~! € B~! = B is in fact a B-ideal.

Proposition 13.3
AKLB. The different is compatible with localization and completion:

1. S7'Dg/4 = Dg-1p/s-14 for any multiplicative subset S of A.

2. For any q | p, D :DB/AB\q.

By/A,

Definition 13.4 (discriminant). Let S/R be a ring extension with S a free R-module of rank n. For any
Z1,...,Tn €9, define the discriminant

disc(w1, ..., oy) = discg/r(T1,- - ., Tn) = det[Tg/r(w:x;)]i; € R.
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In the AKLB setup, we consider a K-basis eq,...,e, € B for L for which

disc(e, ..., en) = det[TL/K(eiej)]ij €A

Proposition 13.5

Let L/K be finite separable of degree n and €2/K be an extension with o1,...,0, € Homg (L, )
distinct. For any eq,...,e, € L,

disc(ey,...,en) = det[ai(ej)]fj.

Also for any x € L,

disc(1,2,2%,...,2" ") = [ (0s(2) — o(2))*.

Proof. We have T,k (eie;) = > 1_; ox(eie;) by Theorem 6.4. Then

disc(el, ey en) = det[TL/K(eiej)]ij
= det([o(ei)lir[or(€))]k;)
= det|oi(e;)]F,
because the determinant is multiplicative and does not change under transposes.
The second statement then follows from the Vandermonde determinant:

disc(1,z,2%,..., 2" 1) = det[ai(xj_l)]?j = det[ai(:ﬂ)j_l]?j = H(JZ(:L') —oj(z))? O
1<j

Definition 13.6 (discriminant). The discriminant of f(x) = [[,(z — o) is

disc(f) = H(ai — ;).

1<j
Equivalently, if A is a DD, f € A[z] is monic separable, and « is the image of x in A[z]/(f(x)), then

disc(f) = disc(1, a,a?,...,a" 1) € A.

Example 13.7
disc(2? + bz + ¢) = b? — 4c and disc(z3 + ax + b) = —4a® — 2702

AKLB. Let M be an A-lattice in L, so M is a finitely generated A-module which contains a K-basis for L.
We want to define the discriminant of M without needing to choose a basis.

First suppose M is a free A-module. Let e := (e1,...,e,) and €' := (€],...,¢€}) be two A-bases for M. We

claim that

disc(ey, ..., el) = u?disc(ei, . .., en)
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for a unit u € A*. Letting P € A™*" be the change of basis matrix so that ¢’ = eP, then

disc(e') = det[Tyx (e;e})]ij
= det[Ty,k((eP)i(eP);)];;
= det[PT[TL/K(eiej)]ijP]
= det P disc(e) det P

= u? disc(e).
where u = det P is a unit because P is invertible.

Definition 13.8 (discriminant). AKLB. Let M be an A-lattice in L and n = [L : K|. The discriminant
D(M) is the A-module generated by {disc(z1,...,2,) : z; € M}.

Lemma 13.9
AKLB. If M’ C M are both free A-lattices in L, then the discriminants D(M') C D(M) are nonzero
principal fractional ideals.

If D(M’) = D(M), then M’ = M.

Proof. Let e = (ey,...,e,) be an A-basis for M, so disc(e) € D(M). For any row vector x = (z1,...,Zy)
with entries in M, there exists a matrix P € A™ " such that x = eP and disc(z) = (det P)?disc(e). Then

D(M) = (disc(e))

is a principal fractional A-ideal. It is nonzero because e is a basis and the trace pairing is nondegenerate.
Similarly, D(M') = (disc(¢’)) if €’ is an A-basis for M’. The assumption M’ C M means that ¢/ = eP for
some matrix P € A"*". Then disc(e') = (det P)? disc(e) and D(M') C D(M).

If D(M') = D(M), then det P must be a unit. In particular, P is invertible and e = ¢/ P!, which implies
M C M and M' = M. d

Proposition 13.10
AKLB. For any A-lattice M in L, D(M) € Z4.

Proof. The A-module D(M) C K is nonzero because M contains a K-basis e for L, and disc(e) # 0 because
the trace pairing is nondegenerate. Let N be the free A-lattice in L generated by the K-basis e. Pick
a nonzero a € A such that M C a~'N; such an a exists because we can write each A-module generator
for M in terms of the K-basis e, and let a be the product of all denominators. Then D(M) C D(a"!N),
and D(a"!'N) is a principal fractional ideal in Z4, hence a Noetherian A-module (by A Noetherian). Its
submodule D(M) is Noetherian, hence finitely generated. O

Definition 13.11 (discriminant). AKLB. The discriminant Dy i of L/K (or Dy/p of B/A) is the
discriminant of B as an A-lattice in L:

DL/K = DB/A = D(B) S IA.

The discriminant Dy g is an A-ideal, since disc(21, ..., z,) = det[Tg a(xiz))]i; € A for all zy,..., 2, € B.

Like the different, the discriminant is compatible with localization and completion.
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Example 13.12
Let A=7,K =Q,L = Q(i), B=Z[i]. Then B is a free A-module with basis (1,7), and we compute
Dy, Kk in three ways.

. Trk(1-1) Trg(l-9)| _ 2 0| _
e disc(1l,i) = det Torl-1) Toml-i) = det 0 —a| = 4.

e The nontrivial automorphism of L/K sends i — —i, so disc(1,i) = (det [1 21] )2 = (—2i)2 =
—4.
e B =Z[i] = Z[x]/(2® + 1), and disc(z? + 1) = —4.
In all cases, Dy, is the ideal (—4) = (4).

Theorem 13.13
AKLB. Dp/s = NB/A(DB/A).

Proof. Because D and N are compatible with localization, it suffices to consider the case where A is a DVR,
so B is a free A-lattice in L. Let (eq,...,e,) be an A-basis for B. The dual A-lattice

B*={x e L:Tp/k(zb) € A,Vbe B} €Ip

is also a free A-lattice in L, with basis (e7,...,e};) uniquely determined by Ty k(eje;) = d;. Writing
e; = Zaije;, we have

Tr/r(eiej) =Tk (Zaikezej) Zazk Tr/x(erej) Zazkékj = a;j.
K

Thus P = [T,k (eiej)]i; is the change of basis matrix from e* to e, i.e. e = e¢*P. Let ¢ be the K-linear
transformation defined by P, so ¢ is an isomorphism of free A-modules and

Dpa = (det[Tr k(eie;)]ij) = (det ¢) = [B" : Bla.
Then by Corollary 7.8,
Dpja=[B*: Bla=Ng/a(B+B*) =Np/a((B*)™") = Ng,a(Dp/4). 0

The module index was defined in Definition 7.1 such that this theorem holds.

13.2 Ramification

AKLB. Let pB =qf' ---q¢", so B/pB ~ B/q{" x --- x B/q¢". This is an A/p-algebra of dimension ), e; f;
where f; = [B/q; : A/p]. It is a product of fields when all e; = 1, and it is an étale A/p-algebra if also all
residue field extensions are separable (always in our setting).

Lemma 13.14

Let &k be a field and R be a commutative k-algebra with k-basis r1,...,r,. Then R is an étale k-algebra
if and only if disc(ry,...,m,) # 0.

Proof (sketch). By Theorem 6.27, R is an étale k-algebra if and only the trace pairing is perfect. Since k is
a field, this is equivalent to the trace pairing being nondegenerate. O
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Theorem 13.15

AKLB. Suppose q is a prime of B lying above the prime p of A such that B/q a separable extension
of A/p. Then L/K is

e unramified at q if and only if q 1 Dp) 4,
e unramified at p if and only if p Dp/ 4.

Proof. The different Dp, 4 is compatible with completion, so WLOG A and B are complete DVRs. Then
[L : K] = eqfq and pB = g%. B is a DVR with maximal ideal q, so Dg/4 = q" for some m > 0. By
Theorem 13.13,

Dp/a=Np/a(Dpja) = Npjalq™) = pl™,

s0 q | Dpya if and only if p | Dp/4. Since A is a PID, B is a free A-module, and we can choose an A-basis
el,..., e, for B, which is also a K-basis for L. Let k = A/p, and let €y,...,&, be the reductions mod p to
the k-algebra B/pB. Then (ej,...,€,) is a k-basis for B/pB: it spans, and

B/pB : K] = [B/a% : Afp] = eqfy = [L: K] = n.

Since B has an A-module basis, its discriminant is
Dpa = (disc(eq, . .-, en)).

Then p | Dp, 4 if and only if disc(e, . .., en) € p, or disc(ey, ..., e,) = 0. By Lemma 13.14, disc(ey, . .., €,) =
0 if and only if B/pB is not an étale k-algebra, which is if and only if p is ramified. There is only one prime
q above p, so this is if and only if q is ramified. O

Corollary 13.16
AKLB. Only finitely many primes are ramified.

14 Global fields and the product formula

14.1 Places of a field

Definition 14.1 (place). A place v of a field K is an equivalence class of nontrivial absolute values.
Places are in one-to-one correspondence with completions.

Let Mg denote the set of places of K. Let K, denote the completion of K at a place represented by |-|,. A
place v is (non-)archimedean if and only if K, is.

For a global field K, the completion K, is a local field by Corollary 10.7. From the classification of local
fields in Theorem 10.9, we have K, ~ R or C (if K, is archimedean), or the absolute value of K, is induced
by a discrete valuation.

o If K, ~ R, then v is a real place.
o If K, ~ C, then v is a complex place.

e If |-|, is induced by a discrete valuation v}, corresponding to a prime ideal p of the valuation ring of
K, then v is a finite place. Otherwise, v is an infinite place.
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Example 14.2

Every finite place is non-archimedean. Infinite places are archimedean if char K = 0, and non-
archimedean if char K > 0. Every archimdean place is an infinite place, but non-archimedean places
may be finite or infinite (if char K > 0).

In our case (finite extension of a global field), there are finitely many infinite places.

Example 14.3

Mg consists of finite places p corresponding to p-adic absolute values || i and one archimedean infinite
place oo corresponding to the Euclidean absolute value |-| .

M, (1) consists of finite places corresponding to irreducible polynomials in F, [t], and one archimedean

infinite place oo corresponding to |-, = qdes(),

Definition 14.4 (extends). If L/K is an extension of global fields, a place ||, of L restricts to a place
||, of K. We write w | v and say that w extends v, or w lies above v.

Theorem 14.5

Let L/K be a finite separable extension of global fields and v be a place of K. There is an isomorphism
of finite étale K, -algebras

Lok K, =[] Lw

wlv

defined by ¢ ® x — (lx, ..., {x).
We already proved this for finite places v in Theorem 12.20.

Corollary 14.6
Same hypotheses as above. Suppose f € K[x] is monic irreducible such that L ~ K[z|/(f). Then there
is a bijection

{irreducible factors of f in K, [z|} +— {places w | v of L}.

If f=/fi--fr € K,Jz] (note f; distinct because f separable), we can order {w | v} = {w1,...,w,}
such that L, ~ K, [z]/(f;) for 1 <i <.

Suppose 7L/ K is a finite separable extension of global fields, and v is a place of K. Consider the algebraic
closure K, of K,, and consider Homg (L, K,,). There is a group action with ¢ € Gal(K,/K,) acting on
7 € Homg (L, K,) by 0 o7 € Homg (L, K,).

Corollary 14.7

There is a bijection
Homg (L, K,)/Gal(K,/K,) «+— {w | v}.

For K = Q and v = oo, we get a bijection between Homg(L,C)/Gal(C/R) and the infinite places of L.
Gal(C/R) ~ Cy generated by complex conjugation, so the orbits of Homg(L, C) have size 1 or 2. Orbits of
size 1 correspond to real places, and orbits of size 2 correspond to complex places.
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Definition 14.8 (real, complex embedding). Let L be a number field. Elements of Homg(L,R) are real
embeddings. Elements of Homg(L, C) that are not real embeddings are complex embeddings.

Corollary 14.9
Let L be a number field with r real places and s complex places. Then [L : Q] = r + 2s.

Example 14.10

Let K = Q[z]/(z® — 2). There are three embeddings K < C, namely z — v/2, z — €2™/3/2, and
z — e™/3/2. The first embedding is real, while the last two are complex embeddings in the same
complex place.

Proposition 14.11
Let K be a number field with s complex places. The absolute discriminant D € Z has sign (—1)*.

