6.S979: Problem Set 1

Due: October 2, 2020

1. Maximally entangled states: In this problem, we will work with a generalization of the EPR state called the maximally entangled state. Consider the state space $\mathbb{C}^{d} \otimes \mathbb{C}^{d}$, and denote the standard basis of \mathbb{C}^{d} by $\{|1\rangle, \ldots,|d\rangle\}$. The maximally entangled state in this space is defined to be

$$
|\Phi\rangle=\frac{1}{\sqrt{d}} \sum_{i=1}^{d}|i\rangle \otimes|i\rangle .
$$

(a) Show that for any $d \times d$ matrix A, it holds that

$$
A \otimes I|\Phi\rangle=I \otimes A^{T}|\Phi\rangle,
$$

where A^{T} is the transpose of A. (Extra food for thought: is the transpose basisdependent?)
(b) Show that for any two $d \times d$ matrices A and B, it holds that

$$
\langle\Phi| A \otimes B|\Phi\rangle=\frac{1}{d} \operatorname{tr}\left(A B^{T}\right) .
$$

(c) Show that for any orthonormal basis $\left\{\left|v_{1}\right\rangle, \ldots,\left|v_{d}\right\rangle\right\}$ of \mathbb{C}^{d}, the maximally entangled state can be expressed as

$$
|\Phi\rangle=\frac{1}{\sqrt{d}} \sum_{i=1}^{d}\left|v_{i}\right\rangle \otimes\left|v_{i}^{*}\right\rangle,
$$

where $\left|v_{i}^{*}\right\rangle$ is the complex conjugate of the vector $\left|v_{i}\right\rangle$.
2. Stabilizers: Recall the Pauli X and Z matrices from class

$$
X=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), Z=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

(a) Write an eigendecomposition for $X \otimes X$ and $Z \otimes Z$.
(b) A state $|\psi\rangle$ is stabilized by an operator M if $M|\psi\rangle=|\psi\rangle$. Write down the states stabilized by
i. $X \otimes I$ and $I \otimes Z$.
ii. $X \otimes X$ and $Z \otimes Z$.
iii. $X \otimes X$ and $-Z \otimes Z$.
(c) Is there a state stabilized by $X \otimes X$ and $Z \otimes I$? If not, why not?
(d) (Optional:) Suppose that $\langle\psi|(X \otimes X+Z \otimes Z)|\psi\rangle \geq 2-\epsilon$. Find a bound on the minimal Euclidean distance $\min _{\theta} \| e^{i \theta}|\psi\rangle-|E P R\rangle \|$ between a state that is a multiple of $|\psi\rangle$ and the EPR state, as a function of ϵ. (Hint: consider the eigendecomposition of the matrix $X \otimes X+Z \otimes Z$.
3. The GHZ game: In this problem, we will introduce tripartite states, corresponding to three quantum systems. Suppose Alice, Bob, and Charlie each have a single qubit. Then their joint state space is $\mathbb{C}^{2} \otimes \mathbb{C}^{2} \otimes \mathbb{C}^{2}$. As usual, we denote the standard basis of \mathbb{C}^{2} by $\{|0\rangle,|1\rangle\}$. X and Z are the Pauli matrices as in the previous problem.
(a) The GHZ state is the following entangled state

$$
|G H Z\rangle=\frac{1}{\sqrt{2}}(|0\rangle \otimes|0\rangle \otimes|0\rangle+|1\rangle \otimes|1\rangle \otimes|1\rangle) .
$$

(b) Write down all tensor products of X, Z, and the identity I that stabilize $|G H Z\rangle$. You should find five such matrices, including $I \otimes I \otimes I$.
(c) Suppose Alice and Bob have lost contact with Charlie. Show that nevertheless they can distinguish between the GHZ state and the following state

$$
|\psi\rangle=\frac{1}{\sqrt{2}}(|0\rangle \otimes|0\rangle+|1\rangle \otimes|1\rangle)_{A B} \otimes|1\rangle_{C} .
$$

Do this by finding an observable \mathcal{O} acting on Alice and Bob's systems such that

$$
\langle\psi| \mathcal{O} \otimes I|\psi\rangle \neq\langle G H Z| \mathcal{O} \otimes I|G H Z\rangle .
$$

(Hint: consider a tensor product of X or Z matrices).
(d) In the GHZ game, Alice, Bob, and Charlie are separated so that they cannot communicate, and play together against a referee. The referee samples a triple of bits (x, y, z) from $\{(0,0,0),(0,1,1),(1,0,1),(1,1,0)\}$ uniformly at random, and sends x to Alice, y to Bob, and z to Charlie. Each player responds with a single-bit answer; we denote Alice, Bob, and Charlie's answers by a, b, and c respectively. The players win if $x \vee y \vee z=a \oplus b \oplus c$.
i. What is the maximum probability of winning for Alice, Bob, and Charlie if they use a classical strategy?
ii. Describe a quantum strategy for the players to win the game with certainty. (Hint: use the GHZ state, and the stabilizers you found in the first part of the problem.)

