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Abstract

We study minimal factorizations of the n-cycle, which are factorizations of the
permuation (1, . . . , n) into a product of n − 1 transpositions. We implement an
algorithm that generates a uniformly distributed minimal factorization by using a
bijection between these factorizations and Cayley trees. With this generator, we
are able to observe behavior of random minimal factorizations predicted by Ko-
rchesmski & Feray [5]. We are also interested in primitive minimal factorizations,
which are minimal factorizations where the sequence of the smallest elements of
transpositions is non decreasing. We construct an algorithm that generates a ran-
dom primitive minimal factorization uniformly by using bijections with Dyck paths
and 231-avoiding sequences. With this generator, we observe the behaviour of these
random factorizations and we establish an explicit formula for the law of the first
transposition of this factorization.

1 Introduction and motivation

We study the geometric structure of minimal factorizations of the n-cycle represented
as a compact subset of the unit disk in the plane R2. More precisely we denote by
Sn the symmetric group of permutations acting on [n] := {1, . . . , n} and Tn the set of
all transpositions of Sn. We denote by (1, . . . , n) the n-cycle that maps i to i + 1 for
1 ≤ i ≤ n − 1 and n to 1. This particular n-cycle will be referred to as of this point by:
the n-cycle.

It is easy to see that the minimal number of transpositions needed to factorize the
n-cycle c = (1, 2, ..., n) is at least n − 1 since its orbit is [n] i.e: {ck(1) : 1 ≤ k ≤
n − 1} = [n] (its graph consists of one connected component). And since (1, 2, ..., n) =
(1, 2)(2, 3)...(n − 1, n) the minimal number of transpositions needed is exately n − 1.
We denote by

Mn := {(τ1, . . . , τn−1) ∈ Tn−1n : τn−1τn−2 . . . τ1 = (1, . . . , n)}

the set of all minimal factorizations of the n-cycle into transpositions. The cardinal of this
set is |Mn| = nn−2 as proved by Dénes in [3]. Bijection proofs are given by Moszkowski
[11], Goulden & Pepper [6], Goulden & Yong [7] and Biane [1].

Remark 1. Let GSn be the undirected graph with Sn as a node set and EG := {{σ, τ} ⊂
Sn : στ−1 is a transposition } as an edge set. Minimal factorizations of the n-cycle into
transpositions can be seen a geodesics from the identity permutation to the n-cycle on this
graph.
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We denote by D := {z ∈ C, |z| ≤ 1} the closed unit disk of the complex plane,
S := {z ∈ C, |z| = 1} the unit circle. For every x, y ∈ S, we denote by [x, y] the line
segment between x and y in D. To any non oriented graph G with vertex set [n] and edge
set EG we associate a subset Ġ of D defined as follows:

Ġ :=
⋃

{k,l}∈EG

[e2iπk/n, e2iπl/n]

Given a factorization Fn = (τ1, . . . , τn−1) ∈Mn and 1 ≤ k ≤ n − 1 let Fnk = (τ1, . . . , τk)
be the first k transpositions of Fn. We can then define the graph associated to Fnk as the
graph G(Fnk ) with vertex set [n] and edge set EFn

k
:= {{a, b} : (a, b) = τi for some i ∈ [k]}

and Ġ(Fnk ) is the subset of D associated to G(Fnk ) as defined above. An example is given
in Figure 1.

Figure 1: An example of G(F7
6 ) for F7 = ((5, 7), (6, 7), (1, 5), (4, 5), (2, 3), (2, 4))

(numbers 1 to 7 are represented on the circle in trigonometric order).

Let Fn be a uniformly distributed random variable in Mn for all n ≥ 1. Féray and
Kortchemski [5, Theorem 1.3] establish a limit theorem for the process Ġ(Fncn) ⊂ D for
different orders of magnitude of cn. In particular their results predict a phase transition
when cn ∼

n→∞
c
√
n for c > 0.

In section 2 we explore various methods to simulate a uniformly random labelled Cay-
ley trees conditionned to have size n. We then use the bijection given by Goulden and
Pepper [6] to simulate the variables Fn in order to visualize the phase transition predicted
in [5, Theorem 1.3]

We also study primitive minimal factorizations of the n-cycle which form a subset of
Mn and are defined as follows:
Let Fn = (τ1, . . . , τn−1) ∈Mn be a minimal factorization where τk = (ak, bk) and ak < bk
for k ∈ [n − 1]. Fn is said to be primitive if the sequence (ak)1≤k≤n−1 is non-decreasing.
We denote by PMn, the set of primitive minimal factorization of the n-cycle.

