E2LSH 0.1
User Manual

Alexandr Andoni
Piotr Indyk

June 21, 2005

Contents

1 Whatis E?’LSH?

2 FE’LSH Usage
2.1 Compilation e
2.2 MainUusage e e e
2.3 Manual setting of the parameters of tReNN data structure
24 MEeMOIY e e e e e e e e
2.5 Additional utilities L e e
2.6 Fileformats e
2.6.1 Datasetfileand querysetfile
2.6.2 Outputfileformat. e e
2.6.3 File with the parameters for ti&NN data structure
2.6.4 Theremainder of the parameterfile

3 Algorithm description
3.1 Notations
3.2 Generic locality-sensitive hashing scheme
3.3 LSHschemefol,norm
3.3.1 p-stabledistributions
3.3.2 Hashfamily e
3.4 Parameters forthe LSHscheme,
3.4.1 Faster computation of hash functions
3.5 Implementationdetails e
3.5.1 R-NNdata structure construction
3.5.2 Buckethashing e e
3.5.3 Additional optimizations e
3.6 MemMOry e e e e e
3.7 Future possible optimizations

4 The E2LSH Code
4.1 Code OVEIVIEW . . . o o o e e e e e e e e e e e
4.2 BLSHINterface s,

5 Frequent Anticipated Questions

Chapter 1

What is E2LSH?

Short answer:

E?LSH (Exact Euclidean LSH) is a package that provides a randomized solution for the-Himensional
near neighbor problem in the Euclidean spaceéifter preprocessing the data set| ISH answers queries,
typically in sublinear time, with each near neighbor beiegarted with a certain probability. 2ESH is
based on the Locality Sensitive Hashing (LSH) scheme destiin [2].

Long answer:

The R-near neighbor problem is defined as follows. Given a set of poifits- R? and a radiusk > 0,
construct a data structure that answers the following geerior a query poing, find all pointsp € P
such thatl|g — p||2 < R, where||q — p||2 is the Euclidean distance betweerandp. E’LSH solves a
randomized version of this problem, which we call” 1 — §)-near neighbor problem. In this case, each
pointp satisfying||q — p||2 < R has to be reported with a probability at least § (thus,d is the probability
that a near neighbgr is not reported).

E?LSH can be also used to solve thearest neighbor problem, where, given the query the data
structure is required the report the poinfArthat is closest tq. This can be done by creating sevekahear
neighbor data structures, fét = R, Rs, ... R, whereR; should be greater than the maximum distance
from any query point to its nearest neighbor. The nearegiber can be then recovered by querying the
data structures in the increasing order of the radiae, sigphenever the first point is found.

E2LSH is based on locality-sensitive hashing (LSH) schemelgasribed in [2]. The original locality-
sensitive hashing scheme solves #pproximate version of theR-near neighbor problem, called(Z, ¢)-
near neighbor problem. In that formulation, it is sufficiemteportany point within the distance of at most
cR from the queryy, if there is a point irP at distance at mogt from ¢ (with a constant probability). For
the approximate formulation, the LSH scheme achieves adimign”), wherep < 1/c.

To solve the(R, 1 — §) formulation, ELSH uses the basic LSH scheme to get all near neighbors (in-
cluding the approximate ones), and then drops the approeinmear neighbors. Thus, the running time of
E2LSH depends on the data $@t In particular, ELSH is slower for “bad” data sets, e.g., when for a query
q, there are many points frofA clustered right outside the ball of radiliscentered af (i.e., when there
are many approximate near neighbors).

E2LSH is also different from the original LSH scheme in th&t EH empirically estimates the optimal
parameters for the data structure, as opposed to usingetidrformulas. This is because theoretical
formulas are geared towards the worst case point sets, arefdre they are less adequate for the real data

sets. ELSH computes the parameters as a function of the dat® setd optimizes them to minimize the
actual running time of query on the host system.

The outline of the remaining part of the manual is as follo@kapter 2 describes the package and how
to use it to solve the near neighbor problem. In Chapter 3,egeribe the LSH algorithm used to solve the
(R,1 — ¢) problem formulation, as well as optimizations for decregsiunning time and memory usage.
Chapter 4 discusses the structure of the code of #h&H: the main data types and modules, as well as the

main functions for constructing, parametrizing and quagythe data structure. Finally, Chapter 5 contains
FAQ.

Chapter 2

E2LSH Usage

In this chapter, we describe how to use odt.EH package. First, we show how to compile and use the
main script of the package; and then we describe two additgeripts to use when one wants to modify or
set manually the parameters of tReNN data structure. Next, we elaborate on memory usage’bSH
and how to control it. Finally, we present some additionafulsutilities, as well as the formats of the data
files of the package.

All the scripts and programs should be located inlilve directory relative to the #.SH package root
directory.

2.1 Compilation

To compile the BELSH package, it is sufficient to rumake from E2LSH's root directory. It is also possible
to compile by running the scriftin/compile from E?LSH's root directory.

