1 Review

Recall from last class the Fast Johnson-Lindenstrauss Lemma, which tells us that there exists a linear map $\phi : \mathbb{R}^n \to \mathbb{R}^k$, $\phi(x) = Sx$ where $S = P \cdot H \cdot D$. Here, P is a sparse projection matrix, H is a Hadamard matrix, and D is a diagonal matrix with entries as random ± 1’s. The total time complexity for computing S is as follows: $O(n)$ for (Dx), $O(n \log n)$ for $(H \cdot (Dx))$, $O(k)$ for $(P \cdot (HDx))$. In total, this means the time for dimensionality reduction is $O(n \log n + k)$. Recall the following lemma.

Lemma 1. For vector $y \in \mathbb{R}^n$, if $k = \Omega \left(\frac{\log \frac{1}{\epsilon}}{\epsilon^2} \cdot \frac{n \cdot ||x||_2}{||y||_\infty^2} \right)$, then with probability $\geq 1 - \delta$, $||Py||_2 \in (1 \pm \epsilon) ||y||_2$

2 Fast JL (cont.)

We want to show that if $y = H \cdot D \cdot x$, then $||y||_\infty$ cannot be too large. More formally:

Claim 2. Let $y = H \cdot D \cdot x$, $\Pr \left[||y||_\infty \leq c \cdot \sqrt{\frac{\log(n/\delta)}{n}} \cdot ||x||_2 \right] \geq 1 - \delta$

We just need to prove that $\forall y_i, |y_i| \leq c \cdot \sqrt{\frac{\log(n/\delta)}{n}} \cdot ||x||_2$ with high probability.

Proof. Here A^i_j means ith row and jth column. We have that $r_j \in \left\{ \frac{1}{\sqrt{n}}, -\frac{1}{\sqrt{n}} \right\}$

$$y_i = \langle H^i, D, x \rangle = \sum_j r_j x_j$$

$$= \frac{1}{\sqrt{n}} \cdot (\pm x_1 \pm x_2 \pm \cdots \pm x_n)$$

We will use the following theorem now.

Theorem 3. Let $a_1, \cdots, a_n \in \mathbb{R}$, $r_1, \cdots, r_n \in \{\pm 1\}$, $S_n = |\sum_j r_j a_j|$, then $\Pr \left[S_n \geq t \cdot \sqrt{\sum_j a_j^2} \right] \leq e^{-t^2/2}$. (Proof: [1] equation 1.2)
Thus, we have
\[\Pr \left[|y_i| \geq \sqrt{\frac{2 \log(n/\delta)}{n}} \cdot ||x||_2 \right] \leq \frac{\delta}{n} \]

By taking union bound:
\[\Pr \left[\forall i \in [n], |y_i| \leq \sqrt{\frac{2 \log(n/\delta)}{n}} \cdot ||x||_2 \right] \geq 1 - \delta \]

Subspace embedding

Recall the setup from last lecture: we are given \(\{y \in \mathbb{R}^n | y = Ux\} \), \(x \in \mathbb{R}^{n \times d} \), and we have that \(d < n \). If \(S \in \mathbb{R}^{k \times d} \), and for all \(x \in \mathbb{R}^d \) and \(y = Ux, ||Sy||_2 \in (1 \pm \epsilon)||y||_2 \), then \(S \) is a subspace embedding of \(U \).

From last time, we know the following claim:

Claim 4. If \(S \) is defined as in the JL Lemma, i.e., \(S_{i,j} \sim N(0, \frac{1}{k}) \), \(k = \Omega \left(\frac{d}{\epsilon^2} \right) \), then \(S \) is a subspace embedding of \(U \).

The following claim also holds, but we do not prove it.

Claim 5. If \(S \) is defined as in fast JL, i.e., \(S = PHD \), \(k = \Omega \left(\frac{d + \log n}{\epsilon^2 \log(d)} \right) \), then \(S \) is a subspace embedding of \(U \).

3 Least absolute deviation regression

We first introduce the least absolute deviation regression problem, also known as the \(\ell_1 \) regression problem.

Definition 6. The least absolute deviation regression is as follows: Given \(A \in \mathbb{R}^{n \times d} \), \(b \in \mathbb{R}^d \), we wish to find \(\min_{x \in \mathbb{R}^d} ||Ax - b||_1 \). Here \(||y||_1 = \sum_i |y_i| \) for a vector \(y \) (i.e. the \(\ell_1 \) norm).

This can be reformulated into a linear program, where our objective is to minimize \(\sum_i t_i \), subject to the following linear constraints: \(\forall i \in [n], -t_i \leq \langle A^i, x \rangle \leq t_i \) where \(t_i \geq 0, x_i \geq 0 \).

Observation 7. There are \(n + d \) variables and \(2n \) constraints. Thus, using linear programming techniques to solve it directly takes \(\text{Poly}(n \cdot d) \) time, which is too slow for large \(n \) and \(d \).