Proof. Let az,...,ay be a Z-basis for Ok, and let Homg(K,C) = {01, ...,0,}. Then Dy = (det A)? where
A = [0i(e)]i; and det A = z + iy € C. Each real embedding o; corresponds to a row of A fixed by complex
conjugation, while each pair of complex conjugate embeddings corresponds to two rows of A interchanged
by complex conjugation. Thus det A = (—1)*det A = (—1)%(z —iy). If (=1)* = 1 then y = 0 and Dy = 2>
has sign 1. If (=1)* = —1 then # = 0 and D = —y? has sign —1. O

14.2 Haar measures

Definition 14.12 (o-algebra). Let X be a locally compact Hausdorff space. The o-algebra ¥ of X is
the collection of subsets of X generated by all of the open and closed sets under countable unions,
intersections, and complements. Elements of 3 are measurable (Borel) sets.

Definition 14.13 (Borel measure). A Borel measure on X is a countably additive function

M X — RZO U {OO}

Definition 14.14 (Radon measure). A Radon measure is a Borel measure for which
1. u(S) < o0 if S is compact.
2. w(S) =inf{u(U): S CU, U open}.
3. u(S) =sup{u(C):C C S, C compact}.

Definition 14.15 (locally compact). A locally compact group G is a topological group that is Hausdorff
and locally compact (each point has a compact neighborhood).

Definition 14.16 (Haar measure). A (left) Haar measure p on a locally compact group G is a nonzero
Radon measure that is translation invariant: p(S) = u(x + S) for all z € G and S C G measurable.

Compact groups are locally compact. In a compact group G, every measurable set has finite measure, so
we can say WLOG p(G) = 1.
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Theorem 14.17 (Weil)

Every locally compact group G has a Haar measure, and if g and p’ are two Haar measures on G, then
p' = A for some A € Ryg.

Proposition 14.18

Let K be a local field with discrete valuation v, residue field k, and absolute value |z|, = (#k) @),
Let p be a Haar measure on K (as an additive topological group). For all x € K and measurable
SCK,

pu(xS) = |z, n(S)-

Moreover, |-|, is the unique absolute value compatible with the topology of K for which this holds.

We know that p is invariant under addition, but this proposition states how it changes under multiplication.
The number |z|, is uniquely determined, because changing scaling the Haar measure p multiplies both sides
by the same constant.

Proof. Let A be the valuation ring {z € K : |z|, < 1} with maximal ideal p. The proposition is true for
x =0, so let x # 0. The map ¢,:y — zy is an automorphism of K, so p, = p o ¢, is another Haar
measure. By Weil’s theorem (Theorem 14.17), pu, = Azp for some A\, € Rsg. Define x: K* — Ry by
T Ay = pgp(A)/pu(A). Then pu, = x(z)u, and for all z,y € K*,

_ tay(A)  pa(yA)  x(@)py(A) _ x(@)x(y)u(A)

=T T ) T way O

so x is multiplicative.

We in fact claim that x(z) = ||, for all z € K*. Since x is multiplicative, it suffices to consider z € A\ {0}.
The ideal zA equals p”(®) since A is a DVR. The residue field k = A/p is finite, so A/z A is also finite, and
in fact a k-vector space of dimension v(z) and cardinality [A : zA] = (#k)”®). Then

wA) = [A: zAlu(zA) = (#k)"x(2)p(A),
so x(x) = (#k) 7@ = |z|,. Then pu(xS) = p:(S) = x(z)u(S) = |z|, u(S) for all z € K and S measurable.

For uniqueness, if |-| is another equivalent absolute value on K with |-| = |-| for some 0 < ¢ < 1, then
) ) e _ (e
p(A4) Y\ u(4)

implies ¢ = 1. O

14.3 Product formula for global fields

Definition 14.19 (normalized absolute value). Let K be a global field. The normalized absolute value
l|-]],: K = Rx is given by

Ial, = £

where 1 is any Haar measure on K, and S C K, is any measurable set with 0 < u(S) < co.

Note this definition is independent of p and S by the above proposition.
e If v is a non-archimedean place, then ||||, = (#k)~*().
e If v is a real place, then ||-||, is the Euclidean absolute value |-|p.

e If v is a complex place, then ||-||, = H(ZC
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Example 14.20

When v is a complex place, HHé, is not an absolute value. For example in Q(4), suppose v | oo is a
complex place. Then |[1]|, = [1|& = 1, but ||1 + 1|, = [2|& = 4 > 2, so the triangle inequality doesn’t
hold.

Lemma 14.21
Let L/K be a finite separable extension of global fields, v a place of K, and w | v a place of L. Then

1]l = [INz.,/x, @],

Theorem 14.22 (Product formula)
Let L be a global field. For all z € L*,

IT llell, =1

veMry,

Proof. Let K = Q or Fy(t), v | p. Let p be a place of K. Any basis for L as a K-vector space is also a basis

for L @ Kp ~ Hy|p L, as a K,-vector space, so

Npk (@) = Npar,)/x, (@) = [ [N/, (@).
Ip

Then
INLyx@)|], = TTIINz, s, @)1, =TT 12,

vlp vlp

Taking the product over all p € Mk and using the product formula for K (pset 1), we have

L="IT IINgx@I|, = TI TTlell, = IT llll,- -

pEM pEMEK v|p veMy,
Definition 14.23 (global field). A global field is a field K (with at least one place) whose completion at
each v € Mg is a local field, and
IT ll=ll, =1

veMg

where each ||-||,, satisfies ||-||, = |-|"* for some m, € Rxy.

15 Geometry of numbers

15.1 Lattices in real vector spaces
Recall that if V' is an R-vector space with dim V' = n, then V' ~ R" is a locally compact group.

Definition 15.1 (discrete, cocompact). A subgroup H of a topological group G is discrete if it has the
discrete topology (every point is open). H is cocompact if it is normal in G, and G/H is compact.
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Lemma 15.2

A subgroup G < V ~ R" is discrete if and only if it is generated by a finite R-linearly independent set,
in which case G ~ Z" for some m < n. G is cocompact if and only if m = n.

Definition 15.3 (lattice). A (full) lattice A in V ~ R™ is a Z-submodule generated by an R-basis, or
equivalently, a discrete cocompact subgroup.

We have A ~ 7" and V ~ R", so V/A ~ (R/Z)" is an n-torus.
Any basis v1,...,v, for V determines a fundamental parallelepiped
F(vi,...,vn) = {t1v1 + - +tavn 1 1 € [0,1)}.

Normalize the Haar measure on V such that pu(F(v1,...,v,)) = 1, s0 u(S) = ugn((S)) for p: V= R™ the
isomorphism sending F'(v1,...,v,) — [0,1]". For any other basis e1,...,e, of V, letting E = [e;;];; where
ej =Y, €V, then

w(F(e1,...,en)) = |det E| = Vdet ET det E = y/det[(e;, e;)]ij.

Proposition 15.4

Let T:V — V be a linear transformation, p be any Haar measure, and S be any measurable set. Then
H(T(S)) = [det T u(S).

IfA=eZ&- - -®eyZis a lattice, then V/A is a compact group that can be identified with the parallelepiped
F(ei,...,en) €V, which is a fundamental domain for A.

Definition 15.5 (fundamental domain). Let A be a lattice in V ~ R™. A fundamental domain for A is
a measurable set /7 C V such that V = | | o, (F + A).

In other words, F' is a measurable set of coset representatives for V/A.

Proposition 15.6

Every fundamental domain for A has the same Haar measure.

Proof. Let F, G be two fundamental domains for A. Using the translation invariance and countable additivity
of u, we have

u(F) = p(F 0 (G +N)

AEA
:M( |_|(Fﬂ(G+>\)>
AEA

=> wFN(G+N)
AEA

=Y ul(F-=X)NG)
AEA

=Y @GN (F+N)
AEA

= p(G).
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The second-to-last equality is because A is closed under negation. O

Definition 15.7 (covolume). Let A be a lattice in V' ~ R™ and p be a Haar measure. The covolume of
A is covol(A) :== u(F) € Ry for any fundamental domain F'.

Proposition 15.8
If A" C A are lattices in V ~ R", then the covol(A’) = [A : A’] covol(A).

Definition 15.9 (symmetric, convex). A subset S of V' ~ R" is symmetric if it is closed under negation,
and conver if {tx + (1 —t)y:t € [0,1]} C S for all z,y € S.

Theorem 15.10 (Minkowski's lattice point theorem)

Let A be a lattice in V ~ R™ and p be a Haar measure on V. If S C V is a symmetric, convex,

measurable subset of V', and
wu(S) > 2" covol(A),

then S contains a nonzero element A € A.

15.2 Canonical inner product

In the AKLB setup, we now take A = Z, K = Q, and L = K a number field. Suppose K/Q is a number
field of degree n with r real places and s complex places, so n = r + 2s. We consider the two base changes
Ky 2:K®QR2’RTX(CS

K¢ 2:K®Q(CZ(CTL.

We have a sequence of injective homomorphisms of topological rings
O Kk — K — Kp — K(C

where

o O — K is the inclusion.

o K — Kr = K ®q R is the canonical embedding a — o ® 1.

e KR ~R"xC* = C"xC*~KcisR< Chbyz+ z,and C — C x C by 2+ (2,%).
The composition K — Kg — K¢ is  + (o1(z),...,0n(x)) where Homg (K, C) = {o1,...,0,}.

Fixing a Z-basis for Ok, we may view the above injections are inclusions of topological groups (but not
topological rings)
7" — Q" — R" — C".

In particular, Ok is a lattice in Kg ~ R"™, which inherits a canonical inner product on K¢ ~ C" via
n
(2,2 = Zzﬁ; e C.
i=1
Then for all z,y € K,

(wy)= Y o@)aly).

o€Homg(K,C)
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Now write z € K¢ ~ C" as vectors (z,) induced by o € Homg(K,C). For real embeddings o = &, we have
25 € R while for complex embeddings o # &, we have (24, 25) = (25,%5) € C x C. Each z € Kg can be
uniquely written as

(Wi, ..., Wp, T + Y1, X1 — WY1, ..., Ts + 1Ys, Ts — 1Ys).

for w;, x;,y; € R. The canonical inner product on Kg can then be written as
T S
(z,2) =) wiwf +2) (x5 + yyy))
i=1 j=1

Taking w1, ..., wr, T1,Y1,...,Ts, Ys as coordinates for Kg ~ R"™, we normalize a Haar measure y on Kg to
be consistent with the Lebesgue measure prn on R” by defining

1(S) = 2°pgn (S)
for any measurable S C Ki ~ R".

For any R-basis ey, ..., e, of Kr, we still have u(F(e1,...,e,)) = \/|det[(e;, €;)]i;| using the Hermitian inner
product on Kr C K¢ ~ C™ (instead of the dot product on Kr ~ R™ as before).

15.3 Covolumes of fractional ideals

We now have fixed a normalized Haar measure 1 on K. Recall that the discriminant of a number field K
is
Dk = disc Ok = disc(ey, ..., e,) € Z

for any Z-basis eq,...,e, of Og.

Proposition 15.11

Let K be a number field and p be the normalized Haar measure on Kg. Then

covol(Ok) = /|Dk|.

Proof. Let ey, ..., e, be a Z-basis for Ok, and let Homg(K,C) = {o1,...,0,}. Let A = [o;(ej)];; € C™*7,
so Dy = disc(eq, ..., e,) = (det A)2. We have

covol(Ok) = pu(F(er,...,en)) = 1/ |det{ei, e)]il,

where det[(e;, e;)];; = det[>, ox(ei)or(ej)]i; = det(ATA) = (det A)(det A). (det A)? € Z, so covol(Ok)? =
|(det A)?| = | Dg|. O

Recall the absolute norm map on ideals N:Zp, — Iz sending I — [Ok : I]z with image in Q. When
I = (a) for a € K, we write N(a) = N((a)) = |NK/Q(a)‘.

Corollary 15.12
For all I € Zp,., covol(I) = N(I)+/|Dxk]-
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15.4 Minkowski bound

Theorem 15.13 (Minkowski bound)
Let K be a number field of degree n with r real places and s complex places (r + 2s = n). Define the

Minkowsk: constant |4
n! s
my = <%) V|Dkl-

nn
Then for all nonzero I € Zp,, there exists a nonzero a € I for which

N(a) < mg N(I).

Lemma 15.14
For t € Ry, the measure of S; :== {(25) € Kr: ), |20| <t} C Kg is u(St) = QTWS%.

Proof. Write (z5) = (w1, ..., wy, &1 +iy1, T1 — Y1, ..., Ts+1Ys, s —iys) for wy, x5, y; € R. Then Y _|z5| <t
if and only if
T S
D olwil +23 |+ gl < t. (15.1)
i=1 j=1

Up = {(u1,..-,un) € Ryt ug + - +up <t}

The volume of

is g (Uy) = L. Fixing all coordinates of (z,) except for (z,ys), then (z,ys) ranges over a disk of some

m.
radius d € [0, %] determined by (15.1). If we replace (s, ys) with (u,—1,u,) in the triangular region bounded
(24)2

by tp—1+u, < 2d and up—1,u, > 0, we need to incorporate a factor of 5 to account for the areas “5~ = 2d2

vs. md?. Repeat this s times for all (z,y;). Similarly if w, is replaced by u,, then w, € [—d,d] for some
t € [0,t], but u, € [0,d] is nonnegative, so we need a factor of 2. Repeat this r times for all w;. The upshot

is that

n

s t
p(S) = 2z (5) = 2'(5 ) 2 e (U) = 2w .