2.2 Main Usage

The main script of BLSH isbin/lsh . It is invoked as follows:

bin/lsh R data_set_file query_set file [successProbabil ity]

The script takes, as its parameters, the ndata _set file of the file with the data set points and the
file query _set _file withthe query points (the format of the files is describedeoti®n 2.6). Given these
files, ELSH constructs the optimizel-NN data structure, and then runs the queries on the cotetrdata
structure. The valueRandsuccessProbability specify the parameter3 and1 — § of the (R, 1—4)-
near neighbor problem thafESH solves. Note thaguccessProbability is an optional parameter; if
not supplied, BLSH uses a default value 6f9 (90% success probability).

2.3 Manual setting of the parameters of theR-NN data structure

As described in Chapter 3, the LSH data structure needs paeeneters, denoted ldy . andm (where
m ~ /L). However, the scripbin/lsh computes those parameters automatically in the first stodgta
structure construction. The parameters are chosen sootiogtitnize the estimated query time. However,

since these parameters are only estimates, there are nantges that these parameters are optimal for
particular query points. Therefore, manual setting of é¢hparameters may occasionally provide better
query times.

There are two additional scripts that give the possibilitynanual setting of the parameters:
bin/lsh _computeParams andbin/lsh _fromParams . The first scriptpbin/lsh _computeParams ,
computes the optimal parameters for (NN data structure from the given data set points and outpets
parameters to the standard output. The usadeendfsh _computeParams is as follows:

bin/lsh_computeParams R data_set file {query_set file | .} [successProbability]

The script outputs an estimation of the optimal parametbtseoR-NN data structure for the data set
points indata _set _file . If one specifies the query set file as the third parameten, weeuse several of
the points from the query set for optimizing data structuaeameters; if a dot () is specified, then we use
instead several points from the data set for the same purfdseoutput is written to standard output and
may be redirected to a file (for a later use) as follows:

bin/lIsh_computeParams R data_set_file query_set_file > d ata_set_parameters_file

See section 2.6 for description of the format of the paranfi¢e

The second scriphin/lsh _fromParams , takes as an input a file containing the parameters for the
R-NN data structure (besides the files with the data set pamdsthe query points). The script constructs
the data structure given these parameters and runs queribg @onstructed data structure. The usage of
bin/lsh _fromParams is the following:

bin/lsh_fromParams data_set_file query_set file data_s et_params_file

The filedata _set _params _file must be of the same format as the output of
bin/lIsh _computeParams . Note that one does not need to specify the success prapatili R since
these values are embedded in thedid¢éa _set _params file

Thus, running the following two lines

bin/lsh_computeParams R data_set file query_set file > d ata_set_parameters_file
bin/lsh_fromParams data_set_file query_set file data_s et_params_file

is equivalent to running
bin/lsh R data_set_file query_set file

To modify manually the parameters for theNN data structure, one should modify the file
data _set _params _file before running the scriggin/Ish _fromParams .

For ease of use, the scripin/lsh also outputs the parameters it used for the construgtedar neigh-
bor data structure. These parameters are written to thedfife _set _file.params ,wheredata _set _file
is the name of the supplied data set file.

2.4 Memory

E2LSH uses a considerable amount of memory: for bigger dasa tet optimal parameters for tiz2NN
data structure might require an amount of memory which istgrethan the available physical memory.
Therefore, when choosing the optimal parametefd,9H takes into consideration the upper bound on
memory it can use. Note that if’ESH starts to swap, the performance decreases by a few ooflers
magnitude.

The user thus can specify the maximal amount of memory tARSH can use (which should be at
most the amount of physical memory available on the systdordexecuting BLSH). This upper bound
is specified in the fildin/mem in bytes. If this file does not exist, the main scripts will @te one with an
estimation of the available physical memory.

2.5 Additional utilities

bin/fexact s an utility that computes the exaBtnear neighbors (using the simple linear scan algorithm).
Its usage is the same as thabafi/Ish

bin/exact R data_set_file query_set file

bin/compareOutputs is an utility for checking the correctness of the output getezl by the
E2LSH package (bpin/lsh orbin/lsh _fromParams). The usage is the following:

bin/compareOQutputs correct_output LSH_output

correct _output is the output frombin/exact andLSH.output is the output frombin/Ish
(orbin/lsh fromParams) for the sameR, data _set _file ,andquery _set file

For each query point fromuery _set _file , bin/compareOutputs outputs whether B.SH’s
output is a subset of the output bin/exact : in this caseOK=1; if E2LSH outputs a point that is not
a R-near neighbor or outputs some points more that once, @€n0 bin/compareOutputs also
outputs for each query point the fraction of tRenear neighbors thatZESH manages to find. Finally,
query set _file outputs the overall statistics: tland of the Oks for all queries, as well as the ratio of
the number of?-near neighbors found by?ESHto their actual number (as determineddig/exact).

2.6 File formats

2.6.1 Data set file and query set file

Both the file for data set and for the query s#dta _set _file andquery _set _file) are text files with
the following format:

coordinate_1_of _point_1 coordinate_2_of _point_1 ... co ordinate_D_of poaint_1
coordinate_1 of point_2 coordinate_2_of point 2 ... co ordinate_D_of point_2
coordinate_1 of point_N coordinate_2_of point N ... co ordinate_D_of point_N

Each entrycoordinate | _of _point _i is areal number.

2.6.2 Output file format

The output of ELSH is twofold. The main results are directed to standargp@ucout). The output
stream has the following format:

Query point i : found x NNs. They are:

Total time for R-NN query: y

Additional information is reported to standard erroeir).

