
6.S979: Problem Set 2 Solutions

Due: November 6, 2020

1. SDP duality, Tsirelson’s characterization, and NPA In this problem we will explore the
connection between the “primal” view of the NPA hierarchy in terms of extended correlation
matrices, and the “dual” view in terms of sums of squares. We’ll do this for the special case
of the Tsirelson characterization for XOR games.

Let X and Y be Alice and Bob’s respective input sets. Recall that an extended correlation
matrix C with rows and columns indexed by X ∪Y is allowed by Tsirelson’s characterization
if

• C � 0 (i.e. C is a Hermitian, positive semidefinite matrix).

• Cii = 1 for all i ∈ X ∪ Y.

• Cxy = Cyx for all x, y.

(a) Suppose we are given an extended correlation matrix C. For any product PQ where
P,Q ∈ {Ax}x∈X ∪ {By}y∈Y , define the pseudo-expectation Ẽ[PQ] to be the value of the
corresponding entry of C:

Ẽ[AxAx′ ] = Cxx′ , Ẽ[AxBy] = Ẽ[ByAx] = Cxy, Ẽ[ByBy′ ] = Cyy′ .

We can extend this by linearity to define the pseudo-expectation of any linear combina-
tion of such products. Given a polynomial of the form

p = (αAx + βBy)
†(αAx + βBy),

show that there exists a vector v such that

Ẽ[p] = v†Cv.

Take v = α |x〉+ β |y〉. Then

v†Cv = (α∗ 〈x|+ β∗ 〈y|)C(α |x〉+ β |y〉)
= |α|2Cxx + α∗βCxy + β∗αCyx + |β|2Cyy
= Ẽ[|α|2AxAx + α∗AxBy + β∗αByAx + |β|2ByBy]
= Ẽ[p].
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(b) Suppose we have an SoS certificate that the bias of some XOR game is at most ν of the
form

ν · I −
∑
x,y

sxyAxBy =
k∑
i=1

r†i ri +
∑
x

αx(I −A2
x) +

∑
y

βy(I −B2
y) +

∑
x,y

γx,y([Ax, By]),

where sxy ∈ {±1}, each ri is a linear combination of Ax and By operators, and αx, βy, γxy
are complex numbers. Show that this implies that for every correlation matrix C satis-
fying Tsirelson’s criteria,

Ẽ[
∑
x,y

sxyAxBy] ≤ ν.

This is known as “weak duality”: it says that any SoS certificate of this form also upper-
bounds the value attained by a Tsirelson correlation. In fact, it is true (but you need
not prove) that “strong duality” holds: the optimal game value attained for a Tsirelson
correlation is equal to the optimal upper-bound that can be proven by an SoS certificate
of this form. The idea is to apply Ẽ to both sides of the expression. First, let’s extend
Ẽ to polynomials that have a constant term by defining Ẽ[I] = 1, and using linearity.
Then, observe that for any x and y:

Ẽ[I −A2
x] = 1− Cxx = 0

Ẽ[I −B2
y ] = 1− Cyy = 0

Ẽ[[Ax, By]] = Cxy − Cyx = 0.

Moreover, by the previous part, for each ri there exists a vector vi such that Ẽ[r†i ri] =

v†iCvi, which in turn is nonnegative by the fact that C is PSD. Hence, we obtain

ν − Ẽ[
∑
x,y

sxyAxBy] =
∑
i

Ẽ[r†i ri] + 0 ≥ 0.

2. Embezzlement and Schmidt coefficients In this problem we will see a fun example of
the utility of Schmidt coefficients. We consider the task of embezzlement of entanglement,
introduced by van Dam and Hayden. In this setting, we imagine that Alice and Bob go to the
entanglement bank to get a state |ψ〉AB. They each perform a local operation on the state
and their local registers, and then send the state back to the bank. Alice and Bob’s goal is to
extract one EPR pair of entanglement while modifying the bank’s state as little as possible,
i.e. to carry out the transformation

|ψ〉AB ⊗ |0〉A′ ⊗ |0〉B′
V A⊗V B

−−−−−→ |ψ〉AB ⊗
1√
2

(|0〉A′ ⊗ |0〉B′ + |1〉A′ ⊗ |1〉B′),

where V A is an isometry acting only on AA′ and V B is an isometry acting only on BB′.

