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Abstract

We study the quality of information aggregation in a dynamic quadratic game of incomplete

information. Agents in each generation have access to a public history of noisy aggregate actions in

previous generations. Each agent also belongs to an information community, where they share a private

noisy signal about the state. We quantify the quality of information aggregation as the asymptotic

precision of the publicly learned signal about the state, and study how the interactions between/within

information communities affect the quality of learning. By characterizing the precision of aggregate

learning for slow walks, we show the inefficiency of learning from the public history: while for a static

state, public history fully reveals the state, a small perturbation in the state from generation to generation,

significantly degrades the quality of public learning. As for the effect of information-action structure,

we show that the inter-community interactions exhibit a double-edged effect: while the inter-community

interaction of local influencers and influencées improves the quality of learning for slow dynamics, the

inter-community interaction of global influencers and influencées defects learning for fast dynamics. As

a result, we may observe phase transition in quality of learning between different information-action

structures.

I. INTRODUCTION

Many complex systems involve large-scale interconnection of agents with heterogeneous

information who interact strategically. Such systems are prevalent in diverse domains ranging

from cyber-physical systems, energy markets, transportation networks, water networks, financial

markets, consumer networks, and more broadly, complex social and economic networks Savla
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et al. (2014); Thrampoulidis et al. (2015); Perelman et al. (2016); Tavafoghi and Teneketzis

(2016); Bramoulle and Kranton (2007); Battiston et al. (2012); August et al. (2014). The strategic

interactions of the agents affect both the direct and indirect (inferred) flow of information, hence

introducing new challenges to modeling, analysis, and control Ajorlou and Jadbabaie (2016);

Ajorlou et al. (2016).

Recent advances in information technology and Internet have provided a wide range of

channels to aggregate information, from blogs to wikis to the open source movement to prediction

markets Servan-Schreiber et al. (2004). There are abundant sources of information (e.g., news

channels, social networks, online forums, surveys, and data bases), with every person having

access to a personalized set of the sources. Each individual’s decision making is not only influ-

enced by her own sources of information, but also by the action of her friends who themselves

are influenced by other information sources and friends. The aggregate (or average) action of the

whole population thus partially accumulates the information shared within different information

communities. An interesting question here is how the quality of information aggregation is

affected by the influences between and within different information communities, specially in a

dynamic setting?

Learning from the observations of the aggregate action (called public learning hereafter) is

a twin of systemic volatility; the less volatile the aggregate action of the whole system, the

higher the quality of public learning. There is a large body of literature on systemic risk and

volatility, highlighting the importance of the interaction structure in prorogation and amplification

of shocks and disruptive events hitting any single agent Acemoglu et al. (2012); Bergemanna

et al. (2015); Allen and Gale (2000); Bidkhori et al. (2016); Bimpikis et al. (2016); Blume

et al. (2011). Many such works model the problem as a one-shot static game of incomplete

information, where they use the equilibrium strategies of the agents to assess the resilience of the

network of interconnections. They in turn come up with a (sometimes contradicting1) ranking

of network structures in terms of their performance against shocks. For example, authors in

Acemoglu et al. (2012) show that the volatility of the economy’s aggregate output is increasing

with the heterogeneity in the role of different firms as input-suppliers. Such approaches neglect

the fact that in many practical applications, network entities can observe and learn from the

1For instance, while some work suggest that denser interconnections reduce the systemic risk (e.g., Allen and Gale (2000)),
others find denser networks destabilizing (e.g., Blume et al. (2011)).
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system responses to shocks and revise their actions accordingly.

There is also similar research investigating the effect of local disturbances on the steady state

systemic volatility in networked dynamical systems, with a special attention to the consensus

problem Young et al. (2010); Bamieh et al. (2012); Siami and Motee (2016); Jadbabaie and

Olshevsky (2016); Siami et al. (2017). While taking into account the opinion dynamics, no

underlying dynamic unknown state is present in these models. In a closely related work (Amador

and Weill (2012)), authors consider learning from both private and public observations of the

aggregate action in a static setting, and show that initial public revelation of information slows

down information diffusion in the long run.

To this end, we consider a model where in each period there is a generation of agents with

linear quadratic payoffs, each having access to a public history of noisy aggregate actions of

previous generations. Each agent also belongs to an information community, where they share

a private noisy signal about the state. We quantify the quality of information aggregation as

the asymptotic precision of the publicly learned signal about the state, and study how the

interactions between/within information communities affect the quality of aggregate learning.