2.6.3 File with the parameters for the R-NN data structure

The file with the parameters for tHe-NN data structure is the output of the/lsh _computeParams

and the command-line paramettta _set _params file for the scriptbin/lsh _fromParams . It
specifies the estimation of the optimal parameters for acsgata set and for a specific machine. Below is
an example of such a file:

1

R

0.53

Success probability
0.9

Dimension

784

R™2

0.280899972

Use <u> functions
1

k

20

m [# independent tuples of LSH functions]
35

L

595

W

4.000000000

T

9991

typeHT

3

All lines except the first one define the parameters in theiotlg way (the first line is reserved for fu-
ture use). Each odd line defines the value of a parameter f¢iceging even line simply describes the name
of the corresponding parameter). The parameRrsSuccess Probability, Dimension, Kk,

m, L, W arethe parameters that appear in the algorithm descrifri@e thatSuccess Probability,

7

k, m, L are interrelated values as described in 3.5.1). The paeaiRé&? is equal toR2. The parameter
T is reserved for specifying how many points to look througfoleethe query algorithm stops, but this
parameter is not implemented yet (and therefore is se}.to

2.6.4 The remainder of the parameter file

Note: understanding of the description below requires familarity with the algorithm of Chapter 3.

The parameterUse <u> functions " signals whether to use the originalfunctions (each of the
L functionsg; is ak-tuple of LSH functions; alk L LSH functions are independent) or whether to y'se
that are not totally independent (as described in the ge8tib.1). If the value of the parameter is 0, original
g’'s are used and = m; if the value is 1, the modified's are used and, = m - (m — 1)/2.

The parametetypeHT defines the type of the hash table used for storing the bucketsining data
set points. Currently, values of 0 and 3 are supported, buguggest to use the value 3. (Refering to the
hash table types described in the section 3.6, the valuer@smmnds to the linked-list version of the hash
tables, and the value 3 — to the hash tables with hybrid stonagyY}".)

Chapter 3

Algorithm description

In this chapter, we describe first the general locality-geeshashing algorithm (as in [2] but with slight
modifications). Next, we gradually add more details of trgoathm as well as the optimizations in our
implementation.

3.1 Notations

We usel;f to denote thel-dimensional real spade? under thel,, norm. For any point € R<, the notation
||v]|, represents thé, norm of the vectow, that is

d

loll, = S w))"”

i=1

In particular||v|| = ||v||2 is the Euclidean norm.

Let the data seP be a finite subset dk?, and letn = |P|. A point ¢ will usually stand for the query
point; the query point is any point froRf’. Pointsv, v will usually stand for some points in the data get

The ball of radiusr centered av is denoted byB(v,r). For a query poing, we callv an R-near
neighbor (or simply a near neighboryife B(q, R).

3.2 Generic locality-sensitive hashing scheme

To solve theR-NN problem, we use the technique of Locality Sensitive Htagbr LSH [4, 3]. For adomain
S of points, the LSH family is defined as:

Definition 1 A family H = {h : S — U} is called locality-sensitive if for any ¢, the function p(t) =
Pry[h(q) = h(v) : ||g — v|| = t] isstrictly decreasing in ¢. That is, the probability of collision of points ¢
and v is decreasing with the distance between them.

Thus, if we consider any pointg v, u, with v € B(q, R) andu ¢ B(q, R), then we have thai(||q —
vl||) > p(|lg — u||). Intuitively we could hash the points frof into some domai/, and then at the query
time compute the hash gfand consider only the points with whigicollides.

However, to achieve the desired running time, we need toifntipé gap between the collision probabil-
ities for the rangé€0, R] (where theR-near neighbors lie) and the ran@e, co). For this purpose we concate-
nate several function's € H. In particular, fork specified later, define a function famify= {g : S — U*}

9

such thaty(v) = (h1(v),. .., hx(v)), whereh; € H. For an integet_, the algorithm chooses functions
q1,-- -, g from G, independently and uniformly at random. During preproicgsghe algorithm stores each
v € P (input point set) in buckets;(v), for all j = 1,..., L. Since the total number of buckets may be
large, the algorithm retains only the non-empty bucketsasprting to hashing (explained later).

To process a query, the algorithm searches all bucketsq), ..., gr.(q). For each point found in a
bucket, the algorithm computes the distance fripto v, and reports the point iff ||[¢ — v|| < R (vis a
R-near neighbor).

We will describe later how we choose the parametemad L, and what time/memory bounds they give.
Next, we present our choice for the LSH famitj

3.3 LSH scheme forl, norm

In this section, we will present the LSH famif§(that we use in our implementation. This LSH family
is based orp-stable distributions, that works for gl € (0,2]. We use exactly the same LSH family as
suggested by [2].

It should be noted that the implementation as described ap@i 2 works only for thé, (Euclidean)
norm.