Proof of Theorem 15.13. For I € Zp,, choose t such that 1(S;) > 2™ covol(I) so that S; contains a nonzero
a € I by Minkowski’s lattice point theorem (Theorem 15.10). By the above lemma, it suffices for ¢ to satisfy

(E)n _ n! (1(St) > nl2" covol(I) = E(%)r | D |N(I) = mp N(I).

n nn2T s nn"2rTs nm

Pick t such that (£)" > mg N(I), then S; contains a nonzero a € I with Y- |o(a)| < t. By AM-GM,
n 1 n t\”m
N@) = ([Tl )" < (5 X 1et)" < (3)
@=(e@r")" = (3 Xlet))" <

Take the limit as (£)® — mx N(I) from above yields N(a) < mygN(I). O

15.5 Finiteness of the class group

Theorem 15.15

Let K be a number field. Then every ideal class in cl O contains some ideal I C O with absolute
norm N(I) < mg.
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Proof. Let [J] € c1Ok. By the Minkowski bound (Theorem 15.13), there exists a nonzero a € J~! such
that N(a) < mxg N(J™1) = mxg N(J)7}, so N(aJ) = N(a)N(J) < mg. Sincea € J°%, aJ C J71J = Ok
and I = aJ is an Og-ideal in [J] with N(J) < mg-. O

Lemma 15.16

Let K be a number field of degree n. The number of Ok-ideals of norm N(I) < M for any M € Ry is
at most (nM)°82M (in particular, it is finite).

Proof. Suppose N(I) < M, and factor I = p;---pg into (not necessarily distinct) prime ideals. Since
N(p;) > 2, k = logy M. There are at most M primes p < M, and at most n primes p of Ox with p | p, so
there are at most (n.M)1°82M Op-ideals T with N(I) < M. O

Corollary 15.17
The class group cl Ok is finite.

Proof. Combine the bound N(I) < mg from Theorem 15.15 with Lemma 15.16. O

This is also true for global function fields (see pset 8).

Corollary 15.18
Let K be a number field of degree n with s complex places. Then

n

D2 () (5)" > = ()
K=\ 4 e2n\ 4 / °

Corollary 15.19

If K # Q is a number field, then |Dg| > 1; i.e. there are no nontrivial unramified extensions of Q.

Theorem 15.20
For every real number M > 0, the set of number fields with discriminant |Dy| < M is finite.

Theorem 15.21 (Hermite)

Let S be a finite set of places of Q. The number of extensions K/Q of a fixed degree n that are
unramified outside S is finite.

16 Dirichlet’s unit theorem

Let K be a number field. Last time we proved that cl O is finite. Today we will prove that O is finitely
generated.
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16.1 Arakelov divisors

Let My denote the set of places of K. Given a place v € Mg, let K, be the completion with respect to

]|, : K = R>o where ||z]|, = ‘L((JESS)) for a Haar measure ;o and a measurable set S. Recall that

2|, = (#k)7*®) if v archimedean
z]l, = 1 |z|g if v real

| ](QC if v complex

Definition 16.1 (Arakelov divisor). An Arakelov divisor is a sequence of positive real numbers (c,)
indexed by v € Mg with ¢, = 1 for all but finitely many v.

Arakelov divisors form an abelian group called Div K under pointwise multiplication: (c,)(d,) = (cvdy).
The multiplicative group K* is embedded in Div K via x — (||x||,), which is a subgroup Prin K of principal
Arakelov divisors.

Definition 16.2 (size). The size of ¢ € Div K is ||c[| =[], ¢/, € € Ro.

The map Div K — Ry given by ¢ — ||c|| is a group homomorphism with Prin K in the kernel by the
product formula (Theorem 14.22).

Corresponding to each ¢ € Div K is a subset L(c) of K defined by
L(c) ={x € K :||z||, < c,,Vv € Mg}

and a fractional ideal I. € Zp,. defined by

1. = H q,’j(c)

v|oo

where q, = {a € Ok : v(a) > 0} and v(c) = —logyy, (cy) € Z. There is another group homomorphism
Div K — Zp,. given by ¢ — I.. Note that L(c) C I..

Remark 16.3. The Arakelov class group is Pic’ K = Div? K/Prin K, where Div® K = {c: ||¢|| = 1}.

Div K — To,

| |

PicK —— clOg

We have
N = [N = []#k)" = [T !
vtoo vioo vfoo

SO

el =N(L) ™ [T e
v|oo

We also define
R, :={ce Kg:||z||, < ¢,V | o0}

This set is compact, convex, and symmetric in Kg := K ®gp R ~ R" x C*, where r, s are the number of real
and complex places. There is a natural inclusion K — Kgr by = +— x ® 1. Viewing I. and L(c) as subsets
of Kg, we have

L(c)=1.NR,.
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Example 16.4

Let K = Q(i) and I. = (2 + i) which corresponds to a place v;. Let vo | oo be the unique complex
conjugate. Let c,, = %, ¢y, = 10, and ¢, = 1 for all v # 1, v5. Then L(c) = {z € (2+1) : ||=l],, < 10},
where ||z[|,, < 10 is a circle of radius v/10. In this case, #L(c) = 9.

.................... o.
® L
® m ®
& -
® ®
®
U0t

Lemma 16.5
L(c) is finite.

Corollary 16.6
Let K be a global field and pux be the torsion subgroup of K*. Then pug is finite and equal to the
kernel of the map K* — Div K given by = — (||z]|,). It is also the torsion subgroup of Oj;.

As a result, for all global fields K we have an exact sequence of abelian groups

1—pug — K* —-DivK — PicK — 1.

Proposition 16.7

Let K be a number field with s complex places, and define Br = (2)*\/|Dg|. If ¢ € DivK with
llc|| > Bi, then L(c) contains an element of K*.

Proof. We apply the Minkowski lattice point theorem (Theorem 15.10) to R, and the lattice I. C K C Kp.
We need to show that ||c|| > Bg implies p(R.) > 2" covol(l.) where n = [K : Q).

For each real place v, the constraint ||z||, = |z|g < ¢, contributes a factor of 2¢,, while for a complex place
v, the constraint ||z||,, = |z|c < ¢, contributes a factor of mw¢,. Then

M(RC) _ QSMR" (Rc) . 2S(HV real 2CV)(HV complex WCV) o 2T(27T)S Hl/loo Cv B 2T(27T)S ”C” . M2” 0
covol(I.)  covol(I.) covol(I,.) |Dr| N(I.) V|Dk| Bk~
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16.2 Unit group of a number field

We have an isomorphism of topological groups

K~ ~ [ R [] C©*=®9)" x(C*)".

v|oo v real v complex
Write elements of Ky as vectors = (z,,). Define
Log: Kz = R"™™,  (z,) = (log||zy][,)

which is surjective, continuous, and a group homomorphism.

Recall that infinite places are in bijection with Gal(C/R)-orbits of Homg(K,C). For each v | oo, pick
0, € Homg (K, C) in the corresponding orbit. Then

]|, = {|a,,(x)\R if v real

|0y (2)7, ()| if v complex
The absolute norm N: K* — Qs extends to a continuous homomorphism of locally compact groups

N: Kﬁ — R>0, ('IV) — H H‘TVHV

v|oco

It is compatible with the canonical embedding K* < K because for all z € K*,

[[o@| =11l

N(z) = |[Ng/q(z)| =

R  v|oo
We thus have a commutative diagram
KX J7es Log R7+s
R
lN lN lT
log
Q% RZ, R

where T: R""* — R is defined by (z;) — Y x;. To summarize, T(Logx) = log N(z).

Since N(Oj;) is a unit in Z and has absolute value 1, O C ker(logoN), so O C ker(T oLog). Log(O%)
is a subgroup of the trace zero hyperplane

RIS = {z € R™ : T(z) = 0}.

Proposition 16.8
Let K be a number field with 7 real and s complex places. Let Ax == Log(O}) C Ry™. Then

1. We have a split exact sequence of finitely generated abelian groups
1—>MK—>OIX<£9g—>AK—>O.

2. Ak is a lattice in the trace zero hyperplane Rj".
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L
Proof. 1. To show exactness, let Z = ker(Ox o8, Ak). We have pux C Z since Ag C R6+5 is torsion
free. Let ¢ € Div K satisfy I. = Ok and ¢, = 2 for v | o0, so

L(c) ={z € Ok : ||z||, <2,Vv | oo}

For z € O}, we have
r € L(c) <= Log(r) € {z € R""*: 2, < log2}.

Note that 0 is in the set on the RHS, so Z C L(c). L(c) is finite by Lemma 16.5, so Z is finite. Any
finite subgroup Z C Ok is in the torsion subgroup, so Z C ux.

To show that the short exact sequence splits, we first note Ax N Log(R.) = Log(Oj N L(c)) is finite
because L(c) is finite. Therefore 0 is an isolated point of A in R""* and in R*®, so Ag is a discrete
subgroup of R ™, hence finitely generated (Lemma 15.2). This implies Oj; is also finitely generated, as
the other terms ux and Ag in the exact sequence are. By the structure theorem for finitely generated
abelian groups, the sequence splits as O} ~ ug X Ag, since pi is the torsion subgroup.

2. Let V be the subspace of Rj*® spanned by Ag. FSOC suppose dim V' < dim RS*S =r+s—1. Then
the orthogonal subspace V= contains a unit vector u, and for all A € R+, the ball B. A(Au) does not
intersect Ax. It would suffice to show that there exists some M € R such that for all h € RS“,
there exists some point ¢ € Ax such that ||h — ¢|| .= max; |h; — ¢;| < M. Fix a constant B > By
(from Proposition 16.7). Then for all ¢ € Div K with ||c|| > B, L(c) contains a nonzero element. Fix
b € R with b; > 0 such that T(b) = >_,b; = log B. Let (a1),...,(aum) be all nonzero principal
ideals with N(«;) < B (it is a finite list by Lemma 15.16).

Let M = 2max{(r + s)B,max; ||Log(a;)||}. For h € Ry*®, define ¢ € DivK by I. = Ok and
¢, = exp(hy + b,) for v | co. Then from T(h) =0,

el = [ e = exp (Z(hy + bl,)> = exp T(h +b) = exp(T(h) + T(b)) = expT(b) = B > Bx.

Thus L(c) contains a nonzero v € I. N K = Ok, and g = Logy satisfies g, < logc, = h, + b,. Also
T(g) = T(Log~y) = logN(vy) > 0 since N(v) > 1 for all nonzero v € Ok. Let w:=g—h € R so

> wy, = T(w) =T(g) - T(h) = T(g) >0

and w, < b, <log B. Then ||w|| < (r+s)B so ||g — h|| = ||Jw|| < % Also
log N(y) = T(Log~y) < T(h+b) =T(b) =log B

so N(y) < B and (y) = (¢;) for some j. Thus alj € Op and (= Log(alj) = Log(y) — Log(a;) € Ax
satisfies ||g — ¢|| = ||Log(cy)|| < ¥ by the definition of M, so by the triangle inequality ||h — || <
1h = gll +lg = €]l < M. 0

Theorem 16.9 (Dirichlet)

Let K be a number field with r real and s complex places. Then Q% ~ px x Z"+571 is finitely generated.

16.3 Regulator of a number field
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Definition 16.10 (regulator). The regulator of K is
R = covol(m(Log(Oj))) € Rxg
where 7: R"T% — R™+5~! i a coordinate projection.

We can compute this explicitly. If €1,..., €451 is a basis for the free part of O}, then Rk is the absolute
value of the determinant of any (r+s—1) x (r+s— 1) minor in the (r + s) X (r + s) matrix with columns
as Log(€;).

17 Riemann zeta function and prime number theorem

17.1 Riemann zeta function

Definition 17.1 (Riemann zeta function). ((s) == 2, n~".

It is a complex function defined for for Re(s) > 1 (note it converges absolutely on Re(s) > 1).

Theorem 17.2 (Euler product)
For Re(s) > 1, we have

()= _n*=JJa-p )"

n>1 P

where the product converges absolutely. In particular, ((s) # 0 on Re(s) > 1.