As the first finding, we show the inefficiency of learning from the public history: while for a

static state, public history eventually reveals the true state, a small perturbation in the state from

generation to generation significantly degrades the quality of aggregate learning. As a rough

measure, improving the precision of the learned signal by a factor of 10 requires the noise

in the state transition to be 104 times less volatile. As another major contribution, we show

that the inter-community interactions exhibit a double-edged effect: while the inter-community

interaction of local influencers and influencées improves the quality of information aggregation

for slow dynamics, the inter-community interaction of global influencers and influencées defects

the aggregate learning for fast dynamics. This may result in a phase transition in quality of

learning between different information-action structures.

II. PROBLEM DESCRIPTION

Consider a population of agents with linear quadratic payoffs, residing in a network whose

structure is represented by a matrix G. The payoff of each agent is a linear quadratic function

of a common unknown state of the world, her own action, and actions of her neighbors in

G, with the entries of G representing the payoff externalities. Each agent also belongs to an
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Fig. 1. G1 and G2 differ in their inter-community structures.In G1 the out-of-community influence comes from either L1 or
L2. In G2, the out-of-community influences for 1, . . . , 16 form a ring graph. Note that weight of all edges entering 1, . . . , 16
is δ2g in both structures.

information community, where they share a private noisy observation from the state. Upon

making the observations, agents simultaneously take actions maximizing their expected payoffs.

One common macro statistics of interest here is the aggregate (or average) action of the agents.

The uncertainty in the observations results in volatility in the aggregate action, the extent of

which depends on the structure of the network and information communities among many other

factors.

Now consider a scenario where the above setup is a single episode of an ongoing sequence of

generations, except that a noisy version of the aggregate action in each generation is available

to all generations to come as a common public history. There may also be a change in the state

in transition between successive generations.

History results in a common public prior on the state in each generation. Our objective in

this manuscript is to study the effect of the information-action structure on the quality of this

publicly learned signal. To make our objective more clear, consider the two different inter-

community wirings of the same information communities depicted in Figure 1. Agents within

each community receive the same out-of-community influence from the average action of the

agents in some other community. The difference between the two structures is that L1 and L2

DRAFT



5

are highly influential in G1 influencing 12 and 4 communities each, respectively. In G2, on the

other hand, the distribution of inter-community influences is more even with each community

influencing another community forming a ring, and L1 and L2 influencing each other. Everything

else (including the realization of the signals) are exactly identical. Then, can we say that

generations residing in one structure are more informed about the state than their concurrent

generation in the other? If yes, how can we identify that superior structure. Or is it possible

that the order of the qualities get flipped over time? What are the main network characteristics

affecting the quality of aggregate learning and whether/how they depend on the state dynamics?

These are the type of the questions that we tackle in this draft.

III. MODEL

In each period t = 0, 1, . . . there is a generation of size n of short-lived agents living in a social

network whose structure is represented by a matrix G = [gij] with gii = 0 and
∑n

j=1 gij = g for

some 0 ≤ g < 1, where gij ≥ 0 quantifies the influence agent i receives from agent j. We refer

to the set of agents Ni = {j|gij > 0} as the friends of agent i in her generation.

The payoff of agent i in generation t is a quadratic function that depends on the state of the

world θt and the vector of actions at = (a1t, . . . , ant):

uit = θtait −
1

2
a2
it +

n∑
j=1

gijaitajt. (1)

The state of the world evolves on a random walk θt+1 = θt + νt, where νt ∼ N(0, τ−1
v ) is a

white noise normal process.

Each agent has access to a private signal xit = θt + εit, where εit ∼ N(0, τ−1
ε ). These signals

are provided by a set of m information sources which partition the agents in each generation

into m information communities I = {I1, . . . , Im}. Agents within each community share the

same private signal while the noises in the signals {εit} are independent across communities

and generations. A noisy version of the aggregate action in each generation st = āt + ηt, with

ηt ∼ N(0, τ−1
η ), where āt = 1

n

∑n
i=1 ait is also available to all generations to come. Agent i in

generation t is thus endowed with the information vector Sit = (s0, . . . , st−1, xit).
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IV. BAYES NASH EQUILIBRIUM

Given the quadratic form of the payoff in (1), the best response of agent i in period t is given

by the linear condition

ait = E[θt|Sit] +
n∑
j=1

gijE[ajt|Sit]. (2)

We define the Bayes Nash equilibrium of this game below.