Since we consider points ﬁﬁ without loss of generality we can assume tRat 1, since otherwise,
we can scale down all the points by a factorrof

3.3.1 p-stable distributions

Stable distributions [5] are defined as limits of normalizedhs of independent identically distributed vari-
ables (an alternate definition follows). The most well-knosxample of a stable distribution is Gaussian (or
normal) distribution. However, the class is much wider;dgample, it includes heavy-tailed distributions.
Stable Distribution: A distributionD overR is calledp-stable, if there existg > 0 such that for any: real
numbersy; ... v, and i.i.d. variablesX; ... X,, with distributionD, the random variabl®_, v; X; has the
same distribution as the variab(g; |v;|?)'/? X, whereX is a random variable with distributioP.

It is known [5] that stable distributions exist for apye (0, 2]. In particular:

e aCauchy distribution D¢, defined by the density functiarfz) = £ —L, is 1-stable

71422
e aGaussian (normal) distribution D, defined by the density functiof(z) = \/%6_;,;2/2’ is 2-stable

From a practical point of view, note that despite the lacklofed form density and distribution func-
tions, it is known [1] that one can generagiestable random variables essentially from two independent
variables distributed uniformly ov¢o, 1].

3.3.2 Hash family

The LSH scheme proposed in [2] ugestable distributions as follows: compute the dot prodiets) to
assign a hash value to each veatoFFormally, each hash functidn, ;(v) : R¢ — Z maps al dimensional
vectorv onto the set of integers. Each hash function in the familydeked by a choice of randomand
b wherea is ad dimensional vector with entries chosen independently fagsrstable distribution and is
a real number chosen uniformly from the rari@ew]. For a fixeda, b the hash functiork,, ;, is given by
ha,b(v) = I.%—i_bj

10

The intuition behind the hash functions is as follows. Thémloducta.v projects each vector to the
real line. It follows fromp-stability that for two vectorsi, v2) the distance between their projections
(a.v1 — a.vp) is distributed ag|v, — v2||, X whereX is ap-stable distribution. If one “chops” the real line
into equi-width segments of appropriate sizeand assign hash values to vectors based on which segment
they project onto, then it is intuitively clear that this hdsinction will be locality preserving in the sense
described above.

One can compute the probability that two vectorsv, collide under a hash function drawn uniformly
at random from this family. Lef,(¢) denote the probability density function of taésolute valueof the
p-stable distribution. We will drop the subscriptvhenever it is clear from the context. For the two vectors
v1, v, lete = ||v; — vaf|,. For a random vectot whose entries are drawn frompastable distribution,
a.v1 — a.vy is distributed ag.X whereX is a random variable drawn frompastable distribution. Sinckis
drawn uniformly from[0, w] it is easy to see that

p(c) = Praplhap(vi) = hap(va)] = Ow %fp(é)(l - i)dt

w

For a fixed parametar the probability of collisiorp(c) decreases monotonically with= ||v; — va|,
satisfying the definition 1.

The optimal value forw depends on the data set and the query point, but it was sedgesf2] that
w = 4 provides good results, and, therefore, we currently useah&w = 4 in our implementation.

3.4 Parameters for the LSH scheme

To use LSH, we need to specify the parameteesid L. From the problem formulation, specifically from
the requirement that a near neighbor is reported with a jpitityaat leastl — §, we can derive a necessary
condition onk and L. Consider a query point and a near neighbar € B(q, R). Letp; = p(1) = p(R).
Then, Pryeglg(q) = g(v)] > pf. Thus,q andv fail to collide for all L functionsg; with probability at
most(1 — p¥)~. Requiring that the poing collides withv on some functiory; is equivalent to inequation

1—(1-pk)* > 1§, which implies thatl, > loglag_‘;k). Since there are no more conditions /oand L
1

(other than minimizing the running time), we chodse-= |
L).

The valuek is chosen as a function of the data set to minimize the runiing of a query. Note that
this is different from the LSH scheme in [2], whekas chosen as a function of the approximation factor.

For a fixed value ok and L = L(k), we can decompose the query time into two terms. The first term
is T, = O(dkL) for computing theL functionsg; for the query poiny as well as retrieving the buckets
gi(q) from hash tables. The second ternilis = O(d - #collisions) for computing the distance to all
points encountered in the retrieved bucketgollisions is the number of points encountered in the buckets
91(q), - .. gr.(q); the expected value @kcollisions is E[#collisions) = L -3 p p*(|lg — v])).

Intuitively, T, increases as a function bf while T, decreases as a function/afThe latter is due to the
fact that higher values df magnify the gap between the collision probabilities of &gband “far” points,
which (for proper values aof) decreases the probability of collision of far points. Thypically there exists
an optimal value ok that minimizes the suri, + T (for a given query point). Note that there might be
different optimalk’s for different query points, therefore the goal would béimjze the mean query time
for all query points. We discuss more on the optimizatiorcpdure in the section 3.5.1

log &
10g(1—plf)

| (the running time is increasing with

11

3.4.1 Faster computation of hash functions

In this section, we describe a slight modification to the L8Hesne that enables a considerable reduction
of the timeT, the time necessary for computing the functigns

In the original LSH scheme, we choogefunctionsg; = (h%’), ceey h,(j)), where each functiohgi) IS
chosen uniformly at random from the LSH famity. For a given point, we need)(d) time to compute a

function hgi)(q), andO(dkL) time to compute all functiong; (¢), - . ., gr(q)-

To reduce the time for computing functiogs for the queryq, we reuse some of the functiomé")
(in this case,g; are not totally independent). Specifically, in addition tmdtionsg;, define functions
u; in the following manner. Suppose is even andn is a fixed constant. Then, far= 1...m, let

u; = (h%’), R h,g/)Q), where eacrhg.’) is drawn uniformly at random from the famit{f. Thuswu; are
vectors each of /2 functions drawn uniformly at random from the LSH famy.