Proof. We have

Zn—s _ Z Hp—up(n)s _ H Zp—es _ H(l _ p—s)—l‘

n>1 n>1 p p e>0
To justify the second equality, consider the partial zeta function
()= > n=> i -p) =] D =[[a-p*"
neSm e;>0 1<i<k e; >0 p<m

where S;,, ={n € Z>1 :p|n = p < m} (i.e. no prime factors p > m). Fixing 6 > 0, the sequence of
functions (,,(s) converges uniformly on Re(s) > 1+ §: for all € > 9, we have

> o

n>m

oo

< Z ‘n_$| = Z n~ Re(s) §/ 10y < %m_‘; <e€

n>m n>m m

[Gm(s) = C(s)] <

for all sufficiently large m.

Thus the (n(s) converge locally uniformly to ((s) on Re(s) > 1. Also the functions [[,,,(1 — p=%)~1

converge locally uniformly to [[,(1 — p~%)~! whenever [L,(1- p~%)~1 is (absolutely) convergent. For any s
with Re(s) > 1,

D og(1—p )7 =D ép‘es <Y DY P =D - 1) < oo,
p p |ex>1 p e>1 P

where the first equality is by log(1 —2) = —>_, 5, L2m for |z| < 1. Therefore [, - p~%)~1 is absolutely
convergent on Re(s) > 1. O
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Theorem 17.3 (Analytic continuation I)

For Re(s) > 1, we have
1
((s) =~ + 8(6)
for ¢(s) holomorphic on Re(s) > 0. Thus ((s) extends to a meromorphic function on Re(s) > 0, with
a simple pole at s = 1 with residue 1, and no other poles on Re(s) > 0.

Proof. For Re(s) > 1, we have

C(s)—8i1:Zns—/ de_Z/ ~) d.

n>1 1 n>1

For each n € Z>1, define ¢, (s) := f:“(n*s —
with Re(s) > 0 and = € [n,n + 1],

[ ) [ A K L B L
. 8 =/, |ts+1| - . t14+Re(s) — pl+Re(s)”

e 5]
|¢n(8)lé/n - }dﬂfﬁm'

Now for any so with Re(sg) > 0, let € := Re(sg)/2 and U := B¢(sg) so for each n > 1,

2~ %) dz which is holomorphic on Re(s) > 0. For each fixed s

|n_S — x_s‘ =

Therefore

’80‘ + € .
31615!%(8)\3 e = Ma.

Since >, 51 My = ([so| + €)¢(1 + €) converges, >, -, ¢, converges locally normally on Re(s) > 0. By the
Weierstrass M-test, ), <, ¢n converges to ¢(s) = ((s) — —L- and it is holomorphic on Re(s) > 0. O

s

We next show there are no zeros on the line Re(s) = 1 (much weaker than the Riemann hypothesis, but
needed for the prime number theorem).

Lemma 17.4 (Mertens)
For z,y € R with > 1, we have |((z)*¢(x + iy)*¢(z + 2iy)| > 1.

Proof. We have

log [((s) Zlog‘l—
= —ZRelog 1—p7%)

p n>1

using that log|z| = Relog z and log(1 — z) = — Zn>1 —. Plug in s = x + 1y to get

coS nylogp
log |¢(z + iy)| —ZZ

p n>1
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since Re(p™") = p~"* Re(e ™™ 18P) = p"% cos(—nylogp) = p~"* cos(nylogp). Then
3 4 4 cos(nylog p) + cos(2ny log p
log [¢(2)*¢(x + iy) ¢z +2iy)| = SN n)m ( )
p n>1 p
>0

by the double angle identity cos(20) = 2cos?§—1 = 3+4cosf+cos 20 = 2(1+cosd)? > 0. Exponentiating
yields |C V3¢ (z + iy) C(x+2iy)‘ > 1. O

Corollary 17.5
((s) has no zeros on Re(s) > 1.

Proof. By the Euler product (Theorem 17.2), we already know that there are no zeros on Re(s) > 1. Now
suppose (1 +iy) = 0 for some y € R. We know y # 0, since there is a pole at s = 1, so there is no pole at
1+ 2¢y. Then

lim }C Clx +iy)t(z + 2zy)’ =0.

z—1t

because at z = 1, () has a pole of order 3, {(z + iy)* has a zero of order 4, and ¢(z + 2iy) has no pole.
However, this contradicts Lemma 17.4. O

17.2 Prime theorem theorem
Definition 17.6 (prime counting function). (z) = >_ ., 1.

m: R — Z>( counts the number of primes up to =.

The prime number theorem (PNT) says that
T

m(x) ~

logx’

(@18 _ 1 A more precise statement is that

Todt
~ Li = —
7(x) i(s) , Togt

which means lim;_,~

(logarithmic integral).
Definition 17.7 (log-weighted prime counting function). ¥(z) = > ., logp

Y(z) should be asymptotic to x.

Theorem 17.8 (Chebyshev)
m(x) ~ g5 if and only if ¥(z) ~ x

Proof. Since 0 < 9(x) < m(x)logz, we have @ < %. For e € (0,1),

d(z) > Y logp

> (1 e)(log ) (n(z) — w(z )
> (1 ¢)(log ) (n(z) — 2"
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Y(x) < 7(x)logx < 1 9(x) n logx’
T T T 1l—€ =z €
where 262 4 0 as 2 — 0o. We can make € — 0. O

xT

The goal now is to show that ¥(z) ~ z. It’s easy to show combinatorially that J(x) = O(x), and even that
Y(x) < (4log2)x, but we need to replace the constant by 1 and show the lower bound.

Lemma 17.9

Let f:R>; — R be nondecreasing. If floo f(?g_t dt converges, then f(x) ~ x.

We want to apply the lemma to f = 1. Define
H(t) =9(e")e " — 1.

9(1)
+2

The change of variables ¢t — e implies floo —t dt converges if and only if fooo H(u) du converges.

Definition 17.10 (Laplace transform). For a piecewise continuous function h:R>g — R, the Laplace
transform Lh is the complex function

Lh(s) = /000 e St h(t) dt.

It is holomorphic on Re(s) > 0 for any ¢ € R for which h(t) = O(e®).
The Laplace transform satisfies

e L(g+h)=Lg+ Lh and L(ah) = aLh.

o If h(t) = a is constant, then Lh(s) = .

o L(e®n(t))(s) = L(h)(s —a) for all a € R.

Now define
D(s) == Zp_s log p.
p

Lemma 17.11
L(W(eh))(s) = @ is holomorphic on Re(s) > 1.

Proof. Since 9(e') = O(e'), we know L(¥(e!)) is holomorphic on Re(s) > 1. Let p, be the nth prime and
po =1, so ¥(e') is constant on t € (logpy,logp,+1) and

log pnt1 " ' log pn+1 . 1
[ e = o) [ et = o) - i)
log pn, log pn, s
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Then
00 1 o
(L) = [ e de = -3 0 0" = pit)
n=1
1 & .
= 2_(0(pn) = 9(pa-1))rn (9(po) = 0)
n=1
1 [e.@]
- =5 10g pp,
. ;pn ogp
_a(s) -
_
Now the Laplace transform of H(t) = J(et)e ! — 1 is
_ 1 o(s+1) 1
LH(s) = L0 )(s) — (E1)(s) = L@EN (s +1) -, = T =
on Re(s) > 0, where the last equality is by Lemma 17.11.
Lemma 17.12
®(s) — -2 extends to a meromorphic function on Re(s) > & and a holomorphic function on Re(s) > 1.

Proof. Recall from analytic continuation (Theorem 17.3) that ((s) extends to a meromorphic function on

Re(s) > 0 with only a simple pole at s = 1 and no zeros on Re(s) > 1. Thus % is meromorphic on

Re(s) > 0, with only a simple pole at s = 1 and residue —1. We have

¢'(s)

oy = s C(s))

= (~1e]J0 —p_s)_1>/
= (Zlog(l —p‘s))/
p
1o
SuE

logp
S __
p p 1

~\p° p(p° - 1)

lo

The RHS converges absolutely to a holomorphic function on Re(s) > %; the LHS is meromorphic on

Re(s) > 0, and on Re(s) > 1 it has a simple pole at s = 1 with residue 1. Then we have the desired for

O(s) — Sil. O
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Corollary 17.13

The functions ®(s + 1) — 2 and (LH)(s) = qbgfll) — s both extend to meromorphic functions on

Re(s) > —1% that are holomorphic on Re(s) > 0.

Proof. The function

o(s+1) 1 1 1 1
2t L L (g 1)
s+1 s s+1 ( (s+1) s s+1
is meromorphic on Re(s) > —3 and holomorphic on Re(s) > 0 because both summands are. O

Theorem 17.14 (Newman)
Let f:R>o — R be bounded and piecewise continuous. Suppose Lf extends to a holomorphic function
g(s) on Re(s) > 0. Then [ f(t)dt converges to and equals g(0).

Theorem 17.15 (Prime number theorem)

X

m(@) ~ logx’

Proof. H(t) :== 9(et)e™ — 1 is piecewise continuous and bounded by Chebyshev (Theorem 17.8), and LH
extends to a holomorphic function on Re(s) > 0 by Corollary 17.13. By Newman (Theorem 17.14),

/OOO H(t) dt = /Ooo(ﬁ(et)e_t Syt

converges. Replacing ¢t with logx shows that

/100 (ﬁ(m)é —1)%”3 :/1°°19(322_xdx

converges, which implies ¥(x) ~ x by Lemma 17.9.

Remark 17.16. The currently known bound 7(z) = Li(x) + O(exp((log 53/5+0(1))) is subexponential, so it
is better than any polynomial bound O(W) with n > 1. Assuming the Riemann hypothesis, which

states that all zeros of ((s) in 0 < Re(s) < 1 have real part 3, we get m(z) = Li(z) + O(z/2+o0),
More generally, if there are no zeros with real part greater than some ¢ > % (say ¢ = 0.999), then

7(z) = Li(z) + O(z¢t°M) which would beat the current record which has held for 504 years.

18 The functional equation

Recall that last time we proved that ((s) extends to a meromorphic function on Re(s) > 0. It only has a
simple pole at s = 1 and no zeros on Re(s) > 1. Today we derive a functional equation between ((s) and

¢(1 — s) which extends ((s) to a meromorphic function on C.
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18.1 Fourier transform and Poisson summation

Definition 18.1 (Schwartz function). A Schwartz function on R is a complex-valued C*° function
f:R — C that decays rapidly to 0: for all m,n € Zx>,

sug ‘asz(")(az)‘ < 00.
e

The Schwartz space S(R) of all such functions is a (non-unital) C-algebra of infinite dimension.

Example 18.2

Examples of Schwartz functions include any compactly-supported C*°-function and the Gaussian g(x) =

2
—TTT
(& 0

0 0 _pr2 . 2
Nonexamples include polynomials, ﬁ, and e~ " sin(e”).

S(R) is closed under differentiation, multiplication by polynomials, and linear change of variables. It is also
invariant under convolution: if f,g € S(R), then f *x g € S(R), where

U*m@wzéf@mm—waﬁ

Definition 18.3 (Fourier transform). The Fourier transform of f € S(R) is

f(y) e / f(x)ef%rixy di’,
R
which is also a Schwartz function.

We can recover f from fby

f@) = [ Fwperay

R

The maps f — fand f'—) f are thus inverse linear operators on S(R). We also have
f*ngﬁa fg:f*/g\a

so the Fourier transform is an isomorphism of (non-unital) C-algebras (S(R), +, x) = (S(R), +, *).

Lemma 18.4
For all a € Ry and f € S(R), f(az)(y) = %A(%)
Proof. By the substitution ¢ = ax,
— . 1 4 1~
— —2mizy _ = —2rity/a _ = g
flaz)(y) /Rf(aa:)e dz . /Rf(t)e dt af<a>' O

Lemma 18.5
For all f € S(R), we have d%f(y) = —2mizf(z)(y) and %f(m)(y) = 2m’yf(y).
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The Fourier transform is compatible with the inner product (f,g) = [ f( g(z) dz on L?(R) in that

(f,g) = /f dx—//f 2mydxdy—/f dy = (F.5)

which is known as Parseval’s identity. The case of g = f is Plancherel’s identity:

If1l3 = (. f) = (F. /) = If]3

\_/

Theorem 18.6 (Poisson summation)
For all f € S(R),

S fn) =3 fn).

neZ neL

Proof. Because f € S(R), both sums are absolutely convergent. Let F(z) := ) ., f(x + n) which is a
periodic C*°-function, so it has a Fourier series expansion F(z) =) cne?™me The coefficients are

Cn:/ol F(t)e ™"t dt = /th—i—m Je 2Tt dt = /f Je~2mint dt = f(x).

meEZ

Y fn)=F0)=> ca=>_ fln). O

neL neZ nez

Then

Lemma 18.7

The Gaussian function g(z) = e~ ™"

satisfies g = g.