Definition 1. A Bayes Nash equilibrium for generation t is defined by strategies a∗it : Rt+1 → R

such that

a∗it(Sit) = E[θt|Sit] +
n∑
j=1

gijE[a∗jt(Sjt)|Sit], ∀Sit ∈ Rt+1, ∀i ∈ Nn. (3)

Using the linear form in (3), we can show that this game admits a unique linear Bayes Nash

equilibrium. We can characterize this linear equilibrium using the precision of the public prior

on the state in each generation which is formed based on the common history, the precision of

the private signals, and Bonachic centrality of the agents in a modified graph constructed by

scaling the weights of the inter-community edges as we will elaborate below.

Denote with N(ωt, τt) the common prior belief on θt in generation t formed based on the

public history {s0, . . . , st−1}, where ωt = E[θt|s0, . . . , st−1] is the conditional expectation of θt

given the history and τt = Var−1[θt|s0, . . . , st−1] is the precision of the publicly learned signal

about the state θt. Given the normality of random variables, the conditional expectation ωt is

a linear function of {s0, . . . , st−1} and is a sufficient statistics for the history in estimating θt.

Using this we can show that the linear equilibrium strategies in each period can be represented

as a linear function of ωt and the private signals xit.

We next construct a new graph G(ρt) by scaling the weights of inter-community edges in G

by ρt, where ρt = τε
τt+τe

. More precisely, G(ρt) = [gij(ρt)], where

gij(ρt) =

gij, i and j are in the same community

ρtgij, otherwise.
(4)

We characterize the equilibrium strategies of the agents in terms of the Bonachic centrality of

the agents in G(ρt) in the following lemma.

Lemma 1. The game described in Section III admits a unique linear Bayes Nash equilibrium.
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The equilibrium strategies of the agents in each generation are of the form

a∗it = citxit + (
1

1− g
− cit)ωt, (5)

where cit = ρtkit, and kt = [k1t, . . . , knt]
T is the Bonachic centrality of the agents in graph

G(ρt) given by kt = (I −G(ρt))
−11.

Proof. See the appendix. �

V. QUALITY OF THE AGGREGATE LEARNING

The quality of information aggregation is determined by the precision of the publicly learned

signal about the state θt, i.e., τt = Var−1[θt|s0, . . . , st−1]. We can use the equilibrium strategies

of Lemma 1 to derive the update rule for τt.

For the equilibrium strategies given by (5), the aggregate action is

ā∗t =
ρt
∑n

i=1 kitxit
n

+ (
1

1− g
− ρt

∑n
i=1 kit
n

)ωt. (6)

Define

ŝt =
ρt
∑n

i=1 kitxit
n

+ ηt, (7)

where we also recall that st = ā∗t+ηt was the noisy aggregate action in period t which is available

to generations thereafter. ŝt is the new information contained in st, as st can be inferred from

ŝt given ωt and vice versa. This especially yields

Var−1[θt|s0, . . . , st−1, st] = Var−1[θt|ωt, ŝt] = τt + Var−1[θt|ŝt], (8)

using the independence of ωt and ŝt conditional on θt. We define the information centrality of

source j in G(ρt) denoted with Kjt, as the sum of the centralities kit within community j, that is

Kjt =
∑

i∈Ij kit. Let also xjt denote the private signal provided by the source j to the community

members in period t. Noting that xit = xjt for i ∈ Ij , we can rewrite (7) as

ŝt =
ρt
∑m

j=1Kjtx
j
t

n
+ ηt. (9)
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Using this, we can obtain

Var−1[θt|ŝt] =
1∑m

j=1K
2
jt

τε(
∑m
j=1Kjt)

2 + 1
τηρ2t k̄

2
t

=
τεk̄

2
t∑m

j=1K
2
jt

n2 + τε
τη
ρ−2
t

, (10)

where k̄t = 1
n

∑m
j=1Kjt = 1

n

∑n
i=1 kit is the average centrality in graph G(ρt). Given the

evolution of the state on the random walk θt+1 = θt + νt, the update rule for the precision

of the publicly learned signal τt+1 = Var−1[θt+1|s0, . . . , st] can then be obtained as