Now, define functiong; asg; = (u,,us), Wherel < a < b < m. Note that we obtaid. = m(m—1)/2
functionsg;.

Since the functiong; are interdependent, we need to derive a different expregsidhe probability that
the algorithm reports a point that is within the distardi¢é&om the query point (gk-near neighbor). With
m m—1
new functionsy;, this probability is greater than or equalle- (1 — plf/z) -m -plf/z : (1 — plf/z) :
To require a success probability of at ledst §, we restrictm to be such tha(l — plf/z)m +m - p’f/z .

m—1
(1 — p]f/Q) < 4. This inequation yields a slightly higher value fbr= m(m — 1)/2 than in the case

when functiongy; are independent, but is still O M . The time for computing thg; functions for a
p

1
query pointg is reduced td; = O(dkm) = O(dk+/L) since we need only to compute fuctionsu;. The
expression for the tim&;, the time to compute the distance to points in buckets), . .., g.(¢), remains
unchanged due to the linearity of expectation.

3.5 Implementation details

3.5.1 R-NN data structure construction

For constructing thé?-NN data structure, the algorithm first computes the pararaét m, L for the data
structure. The parametektsm, L. are computed as a function of the data Betthe radiusR, and the

probability 1 — § as outlined in the section 3.4 and 3.4.1. For a valué,ahe parametem is chosen

m m—1
to be the smallest natural number satisfyi<1g— plf/z) +m - plf/z . (1 —plf/2) < §; Lis set to

m(m — 1)/2. Thus, in what follows, we consider and L as functions of, and the question remains only
of how to choosé.

For choosing the valuk, the algorithm experimentally estimates the tirigand7’. as a function of.
Remember that the tirE. is dependent on the query poiptand, therefore, for estimatinf. we need to
use a seb of sample query points (the estimation@fis then the mean of the tim&s for points fromsS).
The sample sef is chosen to be a set of several points chosen at random feouttty set. (The package
also provides the option of choositgto be a subset of the data g&1)

Note that to estimaté, andT. precisely, we need to know the constants hidded by(t¢ notation
in the expressions fdf, and7.. To compute these constants, the implementation consteusample data
structure and runs several queries on that sample datastumeasuring the actual timég and7...

12

Concluding, % is chosen such Ehafc + T, is minimal (while the data structure space requirement is
within the memory bounds), whef& is the mean of the timesg, for all points in the sample query s6t

= s Te(@)
To = =5 | .
Once the parametekts m, L are computed, the algorithm constructs fM¥\NN data structure containing

the points frontpP.

3.5.2 Bucket hashing

Recall that the domain of each functignis too large to store all possible buckets explicitly, antyomon-
empty buckets are stored. To this end, for each pairtthe bucketsy, (v), ... gr(v) are hashed using the
universal hash functions. For each functign: = 1... L, there is a hash tabl#; containing the buckets
{gi(v) | v € P}. For this purpose, there are 2 associated hash function@* — {0, ..., tableSize — 1}
andhs : 2% — {0,...,C} (eachg; maps toz*). The functionh; has the role of the usual hash function in
an universal hashing scheme. The second hash functiorifidetihe buckets in chains.

The collisions within each bucket are resolved by chainipen storing a bucket;(v) = (z1,. .. x)
in its chain, instead of storing the entire vedtor, . . . z,) for bucket identification, we store onhy (x4, . . . k).
Thus, a buckey;(v) = (x1,...xzx) has only the following associated information stored irchain: the
identifier hy(z1, . . ., 73), and the points in the bucket, which afe' (1, ... 2;) N P.

The reasons for using the second hash functigrinstead of storing the valug;(v) = (z1,...xx)
are twofold. Firstly, by using a fingerprirtty (x4, ... z), we decrease the amount of memory for bucket
identification fromO(k) to O(1). Secondly, with the fingerprint it is faster to look up a buckethe hash
table. The domain of the functiol, is chosen big enough to ensure with a high probability thgtteuo
different buckets in the same chain have differenvalues.

All L hash tables use the same primary hash fundiiofused to dermine the index in the hash table)
and the same secondary hash functignThese two hash functions have the form

k
hi(ai,az,...,a;) = ((Z réa,) modprz’me> modtableSize,

i=1

and
k

ho(ay,ag,...,a;) = (Z TZ'-’ai) modprime,
=1
wherer; andr!’ are random integersableSize is the size of the hash tables, gndme is a prime number.
In the current implementatiortableSize = |P|, a; are represented by 32-bit integers, andme is
equal to23? —5. This value of prime allows fast hash function computatidgthaut using modulo operations.
Specifically, consider computing: (a;) for £ = 1. We have that:

ha(ar) = (r{a;) mod (232 - 5) = (low [r{a1] + 5 - high [r{a1]) mod (2°% — 5)

wherelow(r{a,] are the low-order 32 bits of/a; (a 64-bit number), andligh[r} a;1] are the high-order
32 bits ofr{a;. If we chooser! from the rangdl, . .. 22%], we will always have that = low [r{a;] + 5 -
high [rfai] < 2 - (232 — 5). This means that

b B « Jfa<2? -5
A0) =0 @2 5 ifa>22 5

13

Fork > 1, we compute progressively the Sl(rﬁ:le rg’ai) mod prime keeping always the partial sum

modulo (232 — 5) using the same principle as the one above. Note that the wfrthe functionhs thus
becomeq1,...23% — 6}.