Proof. Note that g satisfies ¢’ 4+ 27xg = 0 with g(0) = 1. Multiplying by —i and taking the Fourier transform
yields R
0= —i(g +2729) = —i(2miyg +1ig') = § + 27yg,

where the second equality is by Lemma 18.5. Thus, g satisfies the same ODE and has the same initial value
3(0) :fRe*”Q dr = 1. O

2

Definition 18.8 (Jacobi theta function). ©(7) =3, ™" 7.

The sum is absolutely convergent on im7 > 0 and is periodic mod 2: ©(7 + 2) = O(7).

Lemma 18.9
For all a € Ry, we have O(ia) = 7@(1)

Proof. Let g(z) == e~™" and h(z) == g(y/az) = e~™* By Lemma 18.4 and the fact that § = g,

o) = o(var)w) = —=3( L) = Zza( ).

Now letting 7 = ia and using the Poisson summation (Theorem 18.6) so

=S e =3 hin) =Y h(n) Z\/< ) = \}6@@) 0

nez nez neL neL
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18.2 Gamma function and functional equation

Definition 18.10 (Mellin transform). The Mellin transform of f:R-og — C is

= /Oo fttdt
0

whenever the integral converges.

It is holomorphic on Re(s) € (a,b) wherever [ |f(¢)[t°~! dt converges for all o € (a,b).

Definition 18.11 (Gamma function). The Gamma function is

[(s) == M(e ")(s) = /00 et at.

0

The Gamma function is the Mellin transform of e~ and is holomorphic on Re(s) > 0.

I B r 1
+ / et dt = M
0 S Jo S

Integrating by parts,

There is a simple pole at s = 0 with residue 1, so
I(s+1) =sI(s)
for Re(s) > 0. In particular for all integers n > 0,

'n+1)=n!T'(1) =n!.

We can also extend I'(s) to a meromorphic function on C with simple poles at 0, —1, —2,. ..

Theorem 18.12 (Euler's reflection formula)
I(s)I(1—s) =

&n(ﬂs

Corollary 18.13

I'(s) has no zeros on C.

Example 18.14
Letting s = 3, we have I'(3) = /7.

Define
F(s) =7n"°T(s)((2s)

(and no others).

y are meromorphic functions with simple poles on Z and no others.

which is holomorphic on Re(s) > % In this region, we have an absolutely convergent sum

P(5) =7 °T(s) 30~ = Sy Tl = 3 [ty e

n>1 n>1 n>1

Substituting t = mn2y so dt = mn2dy,

Z/ mn?) "¢ (mnly)* e ™Y 2 dy—Z/ Sl_mydy

n>1 n>1
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By Fubini—Tonelli, we can swap the sum and integral:

F(s) = /0 y* 1 Z e ™Y dy.

n>1
Since O(iy) = > ,cz e =142 D>t e ™Y we have

F(s) =+ /0 Ty Oy) — 1) dy

1

= 2(/000 y*~1O(iy) dy — % + /IOO ¥ (Oliy) ~ 1) dy).

Substituting t = % into the first integral yields

~ 1 .
/0 Y 10(iy) dy — /OO o ()t
:/1 t—s—l@(%) dt
= /100 52 (0(it) — 1) dt + /loo 7573 dt
:/loot—s—é(@(it) Cydt—

5—8

For the third equality, we use ©(%) = v/1O(it).

All together,
1 1 1

)= [ @y hel) - vy - 5o - o

on Re(s) > 5. Note that F(s) = F(3 —s) for s # 0,3. F(s) was originally defined on Re(s) > 0, but we
can now extend it to a meromorphic function on C with poles at s = 0, %

Definition 18.15 (completed zeta function). Z(s) := n~%/2I'(5)((s).
Z(s) is meromorphic on C and satisfies Z(s) = Z(1 — s). It has simple poles at 0, 1 and no others. The

only zeros on Re(s) > 0 are the zeros of ((s), so all zeros lie in the critical strip 0 < Re(s) < 1.

We can use the functional equation to extend ((s) to a meromorphic function on all of C. Recall that ((s)
has a pole at s = 1 and zeros at —2, —4, —6, ... (called trivial zeros of ().
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Example 18.16
We compute ¢(0) with the functional equation. First,

We know that

1= lim (s=1)¢(s) = lim, T(3)

When s = 1, we have I'(3) = /7 which cancels out with T Using I'(z) = 2I'(z 4 1) to shift ['(15%),
we have

P(352) ¢ - 5) = —2r(1)¢(0) = ~2¢(0).

1= lim (s—1) :

s—1t 1—s

so ((0) = —3.

18.3 Gamma factors and holomorphic zeta function

From the formula I'(2z2) = w_%QQZ_lf(z)F(z + 3), the functional equation is often written as
¢(s) = 27 Lsin (%)m —5)¢(1— ).
Define the Gamma factor I'r(s) = nglﬂ(%) which corresponds to the oo place of Q. Then

Z(s)=Tr(s) [Ja-p7) "

p

Theorem 18.17 (Analytic continuation II)
The function £(s) == (3)T'r(s)¢(s) is holomorphic on C and satisfies £(s) = £(1 — s). All zeros lie in
0 < Re(s) < 1. Note: (3) = @

Note that ((s) = ((5). There are no zeros on the real line (we didn’t prove this, but it’s supposedly not
hard), so we can restrict our attention to the upper half plane. Let N(T') be the number of zeros of £(s) in
the rectangle R = (0,1) +¢(0,T"). By Cauchy’s argument principle, we have

1 /
Ny = L [ 8 g
2mi Jor £(5)
(provided there are no zeros on Re(s) = T'). One can use this to show that N(T") ~ %Tlog(%).

One can compare N(T') to the number of zeros of the Hardy Z-function e*G(t)C(% +it) in 0 < ¢ < T where
0(t) == arg(['(2LHL)) — lo%t. For T' < 10'3, all zeros lie on the critical line.

19 Dirichlet’s theorem

19.1 Infinitely many primes
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Theorem 19.1 (Dirichlet 1837)

For all coprime integers a, m > 0, there are infinitely many primes p = a (mod m).

To motivate the proof, we first give a (silly) proof of there being infinitely many primes. It suffices to show
that ((s) = [[,(1 —p~%)~! diverges for s — 1*. We already know this because ((s) has a pole at s = 1, but
we reprove it in a different way. Take logarithms to obtain

log¢(s) == log(1—p~*)=> p~*+O0(1)

as s — 17, since —log(1 — x) = z + O(2?) as  — 0, and > O(p~2%) = O(1) for Re(s) > 3 +e. The
1

following theorem estimates >~ - .

Theorem 19.2 (Mertens 1874)

As z — 00, we have

1S _ 18P — oo g 4+ R(x) with |R(z)| < 2.

p<z p
2. ) < % =loglogz + B + O(loéx) where B = 0.261497... (Merten’s constant).
3. D s log(l — %) = —loglogx — v+ O(loéx) where v = 0.577216 ... (Euler’s constant).

Remark 19.3. Part 2 with 0(@) instead of O(loéz) is equivalent to the prime number theorem.

19.2 Dirichlet characters

Definition 19.4 (arithmetic function). An arithmetic function is a function f:Z — C.

A function f is multiplicative if f(1) = 1 and f(mn) = f(m)f(n) for all gcd(m,n) = 1, and totally
multiplicative if f(1) =1 and f(mn) = f(m)f(n) for all m,n € Z.

Definition 19.5 (m-periodic). For m € Z~¢, a function f is m-periodic if f(n+m) = f(n) for all n € Z.
The least such m is the period of f.

Definition 19.6 (Dirichlet character). A Dirichlet character is a periodic, totally multiplicative, arith-
metic function y:Z — C.

The function 1 : n — 1 is the trivial Dirichlet character (unique Dirichlet character with period 1). Every m-
periodic Dirichlet character induces a group character on (Z/mZ)*, i.e. a homomorphism (Z/mZ)* — C*.
Conversely, every group character on (Z/mZ)* can be extended to a Dirichlet character y with x(n) = 0
for all ged(m,n) # 1 (extension by zero).

Definition 19.7 (of modulus m). A Dirichlet character of modulus m is an m-periodic Dirichlet character
that is the extension by zero of some character on (Z/mZ)*. Equivalently, it is an m-periodic Dirichlet
character x with x(n) = 0 for all ged(m,n) # 1.

Dirichlet characters of modulus m form a group under pointwise multiplication, isomorphic to the character
group of (Z/mZ)*.
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Lemma 19.8
Let x be a Dirichlet character of period m. Then Y is a Dirichlet character of modulus m/ if and only
if m | m/ and m’ | m* for some k € Z~.

Definition 19.9 (induced). Let x1,x2 be Dirichlet characters of moduli mi,my with my | mg. If
x1(n) = x2(n) for all n € (Z/m9Z)*, then xa2 is induced by x1.

Definition 19.10 (primitive). A Dirichlet character not induced by any character other than itself is

primative.

Lemma 19.11
A Dirichlet character yo of modulus ms is induced by some Dirichlet character y; of modulus m | mo
if and only if 2 is constant on residue classes of (Z/moZ)* that are equivalent modulo m;.

When this holds, x; is uniquely determined.

Definition 19.12 (principal). A Dirichlet character induced by the trivial character 1 is principal. Let
1,, denote the principal Dirichlet character of modulus m; it corresponds to the trivial character on

(Z/mZ)*.

Lemma 19.13
If x is a Dirichlet character of modulus m, then Znez/mz x(n) #0 < x =1,

Proof. Orthogonality of characters. O

Proposition 19.14
Let G be a finite abelian group. For all g1, g2 € G, we have

1 1 ifgr=g
(91,92) = %G > x(g)x(g2) = {0 elsel 2.

xeG

For all x1,x2 € @,

() = g 3 (el = {1 i =x2.

v 0 else

Theorem 19.15
Every Dirichlet character y is induced by a primitive Y that is uniquely determined by .

Proof. Partially order the Dirichlet characters with x1 < x2 if x1 induces x2. Let x be a Dirichlet character
of period m, and consider X = {x' : X’ < x}. Each x’ € X has period m’ | m, and there is at most one
X' € X for each m' | m (so X is finite). Suppose x1,x2 € X have periods mi, ma, so my,ma | m. Let
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mg = ged(my, ma) | m, so we have a commutative diagram of reduction maps.

(Z/mZ)* — (Z/m1Z)*

l l

(Z)moZ)* — (Z/m3Z)*

Since x is constant on residue classes of (Z/mZ)* that are congruent mod my, or mod my, it is constant on
residue classes congruent mod ged(mg, mg) = mg. Thus there is a unique Dirichlet character x3 of modulus
mga that induces x1, x2, X%, S0 xs € X. Therefore every pair x1,x2 € X has a lower bound y3 under =
and with respect to the total ordering by period. Thus X contains a unique minimal element (w.r.t. both
orderings) inducing everything, and it must be primitive. O

Definition 19.16 (conductor). The conductor of x is the period of the unique primitive Y inducing x.

Corollary 19.17
If x is a Dirichlet character of modulus m, then ) _, mZ x(n) # 0 if and only if y has conductor 1.

This is rephrasing Lemma 19.13.

Corollary 19.18

Let M(m) denote the set of Dirichlet characters of modulus m, X(m) denote the set of primitive
Dirichlet characters with conductor dividing m, and G(m) denote the character group of (Z/mZ)*.
There are canonical bijections M (m) = X (m) — G(m) with x — X + (n — X(n)).

Remark 19.19. Since M(m) is a group, we can make X (m) into a group via X1x2 := X1x2. However,
note that 12 is not necessarily the pointwise product of 1 and Xz; it is the unique primitive character
inducing x1x2.

19.3 Dirichlet L-functions

Definition 19.20 (Dirichlet L-function). The Dirichlet L-function associated to a Dirichlet character x
is

L(s,x) = [ [A=x(p)p™) 7' =) x(n)n~*.

p n>1

The sum and product converge on Re(s) > 1.

Note that
L(s,1) =¢(s) = L(s, 1) [J( = p™) "

plm
Then L(s,1,,) has a simple pole at s = 1 like {(s) with residue
— i _ _ =S _—1_¢(m)
ress—1 L(s, 1p,) = lim (s — )¢(s) [J —p™*) =[J(1—p7") = .

s—1t
plm plm
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Proposition 19.21

Let x be a nonprincipal Dirichlet character of modulus m. Then L(s,x) extends to a holomorphic
function on Re(s) > 0.