(a) Suppose the Schmidt coefficients of |ψ〉 are σ1, . . . , σk for some k < ∞. Write the
Schmidt coefficients of the joint states on AA′BB′ before and after the embezzlement
transformation. Before, the Schmidt coefficients are σ1, . . . , σk, and after, they are
σ′1 = 1√

2
σ1, σ

′
2 = 1√

2
σ1, σ

′
3 = 1√

2
σ2, . . . , σ

′
2k = 1√

2
σk.
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(b) Is embezzlement possible for finite k? Why or why not? It is not possible, because before
you have k nonzero Schmidt coefficients, and afterwards you have 2k, whereas a local
transformation of the form V A ⊗ V B cannot change the number of Schmidt coefficients.

3. Testing commutation: In this problem we’re going to analyze a game to test that two
measurements approximately commute. This is very useful for analyzing MIP* proofs. In
the basic commutation test, Alice is sent the question 0 asked for two answers a0, a1. Bob
is sent a bit y ∈ {0, 1}, and responds with an answer b. The players win the test if ay = b.
We denote the players’ shared stated by |ψ〉, Alice’s measurement elements by {Aa0,a1} and
Bob’s by {By

b }.

(a) Write an expression for the success probability of the players in the test. (Hint: it should
look like a sum of terms of the form 〈ψ|A⊗B |ψ〉 for some operators A,B.) The success
probability is

p =
1

2

∑
y

∑
a0,a1

〈ψ|Aa0,a1 ⊗By
ay |ψ〉︸ ︷︷ ︸

py

.

(b) Suppose Alice and Bob win the game with certainty. Prove that for any y,∑
a0,a1

Aa0,a1 ⊗By
ay |ψ〉 = |ψ〉 .

From the previous part, p = 1
2(p0 + p1), and each py is between 0 and 1. So if p = 1,

p0 = p1 = 1, and thus

〈ψ|
∑
a0,a1

Aa0,a1 ⊗By
ay |ψ〉︸ ︷︷ ︸

|ψy〉

= 1.

This is the inner product of |ψ〉 with a vector |ψy〉 whose norm is at most one; if the
inner product is 1, then the two vectors must be equal.

(c) Deduce that

Aa0,a1 ⊗ I |ψ〉 = Aa0,a1 ⊗B0
a0 |ψ〉 =

∑
a′0

Aa′0,a1 ⊗B
0
a0 |ψ〉

Aa0,a1 ⊗ I |ψ〉 = Aa0,a1 ⊗B1
a1 |ψ〉 =

∑
a′1

Aa0,a′1 ⊗B
1
a1 |ψ〉

Hint: use the previous part together with orthogonality between elements corresponding
to different outcomes (e.g. the fact that Aa0,a1Aa′0,a1 = 0 for a0 6= a′0). We shall show
this for y = 0; the calculations for y = 1 are completely analogous. By the fact that the
A operators form a projective measurement, we know that Aa0,a1Aa′0,a′1 is equal to Aa0,a1
if a0 = a′0 and a1 = a′1, and 0 otherwise. Hence, applying the result of the previous part

Aa0,a1 ⊗ I |ψ〉 = Aa0,a1 ⊗ I(
∑
a′0,a

′
1

Aa′0,a′1 ⊗B
0
a0 |ψ〉)

= Aa0,a1 ⊗B0
a0 |ψ〉 .
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Now, we will deduce the second equality, by using similar ideas together with the fact
that the B measurement is projective (so By

aB
y
a′ = By

a if a = a′ and 0 otherwise).∑
a′0

Aa′0,a1 ⊗B
0
a0 |ψ〉 =

∑
a′0

Aa′0,a1 ⊗B
0
a0(

∑
a′′0 ,a

′
1

Aa′′0 ,a′1 ⊗B
0
a′′0
|ψ〉)

=
∑
a′0

∑
a′1

(Aa0,a1Aa′′0 ,a′1)⊗B0
a0 |ψ〉

= Aa0,a1 ⊗B0
a0 |ψ〉 ,

where we used the projectivity of the B measurement to set a′′0 = a0 in the sum.