In section 3 we use the bijections in [8] and in [2] to simulate uniformly random prim-
itive factorizations of the n-cycle, and we prove a limit theorem for the first transposition
of these factorizations.
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2 Generating a uniformly random minimal factoriza-

tion

2.1 Minimal factorizations and labelled Cayley trees

In order to sample a uniformly random minimal factorization, we use a simple bijection
established by Goulden and Pepper in [6] between minimal factorization and Cayley trees.
We denote by GMn := {(τ1, . . . , τn−1) ∈ Tn−1n : τ1τ2...τn−1 = some n-cycle} the set of min-
imal factorisations of all n-cycles of the symmetric group Sn (not only (1, . . . , n)). We
can easily see that |GMn| = (n − 1)!|Mn| since every n-cycle has the same number of
minimal factorizations as (1, . . . , n) and there are (n− 1)! n-cycles in total.

There exists a natural bijection between the set GMn and the set of labelled trees of
size n (vertices are labelled from 1 to n and edges from 1 to n− 1). More precisely, given
a minimal factorization Fn = (τ1, . . . , τn−1) ∈ GMn where τk = (ak, bk) for 1 ≤ k ≤ n−1,
construct its corresponding labelled tree iteratively by reading the factorization from right
to left as follows:

• Start with a graph of n vectrices labeled from 1 to n and no edges.

• For 1 ≤ k ≤ n− 1 add an edge between vertex ak and vertex bk and label the edge
by k.

We can easily verify as done in [6] that the application induced by this construction is a
bijection between labelled Cayley trees of size n and GMn.

Simulating a uniformly distributed random variable Fn in GMn is then equivalent to
simulating a uniformly distributed random labelled Cayley tree of size n.

Here is an example for n = 7 and F7 = ((5, 7), (6, 7), (1, 5), (4, 5), (2, 3), (2, 4)) :
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Recall that our objective is to simulate a random variable in Mn ⊂ GMn. To do so we
take advantage of the fact that all n-cycles have the same number of minimal factorisations
nn−2 in other words the set GMn is the union of (n− 1)! disjoint classes of factorizations
(one for each n-cycle) that have the same cardinality. Given a factorization Fn ∈ GMn

we denote by cFn it’s corresponding n-cycle and by cFnFnc−1Fn the factorization obtained
by conjugating all the transpositions in Fn by cFn . One can verify that the resulting
factorization cFnFnc−1Fn is a minimal factorization of the n-cycle i.e cFnFnc−1Fn ∈Mn

It can also be easily verified that if Fn is a uniformly distributed random variable in
GMn then cFnFnc−1Fn is a uniformly distributed random variable in Mn. We will focus

3



on generating a uniform random Cayley tree conditioned on having n vertices and then
use the reciprocal of the previous bijection to generate our uniformly random minimal
factorization in GMn which we will transform by conjugation to a uniformly random
variable in Mn.

2.2 Simulation of uniformly random labelled Cayley tree condi-
tioned to have a fixed size

2.2.1 Naive method

To simulate a uniformly random labelled Cayley tree, the first idea that comes to mind
is to simulate the tree structure randomly and then label the vertices and the edges with
uniformly random permutations. More precisely we proceed as follows:

• We starts by considering n vertices {1, . . . , n} with and empty set of edges E

• At each iteration we choose a first vertex uniformly randomly and a second vertex
that is not in the connected component of the first and we add the edge {i, j} to E.

• At the end we obtain a random tree with n vertices and we relabel the vertices and
the edges uniformly randomly.

This algorithm allows us to generate a random labelled Cayley tree with n vertices in
two steps: the first two points construct a random tree structure and the last one adds
a random labelling (for both vertices and edges) to the structure. One might think that
this method yields a uniformly random labelled Cayley tree with n vertices but it is not
the case as we explain in the following example:

Example 1. For n = 4 there are (n − 1)!nn−2 = 3 × 25 labelled trees with 4 vertices.
We will calculate the probability of having a particular tree when simulated with the naive
algorithm.

Consider following simple linear tree :

1 2 3 4
1 2 3

On 4 vertices we have only 2 tree structures: either the linear tree structure (where all
non-leaf vertices have degree 1), or the following tree structure

a

b c d

We can easily compute the probability that the naive algorithm above yields the linear
tree structure. That computation gives us a probability of 1

3
.

There are only two permutations of S4 that give us the correct vertices labelling to get the
linear tree represented above. So that give us a probability of 2

4!
. That leave us with one

choice of edge labelling and we get that with a probability of 1
3!

Then the probability of getting the linear tree above is p = 1
23×33 6=

1
25×3 . We then conclude

that the algorithm described above does not yield a uniform distribution on the labelled
Cayley trees with size n
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Remark 2. The reason why the naive algorithm fails to yield a uniform distribution is
mainly the way it picks the next edge to be added to the tree structure at each iteration.
One could fix this problem by proceeding as follows:

At each iteration, instead of choosing a uniformly random vertex from the n vertices,
we choose two connected components among all the present connected component at that
iteration. Then choose a vertex from both components randomly and then connect the two
vertices.