Proof. Define T:R>o — C by @ + >y, ., x(n). Then

T+m)-T()= Y x(n)= Y x@n)=0

r<n<z+m neZ/mi

so T' is periodic modulo m, hence bounded. Integrating by parts,

$,X) =>_x(n)n

=
_ /O e dT ()

=2 T()| - /O ) d(a—)
_o- /0 (@) (=5 ) da
_ /0 T P(@)e de

which is holomorphic on Re(s) > 0 since it is the limit of uniformly converging ¢, (s) = s fo x5t dx
(here we use T' bounded). O

Remark 19.22. If f, g: [a,b] — R with ¢’ continuous, then f; fdg = f;f(x)g/(x) dz.

19.4 Primes in arithmetic progressions

—S

To prove Dirichlet’s theorem, it suffices to show that Z
the indicator function

—a (mod m) P~ 18 unbounded as s — 1*. Consider

gb(lm) Z X(Z>:{1 if p=a (modm)

X (m) 0 else

where £ is done mod m. As s — 17,

€X(m)

¢<m) ;X

1
- ¥ ;(((;1)) (log L(s, ) + O(1))

~— ~
=

XEX(m)
~ log((s) x(3) or Ls
= o) +X6X(%;Xﬂ (b(m)l g L(s,x) + O(1).
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The key claim is that L(1,x) # 0 for all nonprincipal x. Then log L(s,x) = O(1) as s — 17, so

Y pt= l(f(gif) +0(1).

p=a (mod m)

This is unbounded as s — 17, since log {(s) is. Also, Mertens’ theorem implies that

Z 1 log log x
p o o(m)

p<z,p=a (mod m)

so there are infinitely many primes p = a (mod m).

Definition 19.23 (Dirichlet, natural density). The Dirichlet density of a set of primes S is

d(S) == lim 2176751.
s1+ pr
The natural density of S is
<
5(S) == lim #lpsz:p€S)

For S = {p =a (mod m)}, we have

d(S) = lim sza (mod ) P = lim log ¢ (5)/¢(m) = L
s—1+ doppF s—1+  log((s) d(m)’
independent of a. Note this is weaker than the prime number theorem for arithmetic progressions, which
states

m(x;m,a) ={p=a (modm):p<zx}~ qb(}n)ﬂ(x)’

where 7(x;m,a) is the number of primes p < z with p = a (mod m).

20 Analytic class number formula

Definition 20.1 (Dedekind zeta function). The Dedekind zeta function of a number field K is

(k(2) =) N(@ 7 =][a-N@p)—>)"

p

where a ranges over nonzero Og-ideals and p ranges over nonzero prime ideals.

The product converges absolutely on Re(z) > 1.

Theorem 20.2 (Analytic class number formula)

Let K be a number field with r real and s complex places of degree n = r +2s. Then (x(z) extends to
a meromorphic function on Re(z) > 1 — % that is holomorphic except for a simple pole at z = 1 with
residue T

lim (2 — 1)Cx(2) = 2"(2m)°hi Rie

z—1t wK‘DKﬁ

where hy = #cl(og) is the class number, Ry is the regulator, wy is the number of roots of unity, and
Dy = disc Ok is the absolute discriminant.
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Example 20.3

For K =Q, wehaven=1,r=1,s =0,h =1, w=2,D =1,R = 1. Then (g(z) = ((#) is holomorphic

on Re(z) > 1—1 = 0 except for a simple pole at z = 1 with residue lim, ,;+(2—1){g(z) = % =
21|12

20.1 Lipschitz parameterizability

Definition 20.4 (Lipschitz continuous). Let X,Y be metric spaces. A function f: X — Y is Lipschitz
continuous if there exists ¢ € R-¢ such that for all u,v € X, d(f(u), f(v)) < cd(u,v).

Definition 20.5. A set B in a metric space X is d-Lipschitz parameterizable if it is the union of the
images of a finite number of Lipschitz continuous functions f;: [0, 1] — X.

Recall the asymptotic notation f(t) = g(t) + O(h(t)) means lim sup;_, ., )f(t})lég(t) ‘ < 0.

Lemma 20.6

Let S C R™ be a measurable set whose boundary 0.5 := S — S° is (n — 1)-Lipschitz parameterizable. As
t — o0,
#(tSNZ™) = p(SH" + O™ ).

It reduces the problem of counting lattice points to computing the measure of S.

Corollary 20.7

Let A be a lattice in V' ~ R", and let S C V be a measurable set whose boundary is (n — 1)-Lipschitz
parameterizable. Then as ¢t — oo,

_ (S n—
#(tSnA)_mt + 0" h.

Proof. If A C Z", then it follows from the above lemma. Also if the corollary holds for sA for some s > 0,
then it holds for A, since #(tS N sA) = #(55 N A). For any A, we can pick s such that sA is very close to
a sublattice of Z™; e.g. take s to be the product of all denominators in rational approximations of the real
coefficients of an R-basis for A. O

20.2 Counting algebraic integers of bounded norm

Recall the unit group Ky of Kr := K ®g R is the locally compact group

Kﬁ:HKVX: H R* x H C*.

v|oo real v|oo complex v|oco

There is a natural embedding K* — Ky by = + (z,) where v ranges over the r + s archimedean places of
K. Then we can view K* as a subgroup of K that contains all nonzero elements of Ox. We also defined
Log: K — R""* by () — (log||z,||,). From Proposition 16.8, there is an exact sequence

1—>MK—>OIX<Lﬁ>AK—>O
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where A is in the trace zero hyperplane Rj™® = {z € R""* : T(z) = 0}. The regulator R is the covolume
of Ak in Ry™ where R}"® has measure induced by any coordinate projection R™ — Rr+s=1 ~ Rr+s,
Dirichlet’s unit theorem says that Ox = U x ux where pug are the roots of unity and U C OF is the free
Z-module of rank r + s — 1.

We want to estimate
#{a:N(a) <t}
To simplify matters, start with the principal ideals a = (), so we want to estimate #{(«) : N(a) < ¢}. For
nonzero o, o € K*, (a) = (/) <= & € O is a unit. So equivalently, we consider
{a e K*NOk :N(a) <t}/Ok,

where S/Op for S C Ky means o ~ o/ <= a = ud’ for some u € Oj;. Now defining

K o ={r € K : N(z) <t} C K C Kg,

we want to estimate #(Kp o, N Ok )/Oj. Now replace Oj with U C Oj, so there is a wg-to-1 map
(Kg <, NOK)/U = (Kg o, N Ok)/Of, and we now want to estimate #(Kp o, N Ok)/U.
Recall for z = (x,) € Ky, the norm map N: Kz — RZ is defined by

N(@):= [T lleoll, = I lerle > ] lole

v|oo v real v complex

and satisfies T(logz) = logN(z) for all z € K. Now define the surjective homomorphism v: K — Ky,
by = +— mN(x)_%. Then Log(Ky ;) = R, Fix a fundamental domain F for Ag in Rj™, so S =
71 (Log ™ (F)) is a set of unique coset representatives for K% /U. Defining S<; := {z € S : N(z) < t} C K,
we want to estimate the cardinality of S<; N Ok. Now O is a lattice in Kr and tS<; = S<», so we can

estimate S<; = t%Sgl using S<1, as long as the boundary of S<; is (n — 1)-Lipschitz parameterizable which
we now show.

Since ker(Log) = {£1}" x U(1)® where U(1) C C is the unit circle, we have a continuous isomorphism of
locally compact groups

Ky = (R*)" x (C*)® = R™° x {£1}" x [0,2m)°
x=(x1,...,&p,21,...,25) — (Logz) X (sgnzy,...,sgnz,) x (argzy,...,arg zs).
The set S<; has 2" connected components, one for each element of {£1}". Parameterize each component
using n real parameters:

e 7+s—1 parameters in [0, 1) encoding points in F' as R-linear combinations of Log(ey), ..., Log(€r4s—1)
where €1,...,€.415_1 is a basis for U.

e s parameters in [0, 1) encoding elements of U(1)*® (take the angle and scale by 27).
e 1 parameter in (0, 1] encoding the nth root of the norm.

We thus have a continuously differentiable bijection from C' = [0,1)"~! x (0,1] C [0,1]" to each of the
2" components of S<;. The boundary 9C = 9]0, 1]" is (n — 1)-Lipschitz parameterizable, and thus each
component of S<; and S<; itself are (n — 1)-Lipschitz parameterizable.

We now can apply Corollary 20.7 to get

#(S<tNOk) = m<tl/n)n L0 ((tl/n)n—l)

_HE), Lo (tl_l/”> . (20.1)
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Next we compute (1(S<1). Recall the normalized Haar measure p on Ky = HV‘ oo Ky = R" x C*. In terms of
the Lebesgue measures dr on R and dA on C, we have p = (dx)"(2dA)® (get a 2 by taking derivative of the

~

square). Now define the map R* =5 Rx {£1} by 2 — (log|z|,sgnx), so e <= (¢,£1) and dz — e’ dlyigiyy.
Define C* = R x [0, 27) by z — (2log|z|, arg z), so e/210 < (£,6) and 2dA — 2e%/2d(e'/?) = e‘dldf where
dl is the Lebesgue measure on R, py41y is the counting measure on {£1}, and df is the Lebesgue measure
on [0,27). All together, we have a map

~

Ky S R™ x {£1} x [0,27)*
s €O g gy 15 0)-
Finally, consider the change of coordinates
RTTS s RTFS-L o R

= (21, ., Tpys) = (T1,.. ., Tpps—1,y = T(x))

€T fiprss > €Y pprrs—1dy.

We thus have a bijection

~ 1 1 2 2
S<1 — F + (—00,0] (,...,,,...,) x {£1}7 x [0, 27)*
= n n’'n n
1 1 1 2 2
x = N(z)nvy(x) — Log(x) + logN(x) <,...,,,...,> X (sgnzxy,...,sgnxz,) X (arg 2y, ..., arg zs).
n n’'n n

~

Then K = R™ 571 x R x {£1}" x [0,27)% and S<1 = mo(F) x (—00,0] x {£1}" x [0, 27)*. By definition,
RK = /,LRT+371<7T0(F)), SO

Plugging this into (20.1) yields

20.3 Proof of the analytic class number formula

Theorem 20.8

Let K be a number field of degree n. As t — oo, the number of nonzero Ok-ideals a of norm N(a) <t
is
2"(27)°hg R
(2m) Kth—i—O (tl—l/n) '
WK ‘DK| 2

Proof. By the wg-to-1 map S<; N Og — (Kﬁ,gt N Ok)/O, we know
2"(2m)*8
#1(a) C Ok : N(a) < t} = LR@ +0 (tl_l/"> . (20.2)

It remains to show that the nonzero ideals a of norm N(a) < ¢ are asymptotically equidistributed among
ideal classes. Given an ideal class [a] € cl Ok, multiplication by a gives a bijection

{ideals b € [a™!] : N(b) < t} =% {nonzero principal ideals (o) C a : N(a) < tN(a)}
— {nonzero o € a : N(ov) < tN(a)}/Op.
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Let Sjq),<; denote the last set. Replace Ox with a in (20.2) to get

2"(2m)°* Ry
wg covol(a)

#Sa),<t = tN(a) + O (tlfl/n)

where covol(a) = covol(Ok) N(a) so it cancels and covol(Ok) = |DK|% Summing over ideal classes yields
the desired equation. O

Lemma 20.9

Let aj,as,... be a sequence in C and 0 € R. If a; + -+ a; = O(t?) as t — oo, then Y a,n™ % is
holomorphic on Re(s) > o.

Lemma 20.10

Let a1, a9, ... be a sequence in C satisfying ay + -+ + a; = pt + O(t?) for p € C* and o € [0,1). Then
> a,n~* converges on Re(s) > 1 and has a meromorphic continuation to Re(s) > o that is holomorphic
except a simple pole at s = 1 with residue p.

Proof of the analytic class number formula (Theorem 20.2). Recall we are trying to prove that (x(z) ex-
tends to a meromorphic function on Re(z) > 1 — L that is holomorphic except for a simple pole at z = 1

with residue " 2 (2m) i R
. T T S
lim (z — 1)k (2) = px == —KIK
z—1t wK‘DKP

We have (i (2) = >, N(a)™* = >, at™* where a; = #{a : N(a) = ¢t}. By Theorem 20.8,

a1+ +ap = #{a: N(a) < t} = pxt + Ot =)

as t — oco. By the above lemmas, (x(z) = Y a;t™ extends to a meromorphic function on Re(z) > 1 — 1
with a simple pole at z = 1 of residue pg-. O

Remark 20.11. Hecke showed that (x(z) can be extended to all of C. Moreover, letting I'g =
7#20(%) and Tc(2) = Ir(2)r(z + 1) = 2(27)7*T(2), then the completed zeta function &x(z) =
|Dk|*/? Tr(2)"Tc(2)*Cx (2) satisfies the functional equation &k (2) = &x (1 — 2).