τt+1 =
τν τ̂t
τν + τ̂t

, (11)

where

τ̂t = τt +
τεk̄

2
t∑m

j=1K
2
jt

n2 + τε
τη
ρ−2
t

, (12)

from (8) and (10). As the precision of the publicly learned signal (i.e., τt) increases, agents put

more weight on the history hence revealing less of what they learn from their private information

sources. This in turn results in a less precise public signal about the aggregate action. This may

reduce the precision of the public prior in the next period, depending on the public and private

precisions and the volatility of the random walk, resulting in fluctuations in the precision of the

publicly learned signal. However, we can ensure the convergence of the sequence {τt} as t→∞

by imposing a constraint on the relative precision of the public and private signals.

Assumption 1. τη
τε
≤ (1− g)3.

The rough idea behind this assumption is to make sure that the update rule for τt is contracting.

(11) and (12) can be viewed as an update rule τt+1 = f(τt) for some appropriate choice of

f : [0, τv] → [0, τv]. As we show in the proof of Theorem 1, Assumption 1 yields |∂f
∂τ

(τ)| < 1

for all 0 ≤ τ ≤ τv, hence making f a contraction2, which in turn implies the convergence of τt

to a fixed point of f as t→∞.

Given a partition of the agents into m information communities ∪mj=1Ij , we quantify the quality

of information aggregation for a network structure G as the asymptotic precision of the publicly

learned signal. We characterize this in the following theorem.

2Since [0, τv] is compact, having | ∂f
∂τ

(τ)| < 1 for all 0 ≤ τ ≤ τv implies | ∂f
∂τ

(τ)| ≤ β for some β < 1, making f a
contraction with module β.
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Theorem 1. Let τt = Var−1[θt|s0, . . . , st−1] be the precision of the publicly learned signal about

the state in generation t. Assume also that the precisions of the public and private signals satisfy

Assumption 1. Then, the sequence {τt}∞t=1 is convergent, where the limit τ = limt→∞ τt is the

unique solution of
τ 2

τν − τ
=

τεk̄
2∑m

j=1K
2
j

n2 + τε
τη
ρ−2

, (13)

where ρ = τε
τ+τε

, k = [k1, . . . , kn]T = (I −G(ρ))−11, k̄ = 1
n

∑n
i=1 ki, and Kj =

∑
i∈Ij ki.

Proof. See the appendix. �

We can use the above theorem to derive several interesting insights about the interplay of the

information-action structure and the volatility of the random walk on the quality of aggregate

learning. We are specially interested in characterizing such effect for the extreme cases of slow

and fast walks.

Proposition 1. Denote with τ(G, I) the asymptotic quality of the publicly learned signal about

the state (i.e., the asymptotic precision of the common prior in each generation) for information-

action structure (G, I). Then,

lim
τν→0

τν
τ(G, I)

= 1, (14)

for fast walks. For the slow walks, we have

lim
τν→∞

4
√
τητ 2

ε κ̄
2(G, I)τν

τ(G, I)
= 1, (15)

where κ̄(G, I) = 1
n
1T (I −G(0))−11.

Proof. See the appendix. �

A non-trivial consequence of this result is the inefficiency of learning from public history.

For the static case θt = θ0 (i.e., τν = ∞), agents can asymptotically learn the state from the

history. However, a very small perturbation in the state in each generation significantly degrades

the quality of the publicly learned signal according to (15). For instance, when τ is large, in

order to improve the quality of the publicly learned signal by a factor of 10, the changes in the

state from generation to generation has to become 104 times less volatile.

Proposition 1 also reveals the first order effect of the information-action structure on the quality
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of aggregate learning. This, however, provides no useful information on the qualitative effect of

different structures for fast walks. We study the higher order effects of the information-action

structure on the quality of aggregate learning in more details in the following subsections.

A. The effect of the information-action structure on aggregate learning for slow walks

In this subsection, we study the effect of the information-action structure on the quality of

aggregate learning for slow walks. Proposition 1 already captures the effect of average in-

community centralities κ̄(G, I) on the quality of aggregate learning. However, it provides no

further insight for comparative statics of τ(G, I) for structures with similar in-community average

centralities.

Given an information-interaction structure (G, I), the in-community interactions are deter-

mined by G(0) (defined in (4)), while G−G(0) characterizes the inter-community interactions.