3.5.3 Additional optimizations

We use the following additional optimizations.

e Precomputation of g;(q), h1(g:(q)), and ha(g;(q)). To answer a query, we first need to compute
9i(q). As mentioned in the section 3.4.1, singe= (u,, up), We need only to compute/2-tuples
uq(q), a = 1,...m. Further, for searching for bucketg(q) in hash tables, we need in fact only
hi(gi(q)) and ha(gi(q)). Precomputingh; and hs in the straight-forward way would tak@(Lk)
time. However, since; are of the form(u,, up), we can reduce this time in the following way. Note
that each functiorhj, j € {1,2}, is of the formh;(x1,...2;) = ((XF_,/z;)mod 4;)mod B;.
Therefore,h;(z1, ... z;) may be computed ag>F% 1z, + k211 riw)mod A;)mod B;. If
we denoter]; = (r{,...7}), andrly,, = (1 5, - 71), then we have that? (g:(q)) = ((rly

right
Uq (V) + gy - up(v))Mod Aj)mod B;. Thus, it suffices to precompute only,y, - ua(v), where
j € {1,2}, side € {left,right}, a € {1,...m}, which takesO(km) time.

e Skipping repeated points. In the basic query algorithm, a pointe P might be encountered more
than once. Specifically, a pointe P might appear in more than one of the bucket§;), . .. g1.(q).
Since there is no need to compute the distance to any poitP more than once, we keep track
of the points for which we already computed the distali¢e- v||, and not compute the distance a
second time. For this purpose, for each particular querykeep a vectoe;, such thae; = 1 if we
already encountered the pointe P in an earlier bucket (and computed the distajige- v||), and
e; = 0 otherwise. Thus, the first time we encounter a poiit the buckets, we compute the distance
to it, which takesO(d) time; for all subsequent times we encountewe spend onlyO(1) time (for
checking the vector;).

Note that with this optimization, the estimation Bf is not accurate anymore. This is becadse

is the time for computing the distance to points encountéretie bucketsy, (¢), ... gr.(¢). Taking
into the consideration only the distance computations, @gsuming we spend no time on subsequent
copies of a point), the new expression foris

E[T)=d) (1 — (1=pllg = vID*?)"™ = m - p(llg = v[)*"*- (1= p(llq —v||>’f/2)’”‘l)

veEP

3.6 Memory

The R-NN data structure described above requitEs:.L) memory (for each functior;, we store then
points fromP). Since,L increases with, the memory requirement is big for big data set or for moderat
data set for which optimal time is achived with higher valoé%. Therefore, an upper limit on memory
imposes an upper limit oh.

Because the memory requirement is big, the constant in ffo{» L) is very important. In our current
implementation, with the best variant of the hash tables,dbnstant is 12 bytes. Note that it is the structure
and layout of thel. hash tables that plays the substantial role in the memogeusa

14

Below we show two variants of the layout of the hash tablesweadeployed. We assume that 1) the
number of points is, < 220; 2) each pointer is 4 bytes long; 8)bleSize = n for each hash table.

One of the most straightforward layouts of a hash tdbjés the following. For each indekof the hash
table, we store a pointer to a singly-linked list of bucketshie chain. For each bucket, we store its value
ha(-), and a pointer to a singly-linked list of points in the buckBte memory requirement per hash table is
4 - tableSize + 8 - #buckets + 8 - n < 20n, yielding a constant d0.

To reduce this constant ti2 bytes, we do the following. Firstly, we index all points # such that
we can refer to points by index (this index is constant acatidsash tables). Refering to a point thus takes
only 20 bits (and not32 as in the case of a pointer). Consider now a hash tableFor this hash table,
we deploy a tablé@” of 32-bit unsigned integers that store all buckets (with valigs)) and points in the
buckets (thusY is a hybrid storage table since it stores both buckets’ amatgpalescription). The table
has a length offbuckets + n and is used as follows. In the hash talblg at index!, we store the pointer
to some index; of Y; ¢ is the start of the description of the chdinA chain is stored as followshs(-)
value of the first bucket in chain (at positiepin Y') followed by the indeces of the points in this bucket
(positionse; + 1, ... e; +nq); ha(-) value of the second bucket in the chain (positépr- 11 + 1) followed
by the indeces of the points in this second bucket (positipasn; + 2, ... e; +n1 + 1 + n2); and so forth.