(d) Using the previous two parts, prove that

Aa0,a1 ⊗ I |ψ〉 = I ⊗B0
a0B

1
a1 |ψ〉 = I ⊗B1

a1B
0
a0 |ψ〉 .

We use the second equality from each line of the previous part.

Aa0,a1 ⊗ I |ψ〉 =
∑
a′0

Aa′0,a1 ⊗B
0
a0 |ψ〉

= (I ⊗B0
a0)(

∑
a′0

Aa′0,a1 ⊗ I) |ψ〉

= (I ⊗B0
a0)(

∑
a′0,a

′
1

Aa′0,a′1 ⊗B
1
a1) |ψ〉

= I ⊗B0
a0B

1
a1 ,

where we used completeness of the A measurement to write
∑

a′0,a
′
1
Aa′0,a′1 = I. The same

steps with 0 and 1 interchanged give us the Bs in the opposite order.

(e) Optional bonus: what about the case where Alice and Bob win with probability 1− ε?
Can you make a quantitative version of the preceding arguments work? Essentially you
have to do the previous parts keeping track of the Euclidean distance between the LHS
and RHS of the vector equations.

4. Non-signalling correlations: The NPA hierarchy gives us a collection of outer approxima-
tions to the set Cqc of quantum commuting correlations. A much cruder outer approximation
is the set of non-signalling correlations Cns. A correlation p(a, b|x, y) is non-signalling if for
every a, x, y, y′

p(a|x, y) = p(a|x, y′),

and likewise for every b, x, x′, y
p(b|x, y) = p(b|x′, y).

That is, Alice’s outcome probabilities for a given question should be the same regardless of
Bob’s question, and vice versa.

(a) Prove that Cqc ⊆ Cns. Recall that a correlation is in Cqc if it can be written as

p(a, b|x, y) = 〈ψ|AxaB
y
b |ψ〉 ,
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for some state |ψ〉 and Hermitian operators Axa, By
b satisfying the conditions

∀x, (Axa)2 = Axa and
∑
a

Axa = I

∀y, (By
b )2 = By

b and
∑
b

By
b = I

∀x, y, a, b, [Axa, B
y
b ] = 0.

We have to show that every element of Cqc is also contained in Cns. We can do this by
explicitly checking the nonsignalling conditions given in the problem statement. Given
p ∈ Cqc, choose any a, x, y, y′:

p(a|x, y) =
∑
b

p(a, b|x, y)

=
∑
b

〈ψ|AxaB
y
b |ψ〉

= 〈ψ|Axa(
∑
b

By
b ) |ψ〉

= 〈ψ|Axa(I) |ψ〉

= 〈ψ|Axa(
∑
b

By′

b ) |ψ〉

= p(a|x, y′).

This shows that Bob cannot signal to Alice. To show the reverse is a totally analogous
calculation. Choose any b, x, x′, y:

p(b|x, y) =
∑
a

p(a, b|x, y)

=
∑
a

〈ψ|AxaB
y
b |ψ〉

= 〈ψ| (
∑
a

Axa)By
b |ψ〉

= 〈ψ| (I)By
b |ψ〉

= 〈ψ| (
∑
a

Ax
′
a )By

b |ψ〉

= p(b|x′, y).

(b) Show that there is a non-signalling correlation that wins the CHSH game with certainty.
The correlation is the one that for every pair of questions x, y returns one of the two

winning pairs of answers a, b with probabilitly 1/2 each. The nonzero probabilities in p
are given by

p(0, 0|0, 0) = 1/2, p(1, 1|0, 0) = 1/2

p(0, 0|0, 1) = 1/2, p(1, 1|0, 1) = 1/2

p(0, 0|1, 0) = 1/2, p(1, 1|1, 0) = 1/2

p(0, 1|1, 1) = 1/2, p(1, 0|1, 1) = 1/2.
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By construction, this wins CHSH with probability 1, because it is only supported on
winning pairs of answers. To see that it is nonsignalling, observe that for all x, y,
p(a|x, y) and p(b|x, y) are both the uniform distribution over {0, 1}, so the conditions in
the problem statement hold. (In words, if you imagine Alice and Bob have access to a
magic pair of boxes that implement this correlation, Alice will always observe what looks
to her like a totally uniform random bit, uncorrelated with anything else, so she cannot
learn anything about Bob’s question from the outcome of her box.)
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