We next present a simulation method based on Bienayme-Galton-Watson trees.

2.2.2 Bienayme-Galton-Watson trees (BGW)

We first start by giving a simple definition of BGW trees.

Definition 1. Let (µk)k∈N a probability distribution on N. A BGW tree with reproduction
distribution µ (denoted BGWµ) is the random tree that starts with one vertex as a root
and each vertex has a random number children with distribution µ. More precisely if
we denote by Xn the number of children in generation n, there exists a collection of
independent random variables (ξ(n, k)) with integer values with the same distribution µ
such that :

• X0 = 1

• ∀n ≥ 0 : Xn+1 =
Xn∑
k=1

ξn,k

Devroye [4] gives a simple method to generate a random Cayley Tree conditioned on
having n vectrices. It is based on the observation that a random Cayley tree of size n has
the same distribution of a BGWµ conditionned to have size n for a certain reproduction

distribution µ on N. It turns out that Poisson distributions (µλk = e−λ λ
k

k!
) yield a uni-

formly random Cayley tree of size n. The paramter of Poisson distribution does not have
any impact because of the conditioning, see [4] and [9] for details.

First we generate an ordered sequence Ξr = (ξ1, ..., ξn) verifying inf{1 ≤ t ≤ n|
∑t

j=1 ξj =
n− 1} = n.

• Generate n− 1 random variables Zi ∼ U([|1, n|]) uniform in the set of {1, .., n}.

• For all i ∈ [|1, n|], set ξi =
∑n

j=1 1Zj=i and Ξ = (ξ1, ..., ξn).

• Set St(Ξ) = 1 +
∑t

j=1(ξj − 1) for 1 ≤ t ≤ n.

• Find l = argmin{St(Ξ)|1 ≤ t ≤ n}.

• Set Ξr = (ξl+1, ..., ξn, ξ1, ..., ξl).

With the sequence Ξr, we construct the graph as follow. Start with a root node and
put it in a queue. At the ith step, grab the first node from the queue, give it ξi children,
and place these in the queue. The process ends when the queue is empty. The condition
over Ξr ensures that the process ends with a tree T of correct size n. By labeling the
vectrices and edges of T randomly we obtain a uniformly generated random Cayley Tree.
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2.3 Results and observations

In [5], it is proved (Theorem 1.3) that G(Fnbn−√nc) converges to the so-called Brownian
triangulation which looks like the following :

Figure 2: A realisation of G(Fnbn−√nc) for n = 10000

In order to visualise the phase transition in
√
n we need to generate Fn for a large n

and plot the cn first transpositions for different order of magnitude cn. In the following
figures we have chosen n = 100000.

Case cn = c n1/3 :

Figure 3: Drawing of G(Fnbcnc) for cn of order O(n1/3)

Case cn = c n1/2 :

Figure 4: Drawing of G(Fnbcnc) for cn of order O(n1/3)
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Case cn = c n2/3 :

Figure 5: Drawing of G(Fnbcnc) for cn of order O(n2/3)

3 Primitive Factorizations and Dyck paths

In this section, our goal is to generate uniformly a primitive minimal factorization. We
recall that a primitive minimal factorization is a minimal factorization where the sequence
of smallest elements of each transposition is increasing.

We denote by PMn the set of primitive minimal factorization of (1, ..., n+ 1). We will
establish a bijection between PMn and the set of Dyck paths of length 2n denoted by
Dyckn.

3.1 213-avoiding permutations

We call a given permutation σ a 231-avoiding path if σ does not contain a subword
[σi, σj, σk] with σk < σi < σj. We denote the set of 231-avoiding paths A231

n and the
set of 132-avoiding paths by A132

n . 231-avoiding paths are closely linked with primitive
minimal factorizations. Indeed, Gewurz and Merola [2] exhibited a simple and intuitive
bijection between PMn and A132

n and thus inducing a natural extention to A231
n (By

taking a reflexion of the elements of A132
n ). They proved that the map that associates

with (a1, b1)(a2, b2)...(an, bn) the sequence b1b2...bn is a bijection between PMn and A231
n .

They also gave an iterative algorithm that gives the antecedent of a 231-avoiding path by
the map.

231-avoiding permutations will be our bridge from Dyck paths to primitive minimal
factorization as we will now see a bijection between 231-avoiding permutations and Dyck
paths.

3.2 Dyck paths

A Dyck path of semilength n is a sequence of 2n containing n −1’s and n 1’s such that
every prefix contains at least as many 1’s as −1’s. Notice that if we draw a Dyck path in
a graph, it will always start at (0, 0), stay in the positive orthan and end at (2n, 0). In
fact, it is an equivalent definition of Dyck paths.