Note if K = Q(¢n) is a cyclotomic field, then (x(s) = [], L(s,X). See notes to conclude the proof of
Dirichlet’s theorem.

21 Ring of adeles

21.1 Restricted product

Recall Z < 7, = lim Z/nZ = 1], Zp. We know the Z, are compact topological groups (B; in Q) so the
product Z is compact. However, Hp Qy is a product of locally compact groups but is not locally compact.
The problem is that the product topology is too weak. Recall on (X;);er, the product topology is the
weakest topology making 7;: (X;);er — X, continuous, generated by Wi_l(Ui) with U; C X; open. So each
open set is a union of [[;c g Ui X [];¢5 Xi for some finite subset S C 1.
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Definition 21.1 (restricted product). Let (X;);er be topological spaces and U; C X; be open sets. The
restricted product is the topological space

H(Xi’ Ui) == {(z;) : z; € X; and x; € U; for almost all i € I} C HXi‘
el el
A basis of open sets is

B = {HV’ : Vi € X, open Vi € I,V; = U; for almost all z}
el

The projections 7;: [](X;, U;) — X; by (x;) = x; are continuous. Note [[,.; U; € [1(X;, U;) € [[ X; where
the first containment is open, but [],.; U; might not be open in the larger [] X;, because the restricted
product topology is finer than the product topology.

Each x € X = [[(Xi, U;) determines some finite S(z) = {i € I : z; ¢ U;}. Given a finite S C I, define
Xg = {:L’ € X;: S(x) - S} = HXz X HUZ
ics i¢s

Then Xg € B, and we can view Xg as a subspace of X or as a direct product. Note that Xg C Xp whenever
S C T, so we can partially order the finite S C I by inclusion. Then the {Xg:S C I finite} with inclusion
maps {igr: Xg — X7 | S C T} form a direct system with

lim Xg = | | Xs/~
S
where x ~ igr(x) for all S C T'. It turns out that

lim X ~ [](X;, U3).
S

Proposition 21.2

Let (X;)ier be a family of locally compact topological spaces and (U;);er be a family of open U; C X;
with almost all compact. Then X = [][(X;, U;) is locally compact.

Proof. Take a finite S C I and consider Xg = HiGS X; X Higs U;. Xg is locally compact because it is a
finite product of the locally compact spaces [[,cg X; and the compact space Hi¢ gU;. Then X is locally
compact by direct limits.

Alternatively, because each x € X lies in some Xg, in that Xg it has an open neighborhood containing a
compact neighborhood, and this carries over to X. O

21.2 Ring of adeles

For non-archimedean v, we let O, be the valuation ring of K, while for the finite number of archimedean
v, we just define O, = K,,.

Definition 21.3 (adele ring). Let K be a global field. The adele ring of K is the restricted product

A = H (K,,0,) = {(a,,) S HKV 1 ay, € O, for almost all y}.
vEME v
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For any finite set of places S, the subring of S-adeles is

AVCS:::II-K; X II(Ow

vES v¢sS

Then Ag ~ i SAKSv so Ak is also a topological ring. The canonical embedding K — K, induces
K — Ag by z — (z,z,z,...). The image of K in Ak is the subring of principal adeles.

Example 21.4

For K = Q, Ag is the union of R X Hpe s Q x Hpg g2y, for S a finite set of primes. Equivalently,
Ag ={a € I1,Qp : [|al, <1 for almost all p}.

Proposition 21.5
A is locally compact and Hausdorff.

Thus, the additive group of Ak is a locally compact group, so it has a Haar measure p which we normalize
as follows:

e 1,(0,) =1 for all non-archimedean v
o 1,(S) = pr(S) for K, ~R
o 1,(S) =2uc(S) for K, ~ C.
A basis for the o-algebra of measurable sets is [ [, B, with B,, C K, measurable, u1,(B,) < o0, and B, = O,,

for almost all v. Define
u(H B,,) = HMV(BV)-

The embedding K — A makes Ax a K-vector space. For a finite extension L/ K, the base change Ax ®x L
is an L-vector space. The topology on Ax ® L is the product topology on [L : K] copies of Ag.

Proposition 21.6

Let K be a global field and L/K be a finite separable extension. There is a natural isomorphism of
topological rings Ay, ~ Ax ®x L such that the following diagram commutes.

L "+ KL

J |

Ap, L)AK(@KL

Corollary 21.7
If [L: K] =n, then Af, ~ A$" restricts to L ~ K%".

Theorem 21.8

For each global field L, the principal adeles L C A are a discrete cocompact subgroup of the additive
group Ay.

Page 99 of 109



18.785 Number Theory I December 2, 2025

Proof. Let K be a rational subfield of L (so K = Q or Fy(t)). By Corollary 21.7, if the theorem holds for
K then it holds for L, so it suffices to consider L = K. Identify K with its image in Ag.

For discreteness, because K is a topological group, it suffices to show that 0 is isolated. Consider the open
set
U:={aecAk:lla||, <1]lall, <1V <oo}.

The product formula says that ||a|| = 1 for all nonzero a € K, but not for any nonzero a € U. Then
UNK ={0}.

For cocompactness, we want Ag /K to be compact. Consider W = {a € Ak : ||a||, < 1 Vv}, and let
U = {7 € Koo : ||2]|oo £ 1}. Then W = Uy X [[,c00 Ov € Ak (o0} € Ak is a product of compact sets
and is compact. Thus, the image of W in Ax — Ax /K is compact, so we need the map to be surjective.

Letting a = (a,) € Ak, we want to show a = b+ ¢ for some b € W and ¢ € K. For v < oo, let 2, € K be
defined as

e 7, :=0if ||ay||, <1 for almost all v

e otherwise, choose z,, € K such that ||a, — z,|| <1 and ||z, ||, < 1 for w # v.
To show z, exists, first suppose a, = % € K with r,s € Ok coprime. Let p be the maximal ideal of O,
(DVR). Then p*(®) and p=(9)(s) are coprime, so r = 1 + 5 with 71 € p*) ry € p=(9)(s). Consequently,
ay = -+ 72 with v(L) > 0 and w(*2) > 0 for w # v. Letting 2, = "2, then ||a, — 2, ||, = H%HV <1 and
lzull, = H%Hw <1 for all w # v.
We can approximate any a, € K, by such an a, € K with ||a, —a,||, < € for all ¢ > 0. Construct

x, similarly, so [|a, —z,]|, < 1 and ||a, + x,||, < 1+ € by the triangle inequality. Taking e — 0 forces
\|al, + x|, < 1 since ||-]|, is non-archimedean hence discrete.

Now let z := ", _ 2, € K, and choose 2o, € Ok such that ||ae — 7 — Too||og < 1. For aoe — € Qoo = R,
take Too € Z in [Goo — T — 1,800 — T + 1). For as — 7 € Fy(t)oo = Fy((t71)), take 20 € Fy[t] to be the
polynomial of least degree such that as — = — Zeo € Fo[[t71]].

Finally, let ¢ :== )" . 2, € K C Ag and b := a — ¢, so it remains to show b € W. For v < oo, we have
Ty € O, for all w # v and

Iell, = lla=ell, = [la= 3 wu|| < max(lla, = all, ,max{lleall, :w # v}) <1
w<oo

by the non-archimedean triangle inequality. For v = 00, ||bso|| = [|ac — ¢||, < 1 by the choice of 2. O

Lemma 21.9 (Adelic Blichfeldt—Minkowski lemma)

Let K be a global field. There is a constant Bx > 0 such that for all a € Ag with ||a|| > Bk, there
exists a nonzero principal adele € K C Ay with ||z||, < ||al|, for all v € M.

Proof. Let by = covol(K') which is the measure of any finite region for K in A under the normalized Haar
measure p on Ag. By Theorem 21.8, K is cocompact so by is finite. Let

1
b= ({2 € Axc s |12ll, < 1 2], < W archimedean ).

Note by # 0 since only finitely many p are archimedean. Let By = 2—(1’ > 0.

Suppose a € Ak satisfies ||a|| > Bx. Then ||al|, <1 for almost all v, so from [|a|| # 0, ||a||,, = 1 for almost
all v. Consider ]
T = {t e Ag < |Itll, < llall, Yo, |1tl], < > lall, ¥v archimedean}.

v —
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Then pu(T) = by ||a|| > by implies T' is not contained in any fundamental region for K. There must exist
distinct t1,ty € T with the same image in Ax /K with = = ¢; — t2 a nonzero element of K C Ag. In all
cases, we will have ||z||, = ||t1 — t2||, < ||all,:

max(||t1]],,|[t2]|,) if ¥ non-archimedean
|[t1 = to], < < [1Eal], + llt2ll,, if v real
(||t1 — t2]|11,/2)2 if v complex

Theorem 21.10 (Strong approximation)

Let K be a global field. Mg = SUT U {w} be a partition with S finite. Fix a, € K and ¢, € Ry for
v € S. Then there exists « € K such that ||z —a,||, <€, forall v € S and ||z||, <1forallveT.

Proof. As before, let W := {2z € Ak : ||z]|, <1Vvr} be a complete set of coset representatives for K C Ay,
so Ag = K+ W. Given a nonzero u € K, we also have Ag = K + uW: given any ¢ € Ag, we can write
v leeAgasule=a+bforaec K,be W, soc=ua+ubwith ua € K, ub € ulW. Now choose z € Ak
such that

e 0<||z]|,<e forvesS

e 0<||z]|,<1forveT

-1

o |[zlly > Br [ Lzwll=ll, -
Then ||z|| > By so there exists a nonzero u € K C Ag with ||u||, < ||z]|, for all v. Define the adele a € Ak
with the given a, for v € S and a, =0 for all v ¢ S. From Ag = K +uW, we have a =z + y for x € K,
y € ulW, so

e ifresS

r—all, = < Mull],, <||z]|, < . O
o —all, = lgll, < lull, < | ||V_{1 N

22 Idele group, profinite groups, infinite Galois theory

22.1 Idele group

Recall Ax = [],cpr, (K, Oy) is the ring of adeles of a global field K. Consider the unit group
A ={(ay) € Ag 1 a, € Kf Vv € Mg, a, € O, for almost all v € Mk},

where O)f = K N O, if v is nonarchimedean, and Q) = R* or C* appropriately if v is real or complex.

1

A% is not a topological group because the inverse map a — a~' is not continuous.

Example 22.1

Consider K = Q and for each prime p the adele a(p) = (1,...,1,p,1,...) € Ag. Every basic open set
containing 1 looks like U = [, .4 U, x HV¢S O, where S C M is finite. Since every U contains a(p)
for all sufficiently large p, lim, oo a(p) = 1. However, a(p) ™! ¢ U as p — oo.

We give the group R* the weakest topology to make it a topological group. Consider the embedding
¢:R* — R x R by r s (r,r~!). Declare ¢: R* — ¢(R*) to be a homeomorphism (i.e. throw in enough
open sets to make it continuous). Then r — r~! is continuous because it equals 75 0 ¢.

The topology on A% now has basic open sets U' = [[,cg Uy X [[,¢5 O where U, C Kf and S C Mk finite.
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Definition 22.2 (idele group). Let K be a global field. The idele group of K is the topological group

Ix =[] (K),0)).

veMg
The canonical embedding K < Ak restricts to K* — k.

Definition 22.3 (idele class group). The idele class group is Cx =g /K*.

Remark 22.4. In the literature, the notation Ix and A} are used interchangeably, but we currently
use Aj to mean the unit group of Ag.

There is a surjective homomorphism

Ix — Tk, CL'—)HPV”(a)
p

where p ranges of primes of K and vp(a) = vy(aw) where w is the place associated to p. The composition
K* — I — Zx has image as the subgroup of principal fractional ideals Pg. This induces a surjective
homomorphism Cx — Clg, where Cx = I /K* and Clg = Zx /Pk.

1 K* ]IK CK — 1
1 PK ZK ClK > 1

Proposition 22.5

Ik is a locally compact group.

Proof. Each O} = {z € K : ||z]|, = 1} € O, is compact. The K are locally compact, so Ix =
(K, O)) is locally compact. I is Hausdorff because its topology is finer than A} C Ag which is
Hausdorff by Proposition 21.5. O

Proposition 22.6

K> is a discrete subgroup of Ig.

Proof (sketch). Consider K* — K x K C Ag x Ag and how a subset of a discrete subset is still discrete. [

Remark 22.7. K is cocompact in Ag, but K* is not cocompact in Ix. Thus Ck is locally compact
but not compact.