Suppose there is a linear mapping \(\phi : \mathbb{R}^n \to \mathbb{R}^k \), i.e., \(\phi(y) = S \cdot y \), \(S \in \mathbb{R}^{k \times n} \), such that \(\forall y \in \text{span}(U), ||\phi(y)||_1 \in (1 \pm \epsilon)\cdot ||y||_1 \), where \(U \in \mathbb{R}^{n \times (d+1)} \) is a basis of the subspace spanned by \((A_1, \ldots, A_d, b) \).

Then to solve the original \(\ell_1 \) regression,

1. Solve \(\min_x ||\phi(Ax - b)||_1 \). Let \(x' \) be the solution to this reduced \(\ell_1 \) case.
Show x' is also a solution to the original problem.

Proof. We'll show that x' is an $1 + 2\epsilon$ approximation to the original problem. Let x^* be the optimal solution of the original min $||Ax - b||_1$ problem.

\[
||Ax' - b||_1 \leq \frac{1}{1 - \epsilon} \cdot ||SAx' - Sb||_1 \leq \frac{1}{1 - \epsilon} \cdot ||SAx^* - Sb||_1 \leq \frac{1 + \epsilon}{1 - \epsilon} \cdot ||Ax^* - b||_1 \leq (1 + 2\epsilon)||Ax^* - b||_1
\]

Details:

1. $\forall y \in \text{span}(U), \ ||Sy||_1 \geq (1 - \epsilon) \cdot ||y||_1$
2. x' minimizes $||SAx - Sb||_1$
3. let $y = Ax^* - b, ||Sy||_1 \leq (1 + \epsilon)||y||_1$
4. $\epsilon \in (0, 1/2)$

Thus the total running time will be reduced to $O(DR) + \text{Poly}(kd)$, where DR is the time to perform dimensionality reduction. We now see how efficient performing this dimensionality reduction actually is.

3.1 Sampling-based Method

Our goal then becomes the following: given $U \in \mathbb{R}^{n \times d}$, a basis of the subspace spanned by the columns of A and b, find the L1 subspace embedding. Note that here, d includes the columns of A as well as b, but is simply renamed to d for convenience. Recall that a L1 subspace embedding is a matrix S such that for all $x \in \mathbb{R}^d, ||SUx||_1 \in (1 \pm \epsilon)||Ux||_1$. Let $y = Ux$.

We introduce a sampling-based method to find S. Specifically, let S be a diagonal matrix, where each entry on the diagonal is:

\[
S_{ii} = \begin{cases}
\frac{1}{p_i} & \text{with probability } p_i \\
0 & \text{else}
\end{cases}
\]

We calculate the expected value of $||Sy||_1$, which is $E[||Sy||_1] = \sum_{i=1}^{n} p_i \cdot \frac{1}{p_i} \cdot |y_i| + 0 = ||y||_1$. This looks promising, however, there are still certain edge cases that can reduce the effectiveness of $||Sy||_1$ as an approximation to $||y||_1$. Specifically, consider the case when y is very sparse, say with only one non-zero entry. To accurately estimate the norm, we must find the non-zero entry and with high probability, the norm of Sy will be zero. However, intuitively, we should sample each coordinate proportional to the value of y_i. We don’t exactly know each value of y_i, but the subspace constrains y_i in a certain way, so we can
pick p_i in a more careful way.

Definition 8. For all $x \in \mathbb{R}^d$, $\|x\|_2 \leq \|Ux\|_1 \leq \kappa \cdot \|x\|_2$, then the condition number of U is κ.

Define $p_i = \min \left(1, c \cdot \left[\log \left(\frac{1}{\delta}\right) / \epsilon^2\right] \cdot \|U^i\|_2\right)$, where U^i represents the ith row of U. We want to show that with probability at least $1 - \delta$, $\|Sy\|_1 \in (1 \pm \epsilon)\|y\|_1$. Before proceeding with this proof, we state a generalization of the Chernoff bound, known as Bernstein’s inequality.

Theorem 9 (Bernstein’s inequality). Suppose X_1, \ldots, X_n are n independent random variables (not necessarily identically distributed). For all $i \in [n]$, we have that $|X_i| \leq M$, then for any $t > 0$,

$$\Pr \left(\left| \sum_{i=1}^{n} X_i - \mathbb{E} \left[\sum_{i=1}^{n} X_i \right] \right| > t \right) \leq 2 \cdot \exp \left\{ - \frac{0.5t^2}{\sum_{i=1}^{n} \text{Var}[X_i] + 1/3 \cdot Mt} \right\}$$

This allows us to prove the following claim.

Claim 10. If S is sampled as described in Equation 5 with $p_i = \min \left(1, c \cdot \left[\log \left(\frac{1}{\delta}\right) / \epsilon^2\right] \cdot \|U^i\|_2\right)$ for sufficiently large constant c, then with probability at least $1 - \delta$, $\|Sy\|_1 \in (1 \pm \epsilon)\|y\|_1$.