Krattenthaler gives a bijection between Dyckn and A231
n [8]. Given σ ∈ A231

n we read
the permutation σ from left to right and successively generate a Dyck path. When σj is
read, then in the path we adjoin as many up-steps as necessary, followed by a down-step
from height hj + 1 to height hj (measured from the x-axis), where hj is the number of
elements in σj+1...σn which are larger than σj. This mapping is a bijection from A231

n to
Dyckn.
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As we use the inverse of this mapping for our simulation, we will explicit it. Given
a Dyck path D ∈ Dyckn (which we see it as a sequence of +1 and −1) we read the
path from left to right and successively generate a 231-avoiding path. Let L0 = (1, ..., n)
and let c0 = n be a cursor we will iterate over L. We denote by L[k] the kth element
of L. At step i, when Di is read, we move the cursor by −Di i.e ci = ci−1 − Di. If
Di = −1, we add Li[ci] to the sequence σ (being constructed from left to right) and
we delete Li[ci] from Li shifting all elements of Li to the left to fill the empty space, ie
Li[1, ..., ci − 1] = Li−1[1, ..., ci − 1] and Li[ci, ...] = Li−1[ci + 1, ...].

3.3 Simulation of a Dyck path

To generate a uniformly random Dyck path in Dyckn we proceed as follows:

• We first generate a symmetric random walk (Sk)k≤2n+1 with jumps in {±1} condi-
tionned to stop in −1 (i.e: S2n+1 = −1) by using rejection sampling.

• We then use Vervaat transfomation (see [10]) on this walk to get another walk
(V (S)k)k≤2n+1. We then forget the last jump to get a uniformly random Dyck path
Dn in Dyckn.

4 Simulations

Simulating a 231-avoiding sequence of 1, 2, ..., n using the bijection with Dyck paths allows
us to get the simulate the second element of the first transposition easily. Generationg a
large sample of this element gives us an idea on how it is distributed (Figure 6).

Figure 6: distribution of the second element of the 2nd of the 1st transposition of a
primitive factorisation 1000

From a 231-avoind sequence in A231
n , we easily access the number of transposition

which contains 1 which corresponds to the first index of 1 in the sequence. We can then
simulate this random variable and plot a histogram.
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Figure 7: distribution of the number of transpositions containing 1 primitive factorisation
for n = 1000

5 Results on the behaviors of random minimal fac-

torization

In this section we prove some results on the behavior of random primitive minimal fac-
torizations motivated by the results of our simulations.

Proposition 1. Let π be a random variable such that π ∼ U(PMn). Let τ be its first
transposition starting from left.
Then P(τ = (1, 2)) = P(τ = (1, n)) = cn−1

cn
−→ 1

4
.

Proof. Using the bijection between PMn and A231
n we only need to show that if σ ∼ U(Sn)

(where Sn is the set of permutations), P(σ1 = 1|σ ∈ A231
n ) = P(σ1 = n|σ ∈ A231

n ) = cn−1

cn
.

We denote by σ(n−1) the sequence σ2, ..., σn.

P(σ1 = 1|σ ∈ A231
n ) =

P(σ1 = 1)

P(A231
n )

P(σ ∈ A231
n |σ1 = 1)

=
P(σ1 = 1)

P(A231
n )

P(σ(n−1) ∈ A231
n−1|σ1 = 1)

=
P(σ1 = 1)

P(A231
n )

P(σ(n−1) ∈ A231
n−1)

=
1/n

cn/n!

cn−1
(n− 1)!

=
cn−1
cn
−→ 1

4

The poof for τ = (1, n) is similar.

Proposition 2. Let π be a random variable such that π ∼ U(PMn). Let τ be its first
transposition starting from left. Then P(τ = (1, 3)) = P(τ = (1, n− 1)) = cn−2

cn
−→ 1

16
.
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Proof.

P(σ1 = 2|σ ∈ A231
n ) =

P(σ1 = 2)

P(A231
n )

P(σ ∈ A231
n |σ1 = 2)

and

P(σ ∈ A231
n |σ1 = 2) =P(σ(n−1) ∈ A231

n−1 ∩ σ
(n−1)
1 = 1|σ1 = 2)

=P(σ(n−1) ∈ A231
n−1 ∩ σ

(n−1)
1 = 1)

=P(σ
(n−1)
1 = 1|σ(n−1) ∈ A231

n−1).P(A231
n−1)

Then using proposition 1 for n− 1 we deduce the following:

P(σ1 = 2|σ ∈ A231
n ) =

1/n

cn/n!

cn−2
cn−1

cn−1
(n− 1)!

=
cn−2
cn
−→ 1

16

The proof for τ = (1, n− 2) is similar.
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