The norm map restricts to a map ||-|| :Ix — RZ, by a — ||a]| =[], ||all,-
Definition 22.8 (1-ideles). The group of 1-ideles is I} == ker |||| = {a € Ik : ||a]| = 1}.

I} contains K* by the product formula.
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Lemma 22.9
]I}( has the same topology as a subspace of I and a subspace of Ag.

Theorem 22.10 (Fujisaki)

K> is a discrete cocompact subgroup of ]I}(.

Proof. K* is discrete in I by Proposition 22.6, hence in ]I}(. It suffices to exhibit a compact W C Ak such
that W N1} surjects onto I}, /K*. Choose a € Ax with ||a|| > By, and let

W= L(a) ={z € Ak : ||z||, < ||a||, Vv € Mk}.

For u € I}, we have |[u]] =1 = |[|%|| = [la]| > Bk, so there exists z € K* such that ||z||, < H%HV for
all v € M. Then zu € W, so u = z"1- zu and W NI} surjects onto I}, /K*. O

Definition 22.11 (norm-1 idele class group). The compact group C}. = I}, /K> is the norm-1 idele class
group.

22.2 Profinite groups

Definition 22.12 (profinite group). A profinite group is a topological group that is the inverse limit of
finite groups with the discrete topology.

Given any topological group G, we can take the profinite completion
G = @G/N C HG/N
N N

over finite index open normal subgroups N. Given any group, we can give it the profinite topology by making
every finite quotient discrete. In other words, take all cosets of finite index normal subgroups as a basis.
There is a canonical map G — G from the inverse limit.

Example 22.13

e For G finite, G = G is an isomorphism.

o 7 = @n Z/nZ = Hp Zyp. The map Z — 7 is injective but not surjective.

° @ = {0} because Q has no finite index subgroups other than Q. Thus Q — @ is surjective but
not injective.

Lemma 22.14

G is dense in G.

Theorem 22.15

G is profinite if and only if it is totally disconnected and compact.
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Corollary 22.16

G profinite implies G — G is an isomorphism.

22.3 Infinite Galois theory

Lemma 22.17

Let L/K be a Galois extension (not necessarily finite) and G := Gal(L/K). Let F//K be a normal
subextension of L/K. Then H := Gal(L/F') is a normal subgroup of G with fixed field F', and there is

an exact sequence
1— Gal(L/F) — Gal(L/K) — Gal(F/K) — 1

where the first arrow is inclusion, and the second is restriction. Also,

G/H ~ Gal(F/K).

We have H <1 Gal(L/K) with L = F. It may not be the case that H = Gal(L/F), as it could be smaller.

Definition 22.18 (Krull topology). For L/K Galois and G := Gal(L/K), the Krull topology on G has
the basis consisting of cosets of Hp := Gal(L/F) for F//K a finite subextension of L/K.

In the Krull topology, every open normal subgroup has finite index, but not every normal subgroup of finite
index is open.

Theorem 22.19
Under the Krull topology, restriction maps induce a natural isomorphism of topological groups
¢:Gal(L/K) — 1'£1Gal(F/K)
F

where F' ranges over finite Galois extensions F'/K. In particular, Gal(L/K) is profinite with open
normal subgroups of the form Gal(L/F') for some finite normal F'/K.

Theorem 22.20 (Fundamental theorem of Galois theory)

Let L/K be Galois and G := Gal(L/K) with the Krull topology. The maps F — Gal(L/F) and
L < H define inclusion-reversing bijections

{subextensions F//K of L/K} «— {H < G closed}.

Finite degree n subextensions correspond to index n subgroups, and normal subextensions F//K corre-
spond to normal subgroups H <1 G such that Gal(F'/K) ~ G/H.

Corollary 22.21
Let L/K be Galois and H < Gal(L/K) with fixed field F. Then H = Gal(L/F).
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23 Local class field theory

The goal of class field theory is to classify finite abelian extensions.

Definition 23.1 (maximal abelian, unramified extension). Let K be a local field with separable closure
K3°P. The maximal abelian extension of K is

Kb .— U L.

LCKseP
L/K finite abelian

The maximal unramified extension of K is

Kuor . U L.

LCKsep
L/K finite unramified

We have
K C Jounr C Kab C Sep.
By Theorem 22.19,
Gal(K*"/K) = lim Gal(L/K)
L

where L ranges over finite extensions of K in K2P. Then there is a bijection
{extensions of K in K*} «— {closed subsets of Gal(K*"/K)}

by L + Gal(K?"/L) and (K?)" <4 H. Finite abelian L/K correspond to open subgroups of Gal(K?"/K).

Now assume K is a non-archimedean local field with ring of integers O, maximal ideal p, and residue field
F, == Ok /p. If L/K is finite unramified with residue field Fq := O, /q, then

¢: Gal(L/K) ~ Gal(Fy/Fy) = (z — x7%).

In this case, the Artin map

sends p — Froby i, where we think of Froby ;= ¢~z +— x#F). Since Tx ~ 7Z, this corresponds to the
quotient map Z — Z/nZ where n = [L : K]. We can extend the Artin map to K™ via ¢ /i () = ¥,k ((7)).
This sends every uniformizer m to Froby, /.

23.1 Local Artin reciprocity

Theorem 23.2 (Local Artin reciprocity)

Let K be a local field. There exists a unique continuous homomorphism
Or: KX — Gal(K*®/K)
such that for each finite extension L/K in K® it induces Or/x: K* — Gal(L/K) by composing 0

with the restriction map resy Gal(K?®*/K) — Gal(L/K). It also satisfies

e If K is non-archimedean and L/K is unramified, then 0,/ (7) = Froby i for every uniformizer
7 of OK

e 01K is surjective with kernel Ny /i (L*), inducing K> /Ny g (L) ~ Gal(L/K).
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The natural map resy /g Gal(K®*/K) — Gal(L/K) can be viewed as
e The map induced by o +— o|r. Note o(L) = L because L/K is Galois.
e The quotient map Gal(K*/K) — Gal(K?"/K)/Gal(K?"/L).
e The projection from Gal(K?"/K) = Jim Gal(L/K).

23.2 Norm group

Definition 23.3 (norm group). A norm group in K* is any subgroup N(L*) := N i (L*) € K* with
L/K a finite (abelian) extension.

Corollary 23.4
The map L — N(L*) induces an inclusion-reversing bijection

{finite L/K in K*®} +— {norm groups in K>}

where
N((L1L2)*) = N(L{) N N(L3), N((L1NL2)") = N(Ly)N(L3).

In particular, every norm group has finite index in K™, and every subgroup of K* containing a norm

group is a norm group.
Norm groups N(L*) are open.

Theorem 23.5 (Local existence)
Let K be a local field and H a finite index open subgroup of K*. Then there exists a unique finite
abelian extension L/K with N(L*) = H.

Theorem 23.6 (Main theorem of local class field theory)
The local Artin homomorphism 0 induces a canonical isomorphism 0/;(: K* 2 Gal(K?"/K) of profinite
groups.

Recall that Gal(K*/K) = lim Gal(L/K) and KX ~ lim K> /N(LX) for finite L/K in K, using the
existence theorem (Theorem 23.5).
Let p be the maximal ideal of O, so we have an isomorphism K* ~ O% x Z by  + (x/p*®), v(x)). Taking

profinite completions, KX ~ Oy X Z, so we have the exact sequences

1 0% K 7/ 0

; bk

1 —— Gal(K®/K"r) —— Gal(K*/K) —— Gal(K"/K) —— 1

The map ¢ is Z < Z ~ Gal(F,/F,) ~ Gal(K"™/K).

Example 23.7
Take K = Q, and 7 = p. The decomposition K* = K" . K is ng = U, Qo) - Uiy @o(Gm)-

Page 106 of 109



December 9, 2025 18.785 Number Theory I

24 Global class field theory

Recall the ring of adeles

A = H(K,,, O,) ={(ay € HKV ay, € O, for almost all v}

v

and the idele group

Iy = H(K;,Oj) ={(ay € I_IKZ,X :a, € O, for almost all v}.

v v

24.1 ldele norm

There is a surjection ¢: I — Zx by a — Hp p”»(@ for p finite.

1 KX ]IK CK — 1
ix»—)(m) Lp l
1 Pg Tk Clg —— 1

Definition 24.1 (idele norm). Let L/K be a finite separable extension of global fields. The idele norm
Np/k:1p — Ik is defined by sending Ny, /x (by) = (a,) where a,, := Hw‘y N, /K, (bw)-

The idele norm Ny, g:1;, — I is compatible with the field norm Ny g:L* — K™ on the subgroup of
principal ideles L>* C 1.

L* Iy I
lNL/K lNL/K lNL/K
K= I T

Take quotients to get the following.
C L ———» ClL

lNL/K lNL/K

CK —_—> CIK

24.2 Artin homomorphism

Let K be a global field, v € My, and 0, : K — Gal(K2*/K,) be the local Artin homomorphism. For
each finite abelian /K and each w € My, we compose 0, with Gal(K2/K,) — Gal(L,/K,) to get

O, /K, K — Gal(Ly,/K,)

with kernel Ny /., (Ly). Note that every finite separable extension of K, is L, for some w | v in L by
Corollary 12.19.

We define an embedding

ou: Gal(Ly/K,) < Gal(L/K)
o ol|L
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If v is a finite place and q is the prime of L corresponding to w | v, then ¢,,(Gal(L,/K,)) = Dy C Gal(L/K).

The composition ¢, o 01, /k, defines a map K* — Gal(L/K) that is independent of the choice of w | v.
This is because ¢y, (01, /k, (7)) = Frob,, for every m,, and the 7, generate K. Define

L K — Ik
a—(1,...,1,a,1,...)

which is compatible with the idele norm: if w extends v, then

Nro /K
x T Lw/Ky gy
L'LU KV

Np/x
HL%HK

comimutes.
Let L/K be a finite abelian extension (i.e. Gal(L/K) is abelian), and pick v € Mg and w | v. Then define
(av) = [T ew(0r,/x,(@).

Almost all a, € O and almost all v are unramified in L, which implies ¢, (0r,, /K, (av)) = Frob,™) = 1
for almost all v. 0y, is well defined, a group homomorphism, and continuous. If Ly C Ly are two finite
abelian extensions of K, then 0, /x(a) = 01,/ (a)|z, for all @ € Ix. The 0,k form a compatible system
of homomorphisms from I to lim Gal(L/K) ~ Gal(K ab /). By the universal property for profinite
completions, they determine a unique homomorphism 6.

Definition 24.2 (global Artin homomorphism). The global Artin homomorphism is the continuous ho-

momorphism O I — Gal(K*/K).

Proposition 24.3

Let K be a global field. Then fx is the unique continuous homomorphism I — Gal(K?"/K) such
that for every finite abelian L/K and w | v € L, the following diagram commutes.

6
KX 2% Gal(Ly/Ky)

2 [

6
Ix — Gal(L/K)

24.3 Main theorems of global class field theory

Theorem 24.4 (Global Artin reciprocity)

Let K be a global field. Then K* C ker fk, and we have a continuous homomorphism
Ox: Cx — Gal(K**/K)

with the property that for every finite abelian L/K, 0, /x: Cx — Gal(L/K) obtained by composing 0
with resy Gal(K?®/K) — Gal(L/K) is surjective with kernel Np/k(CL), inducing an isomorphism
Ck /Np/k(Cr) ~ Gal(L/K).
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Instead of K* in the local case, we now have Ck.

Theorem 24.5 (Global existence)

Let K be a global field. For every finite index open subgroup H C Cf, there exists a unique finite
abelian extension L/K in K* with Ny (Cr) = H.

Theorem 24.6 (Main theorem of global class field theory)

The global Artin homomorphism 6 induces a canonical isomorphism 5;\(: 5; = Gal(K?*P/K) of profi-
nite groups. There is an inclusion-reversing bijection

{finite index open subgroups H C Cx} +— {finite abelian L/K in K}

by H + (K*)x(H) and N ;(Cp) = L.

Theorem 24.7 (Functoriality)
Let K be a global field and L/K a finite separable extension. The following commutes.

O, —2 5 Gal(L*/L)

lNL/K J’res

Crx 5 Gal(K?*/K)

24.4 Chebotarev density theorem

Theorem 24.8 (Chebotarev density theorem)

Let L/K be a finite Galois extension with Galois group G. Let C' C G be stable under conjugation.
Let S be the set of primes of K that are unramified in L with Frob, C C. Then d(S) = ﬁ—g

Corollary 24.9 (abelian case)

Let L/K be a finite abelian extension with Galois group G. Then for all o € G, the Dirichlet density
of the set S of primes p of K unramified in L for which Frob, = {o} is %

It is straightforward to prove the Chebotarev density theorem from the abelian case.
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