Proof. Observe that by definition of L1 norm, we know that $\|Sy\|_1 = \sum_{i=1}^{n} |S_{ii}y_i|$. Define $X_i = |S_{ii}y_i|$, so $\|Sy\|_1 = \sum_{i=1}^{n} X_i$. Recall that $\mathbb{E} \left[\sum_{i=1}^{n} X_i \right] = \|y\|_1$. Without loss of generality, assume that $\|y\|_1 = 1$ - we can simply rescale y if not.

To apply Bernstein’s inequality, we first try bound to the sum of variances of X_i as follows:

$$\sum_{i=1}^{n} \text{Var}[X_i] \leq \sum_{i=1}^{n} \mathbb{E}[X_i^2]$$

$$= \sum_{i=1}^{n} p_i \cdot \left(\frac{y_i}{p_i}\right)^2$$

$$= \sum_{i=1}^{n} \frac{|y_i|}{p_i} \cdot |y_i|$$

$$\leq \max_i \frac{|y_i|}{p_i} \cdot \|y\|_1$$

$$= \max_i \frac{|y_i|}{p_i}$$

$$\leq \frac{\epsilon^2}{c \log \left(\frac{1}{\delta}\right)} \cdot \|\langle U^i, x \rangle\|_2$$ (Expand out p_i)

$$\leq \frac{\epsilon^2}{c \log \left(\frac{1}{\delta}\right)} \cdot \frac{\|U^i\|_2 \|x\|_2}{\|U^i\|_2}$$ (Cauchy-Schwarz)

$$\leq \frac{\epsilon^2}{c \log \left(\frac{1}{\delta}\right)} \cdot \|x\|_2$$
\[
\leq \frac{\epsilon^2}{c \log \left(\frac{1}{\delta} \right)} \cdot \|y\|_1 = \frac{\epsilon^2}{c \log \left(\frac{1}{\delta} \right)} \quad (\|x\|_2 \leq \|U x\|_1 \leq \kappa \|x\|_2)
\]

Next, we find a bound on each \(|X_i|\), which is less than \(|\frac{n_i}{n}|\). Applying the same inequalities as above, we conclude that \(|X_i| \leq \frac{\epsilon^2}{c \log \left(\frac{1}{\delta} \right)}\). Now, can apply Bernstein’s inequality with \(t = \epsilon\), which gives

\[
\Pr \left[\left| \sum_{i=1}^{n} X_i - \mathbb{E} \left[\sum_{i=1}^{n} X_i \right] \right| > \epsilon \right] \leq 2 \cdot \exp \left\{ - \frac{0.5\epsilon^2}{\frac{\epsilon^2}{c \log(1/\delta)} + 3c \log(1/\delta)} \right\}
\]

For constant \(c\) large enough, we can make this probability at most \(\delta\). Thus, with probability at least \(1 - \delta\), \(\|Sy\|_2 \in (1 \pm \epsilon)\|y\|_1\).

To prove that we can obtain a subspace embedding across the entire subspace, we can discretize the L1 norm ball and show the following result: For any fixed vector \(y = U x\) such that \(\|Sy\|_1 \in (1 \pm \epsilon)\|y\|_1\) with probability at least \(1 - (\frac{10n}{\epsilon})^{-d}\), then we can show that \(\Pr_S[\forall y = U x, \|Sy\|_1 \in (1 \pm \epsilon)\|y\|_1] \geq 0.9\). We do not prove this.

Finally, we claim that the expected number of non-zero elements in \(S\) is not too large. Let \(\delta = (\frac{10n}{\epsilon})^{-d}\), and let \(\kappa\) be the condition number of \(U\).

\[
\mathbb{E}[\# \text{ of non-zero elements in } S] = \sum_{i=1}^{n} p_i \\
\leq \sum_{i=1}^{n} \frac{\log(1/\delta)}{\epsilon^2} \cdot \|U_i\|_2 \\
\leq O \left(\frac{d}{\epsilon^2} \cdot \log \left(\frac{n}{\epsilon} \right) \right) \cdot \sum_{i=1}^{n} \sum_{i=1}^{n} \|U_i\|_2 \\
\leq O \left(\frac{d}{\epsilon^2} \cdot \log \left(\frac{n}{\epsilon} \right) \right) \cdot \sum_{i,j} |U_{ij}| \\
\leq O \left(\frac{d^2}{\epsilon^2} \cdot \log \left(\frac{n}{\epsilon} \right) \right) \cdot d \cdot \kappa \\
\leq O \left(\frac{d^2}{\epsilon^2} \cdot \log \left(\frac{n}{\epsilon} \right) \right) \cdot \kappa
\]

The second to last step above follows from the fact that \(\|x\|_2 \leq \|U x\|_1 \leq \kappa \|x\|_2\) for all \(x\). Thus, we can choose \(x\) to be the vector of all-zeros and a single 1, and the statement follows.

We state the following fact without the proof. For any \(d\) dimensional subspace, there is always a basis \(U\) whose condition number \(\kappa\) is at most \(\text{poly}(d)\).
References