Note that we need also to store the number of buckets in eah ak well as the number of points in
each bucket. Instead of storing the chain length, we storedoch bucket a bit that says whether that bucket
is the last one in the chain or not; this bit is one of the unustdof the 4-byte integer storing the index of
the first point in the corresponding bucket (i.e., if the-) value of the bucket is stored at positiern Y,
then we use a high-order bit of the integer at position 1 in Y). For storing the length of the bucket, we
use the remaining unused bits of the first point in the budkéten the remaining bits are not enough (there
are more thar23?2=20-1 — 1 = 2! _ 1 points in the bucket), we store a special value for the le@}h
which means that there are more ti2ah— 1 points in the bucket, and there are some additional poinés (t
do not fit in the2!! — 1 integers alloted irY” after theh,(-) value of the bucket). These additional points
are also stored i’ but at a different position; their start index and numbersdoeed in the unused bits of
the remaining2!! — 2 points that follow theh,(-) value of the bucket and the first point of the bucket (i.e.,
unused bits of the integers at positiang- 2,...e + 2!t — 1),

3.7 Future possible optimizations

e Parameter w of the LSH scheme. In addition to optimizingk, the algorithm could optimize the
parametenv to achieve the best query time. The functipdepends on the parameter and, thus,
both timesT,. and7, depend onw. Currently, we use a fixed value #f but the optimal value ob is
a function of the data s (and a sample query set).

e Generalization of functionsg; = (ug,up). In section 3.4.1 we presented a new approach to choosing
functionsg;. Specifically, we choose functions = (uq,u), 1 < a < b < m, where eachy;,
j = 1...m, is ak/2-tuple of random independent hash functions from the LSHI§af. In this
way, we decreased the time to compute functigiig) for a queryq from O(dkL) to O(dk\/L).

This approach could be generalized to functigribat aret-tuples of functions:, whereu are drawn
indepently from*/*, reducing in this way the asymptotic time for computing thadtionsg. We

did not pursue this generalization since, evei is still O 1031/5 , the constant hidden b@(-)

1
notation fort > 2 would probably nullify the theoretical gain for the typididta sets.

15

Chapter 4

The E2LSH Code

4.1 Code overview
The core of the BLSH code is divided into three main components:

¢ LocalitySensitiveHashing.cpp — contains the implementation of the main LSH-basged
near neighbor data strucure (except the hashing of the ta)ckEhe main functionality is for con-
structing the data structure (given the parameters sughrasl), and for answering a query.

e BucketHashing.cpp — contains the implementation of the hash tables for theewsal hashing
of the buckets. The main functionality is for constructiresh tables, adding new buckets/points to
it, and looking-up a bucket.

e SelfTuning.cpp — contains functions for computing the optimal parametersife R-near neigh-
bor data structure. Contains all the functions for estingathe timesr, T, (including the functions
for estimating#collisions).

Additional code making part of the core is contained in tH®%aing files:

e Geometry.h — contains the definition for a poinPPointT data type);

o NearNeighbors.cpp ,NearNeighbors.h —contain the functions at the interface of tre.5H
core (see a more detailed description below);

e Random.cpp , Random.h — contain the pseudo-random number generator;

e BasicDefinitions.h — contains the definitions of general-purpose types (sudhtds , RealT)
and macros (such as the macros for timing operations);

e Utils.cpp ,Utils.h —contain some general purpose functions (e.g., copyingpssc

Another important part of the package is the ti8HMain.cpp , which is a sample code for using
E2LSH. LSHMain.cpp only reads the input files, parses the command line parasyeted calls the cor-
responding functions from the package.

The most important data structures are:

16

e RNearNeighborStructureT — the fundamentaR-near neighbor data structure. This structure
contains the parameters used to construct the structerdescription of the functiong, the index of
the points in the structure, as well pointers to thaash tables for storing the buckets. The structure
is defined inLocalitySensitiveHashing.h

e UHashStructureT — the structure defining a hash table used for hashing thestsickollisions
are resolved using chaining as explained in sections 3ril23&6. There are 2 main types of hash
tables: HT_LINKED_LIST and HT_HYBRID.CHAINS (the fieldtypeHT contains the type of the
hash table). The typd T_.LINKED_LIST corresponds to the linked-list version of the hash tabld, an
HT_HYBRID.CHAINS - to the one with hybrid storage arrdy (see section 3.6 for more details).
Each hash table also contains pointers to the descripticthe éunctionsh, (-) andhs(-) used for the
universal hashing. The structure is define@urcketHashing.h

e RNNParametersT - a struct containing the parameters necessary for cotisgube
RNearNeighborStructureT data structure. Itis defined LrocalitySensitiveHashing.h

e PPoint —a struct for storing a point frof® or a query point. This structure contains the coordinates
of the point, the square of the norm of the point, and an inaémch can be used by the callee outside
the E2LSH code (such akSHMain.cpp) for identifying the point (for example, it might by the
index of the point in the s&®); this index is not used within the core of ESH.

4.2 BEALSH Interface

The following are the functions at the interface ofLISH core code. The first two functions are suffi-
cient for constructing thé?-NN data structure, and querying it afterwards; they ardaded in the file
NearNeighbors.h . The following two functions provide a separation of thermaation of the parameter
(such ast, m, L) from the construction of th&-NN data structure itself.

1. To construct the&?-NN data structure given as input— §, R, d, and the data sé?, one can use the
function

PRNearNeighborStructT

initSelfTunedRNearNeighborWithDataSet(RealT threshol dRrR,
RealT successProbability,
Int32T nPoints,
IntT dimension,
PPointT *dataSet,
INtT nSampleQueries,
PPointT *sampleQueries)

The function will estimate optimal parametérsn, L, and will construct &-NN data structure from
this parameters.

