
COMS 4995-3: Advanced Algorithms Jan 18, 2017

Lecture 2 – Approximate Counting and Hashing

Instructor: Alex Andoni Scribes: Arushi Gupta, Yogesh Garg

1 Approximate Counting (continued)

Suppose we want to count e.g. the number of suspicious packages that we encounter. We can do this in

O(n) space complexity, but if we also want to limit the space complexity, we have to resort to

• Approximation

• Randomization

We saw one solution using Morris Algorithm last time.

1.1 The Morris Algorithm

– Initialize X=0

– at each tick, set

X =

{
X + 1 w.p. 2−X

unchanged otherwise
(1)

– the end estimator is 2X − 1

Claim 1. If Xn = the value after n ticks then E[2Xn − 1] = n

Proof. (Given last time)

Claim 2. Storing X takes O(lg lg n) bits with probability ≥ 90%

Proof. By the Markov Bound,

P[2Xn − 1 > 2n] ≤ 1

2
(2)

suppose,

2Xn − 1 ≤ 2n (3)

Xn ≤ lg(2n+ 1) (4)

Recall that the number of bits required to store Xn is lg(Xn). This means that the space required to

store X is:

lg(Xn) ≤ lg lg(2n+ 1) (5)

= O(lg lg n) (6)

1



Claim 3. var[2Xn − 1] ≤ 3n(n+1)
2 + 1

Proof.

var[2Xn − 1] = E[(2Xn − 1)2]− n2

= E[22Xn ] + 1− 2E[2Xn ]− n2︸ ︷︷ ︸
≤0

≤ E[22Xn ]

E[22Xn ] =
∑
i

22iP[Xn = i]

=
∑
i

22i
(

2−(i−1)P[Xn−1 = i− 1] + (1− 2−i)P[Xn−1 = i]
)

=
∑
i

2i+1P[Xn−1 = i− 1] +
∑
i

22iP[Xn−1 = i]−
∑
i

2iP[Xn−1 = i]

= 4E[2Xn−1 ] + E[22Xn−1 ]− E[2Xn−1 ]

= 3E[2Xn−1 ]︸ ︷︷ ︸
=n

+E[22Xn−1 ]

= 3n+ E[22Xn−1 ]

(7)

We now apply induction

Base case:

E[2X0 ] = 1 (8)

Inductive case:

E[22Xn ] =
n∑
i=1

3i+ 1

=
3

2
n(n+ 1) + 1

(9)

1.2 Bound for 2Xn

Applying the Chebyshev’s inequality to 2Xn ,

P[|(2Xn − 1)− n| > λ)] ≤ var[2Xn − 1]

λ2
(10)

target probability is = 1
2 which means that we want

λ2 = 2 var[2Xn − 1] = 3n(n+ 1) + 2 (11)

With probability ≥ 1
2 , the estimator = n± λ ≈ n±

√
3n.

This gives us an upper bound but we can observe that the estimator can output zeros, so this is not a
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particularly good bound. If possible, we would like a tighter concentration bound.

We can use an often used trick to achieve this: We can compute a few such estimators and average them

1.3 The Morris + Algorithm

– run in parallel k copies of the Morris Algorithm

– counters are called X1, .., Xk

– our new estimator is Y = 1
k

∑k
j=1(2

Xj − 1)

Claim 4. E[Yn] = n

Proof. Using linearity of expectation,

E[Yn] = E[
1

k

∑
j

Xj
n]

=
1

k
(n+ n+ ...+ n)︸ ︷︷ ︸

k times

= n
(12)

Claim 5. Space is O(k lg lgn)

Claim 6. var[Yn] = 1
kO(n2)

Proof.

var[Yn] = var

1

k

k∑
j=1

(
2X

j
n − 1

)
=

k∑
j=1

var

[
1

k

(
2X

j
n − 1

)]

=
k∑
j=1

1

k2
var
[
2X

j
n − 1

]
=

1

k
var
[
2Xn − 1

]︸ ︷︷ ︸
O(n2)

=
1

k
O(n2)

(13)
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1.3.1 Bound on Morris+

We apply Chebyshev’s inequality to Yn, and we want

λ2 = 2 var[Yn] =
3n(n+ 2) + 2

k

⇒ λ =
1√
k
O(n)

(14)

Thus, estimator

Yn = n± 1√
k
O(n) (15)

with probability ≥ 1
2 , where k = O( 1

ε2
) and we have a 1 + ε approximation.

Theorem 7. For k = O( 1
ε2

), Morris+ algorithm outputs

a value ∈ [n− εn, n+ εn]

w.p. ≥ 1
2 .

Space is O
(
1
ε2

lg lg n
)
.

Observation 8. Follows:

• If we want probability ≥ 1− δ, where δ = small failure probability, the same argument gives

k = O(
1

ε2
1

δ
) (16)

• It is possible to get

k = O(
1

ε2
log

1

δ
) (17)

But it requires calculating higher moments.

2 Hashing

Figure 1: Hashing Function and Collisions
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We can think about a universe (a big set of numbers) of size U ∈ N. We use the notation

[N ] = {1, 2, ..., N} (18)

As an example, we can think about the universe of IP addresses, of which there are

U = 2128 (19)

We would like to solve the following (static) dictionary problem:

Definition 9. Given a set S ⊂ [U ], |S| = m, We need to resolve query Qx : given x, decide quickly

whether x ∈ S or not.

Possible solutions:

1. Just use a list. The time is O(m)

2. Use a binary tree. Time is O(lgm)

This is not sufficient, we would like to get a better performance.

Definition 10. A hash function h, is

h : [U ]→ [n] (20)

Typically,

n ≈ m� U (21)

So a hash function maps members of a large universe into members of a smaller set. Since U is larger

than n, there are likely to be collisions, i.e. it is likely that two elements of [U ] will map to the same

element in [n], i.e.

h(x) = h(y) (22)

How do we deal with collisions? Well, we can store a linked list associated with each element of [n], that

contains all the elements of [U ] that map to that element of [n]. So how long does it take for us to solve

our original problems Qx of determining whether x ∈ S? It depends on the size of the bucket, the linked

list, associated with x. We want to minimize collisions so that this bucket is as small as possible. So how

do we choose h?

2.1 Knuth’s solution

h(x) = b{
√

5− 1

2
x}nc (23)

Where the braces represent the fractional part of the expression they surround. The problem with this,

is that because it’s a deterministic function, it’s possible to construct a specific set, S, for which there are

lots of collisions , and this can be a security risk.

2.2 Solution 1: A completely randomized approach

So we can choose h so that it is not deterministic by making it completely random. We pick each h(x)

as a random number. But how much space would it take to store [n]? O(U · lg n) which is way too big.
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2.3 Solution 1.5

Store a bit array of size U

2.4 Solution 2: Limited Randomness

Definition 11. h : [U ]→ [n] is called universal if

∀x, y ∈ [U ]

P[h(x) = h(y)] =
1

n

(24)

Notice that we are considering the fraction 1
n because this is what it would be in the completely

randomized case.

Claim 12. Suppose the number of collisions is C and h is a universal function. Then E[C] = m(m−1)
2n

Proof. Let 1 be the indicator function.

E[C] = E

 ∑
x,y∈S

1h(x)=h(y)


=

(
m

2

)
Eh
[
1h(x)=h(y)

]
=

(
m

2

)
1

n

=
m(m− 1)

2n

(25)

If we want E[C] < 1, we need to set n = m(m−1)
2 = Θ(m2)
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