The parameters of the function are the input data of the idtgor R, 1 — §, n, d, and respectivelp.
The parametesampleQueries represents a set of sample query points — the function agpsni
the parameters of the constructed data structure for thtspgpecified in the ssampleQueries

17

sampleQueries could be a sample of points from the actual query set or froendédta sefP.
nSampleQueries specifies the number of points in the sampleQueries

The return value of the function is the-NN data structrure that is constructed. This function is
declared infNearNeighbors.h

. For a query operation, one can use the function

Int32T getRNearNeighbors(PRNearNeighborStructT nnStru ct,
PPointT queryPoint,
PPointT *(&result),
INtT &resultSize)

The parameters of the function have the following meaning:

e nNnStruct —the R-NN data structure on which to perform the query;
e queryPoint - the query point;

e result - the array where the near neighbors are to be stored (if Zleeo$ithis array is not
sufficient for storing the near neighbors, the array is oealled to fit all near neighhbors);

e resultSize —the size of theesult array (if theresult is resized, this value is changed
accordingly);

The functiongetRNearNeighbors returns the number of near neighbors that were found. The
function is declared in the filslearNeighbors.h

. For estimating the optimal parameters fdrR-dNN data structure, one can use the function

RNNParametersT computeOptimalParameters(RealT R,
RealT successProbability,
IntT nPoints,
IntT dimension,
PPointT *dataSet,
INtT nSampleQueries,
PPointT *sampleQueries)

The parameters of the function are the input data of the idlfgor R, 1 — 6, n, d, and respectively

P. The parametesampleQueries represents a set of sample query points — the function op-
timizes the parameters of the data structure for the popesiied in the sesampleQueries
sampleQueries could be a sample of points from the actual query set or froenddta sefP.
nSampleQueries specifies the number of points in the sampleQueries

The return value is the structrure with optimal parameténss function is declared iSelfTuning.h
. For constructing th&-NN data structure from the optimal parameters, one canhesgitiction
PRNearNeighborStructT initLSH_WithDataSet(RNNParamet ersT algParameters,

Int32T nPoints,
PPointT *dataSet)

18

algParameters specify the parameters with which t&NN data structure will be constructed.

The function returns the constructed data structure. Thetion is declared in
LocalitySensitiveHashing.h

19

Chapter 5

Frequent Anticipated Questions

In this section we give answers to some questions that tlieremight ask when compiling and using the
package.

1. Q: How to compile this thing ?

A: Since you are reading this manual, you must have alreadyigped and untarred the original file.
Now it suffices to typanake in the main directory to compile the code.

2. Q: OK, it compiles. Now what ?

A: You can run the program on a provided datamseistlk.dts and query semnnistlk.q . They
reside in the main directory. Simply type

bin/lsh 0.6 mnistlk.dts mnistlk.q >0

This will create an output file containing the results of the search. To see if it worked tinenexact
algorithm

bin/exact 0.6 mnistlk.dts mnistlk.q >o.e

and compare the outputs by running
bin/compareOutputs o.e o

You should receive an answer that looks like:

Overall: OK = 1. NN_LSH/NN_Correct = 5/5=1.000

This means that the run was “OK”, and that the randomized LI§brighm found 5 out of 5 (i.e., all)
near neighbors within distance 0.6 from the query pointdeitmat, since the algorithm is randomized,
your results could be different (e.g., 4 out of 5 near neiggbadHowever, if you are getting 0 out of
5, then probably something is wrong.

20

3. Q: I ran the code, but it is so slow!
A: If the code is unusually slow, it might mean two things:

e The code uses so much memory that the system starts swappimg typically degrades the
performance by 3 orders of magnitude, so should be definitatyded. To fix it, specify the
amount of available (not total) memory in the filan/mem .

e The search radius you specified is so large that many/molséafdta points are reported as near
neighbors. If this is what you want, then the code will not noach faster. In fact, you might be
better off using linear scan instead, since it is simplerlzalless overhead.

Otherwise, try to adjust the search radius so that, on aggthgre are few near neighbors per
query. You can usdin/exact for experiments, it is likely to be faster than LSH if you
perform just a few queries.

21

Bibliography

[1] J. M. Chambers, C. L. Mallows, and B. W. Stuck. A methoddonulating stable random variables.
Amer. Satist. Assoc., 71:340-344, 1976.

[2] M. Datar, N. Immorlica, P. Indyk, and V. Mirrokni. Loc#ji-sensitive hashing scheme based on p-stable
distributions. DIMACS Workshop on Streaming Data Analysis and Mining, 2003.

[3] A. Gionis, P. Indyk, and R. Motwani. Similarity searchhigh dimensions via hashingfroceedings of
the 25th International Conference on Very Large Data Bases (VLDB), 1999.

[4] P.Indyk and R. Motwani. Approximate nearest neighbowards removing the curse of dimensionality.
Proceedings of the Symposium on Theory of Computing, 1998.

[5] V.M. Zolotarev. One-Dimensional Stable Distributions. Vol. 65 of Translations of Mathematical Mono-
graphs, American Mathematical Society, 1986.

22