Define,

ξ̄(G, I) =
1

n
1T (I −G(0))−1(G−G(0))(I −G(0))−11. (16)

Then, ξ̄(G, I) captures the inter-community interaction of local (in-community) influencers and

influencées. We can show the following result.

Proposition 2. For any two information-action structures (G1, I1) and (G2, I2), there exists

τ̄ν > 0 such that for τν ≥ τ̄ν ,

i) if κ̄(G1, I1) > κ̄(G2, I2), then τ(G1, I1) > τ(G2, I2).

ii) if κ̄(G1, I1) = κ̄(G2, I2), then τ(G1, I1) > τ(G2, I2) if ξ̄(G1, I1) > ξ̄(G2, I2).

Proof. See the appendix. �

B. The effect of the information-action structure on aggregate learning for fast walks

When τν → 0, the average in-community centrality approaches 1
1−g since 1

n
1T (I −G)−11 =

1
1−g for all information-action structures with externality coefficient g. In this case, the quality

of aggregate learning is mainly determined by the dispersion of centrality across communities

(or size of the communities given that all the centralities approach 1
1−g in limit), as well as the

effect of the out-of-community influencées via inter-community interactions, as we elaborate in

what follows.
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Define,

ψ(G, I) = (I −G)−1(G−G(0))(I −G)−11. (17)

ψ(G, I) captures the effect of the out-of-community influencées via direct interaction or inter-

actions of other community members. Let

ψ̄(G, I) =
1

n
1T (I −G)−1(G−G(0))(I −G)−11, (18)

and Ψj =
∑

i∈Ij ψi, where ψ = [ψ1, . . . , ψn]T . The next proposition characterizes the quality of

aggregate learning when state moves on a fast walk.

Proposition 3. For any two information-action structures (G1, I1) and (G2, I2), with I1 =

{I1
1 , . . . , I

1
m1
} and I2 = {I2

1 , . . . , I
2
m2
}, there exists

¯
τν > 0 such that for τν ≤

¯
τν ,

i) τ(G1, I1) > τ(G2, I2) if
m1∑
j=1

|I1
j |2 <

m2∑
j=1

|I2
j |2. (19)

ii) if
∑m1

j=1 |I1
j |2 =

∑m2

j=1 |I2
j |2, then τ(G1, I1) > τ(G2, I2) if

m1∑
j=1

α1
jΨj(G

1, I1) <

m2∑
j=1

α2
jΨj(G

2, I2), (20)

where α1
j = τε

τη
(1− g)2 − |I

1
j |
n

+
∑m1
l=1 |I

1
l |

2

n2 and α2
j = τε

τη
(1− g)2 − |I

2
j |
n

+
∑m2
l=1 |I

2
l |

2

n2 .

Proof. See the appendix. �

For the case of equal-sized communities, αj simplifies to τε
τη

(1−g)2 and we have the following

result.

Corollary 1. For any two information-action structures (G1, I1) and (G2, I2), where I1 and I2

consist of m1 and m2 equal-sized communities, there exists
¯
τν > 0 such that for τν ≤

¯
τν ,

i) if m1 > m2, then τ(G1, I1) > τ(G2, I2).

ii) if m1 = m2, then τ(G1, I1) > τ(G2, I2) if ψ̄(G1, I1) < ψ̄(G2, I2).

Similar result holds for large population of communities where community sizes have finite

mean and variance, that is, n → ∞ with E[|Ij|],Var[|Ij|] < ∞. Comparing the results for the

slow and fast dynamics, we can easily see that inter-community interactions play a more crucial
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role for slow dynamics as the dispersion of centralities in fast dynamics case dominates the

effect of inter-community interactions. More importantly, while the inter-community interaction

of local influencers and influencées improves the quality of information aggregation for slow

dynamics, the inter-community interaction of global influencers and influencées defects the

aggregate learning for fast dynamics. We can use this result to show a phase transition in the

quality of information aggregation for the two graphs depicted in Figure 1.

Example 1. Consider the network structures G1 and G2 depicted in Figure 1 over 18 equal-sized

information communities. Agents in community j, with j = 1, . . . , 16, receive a fraction δ2 of

their externality from another community, and receive the rest of their externality from other

agents within the same community. As for the leader communities, agents in L1 (L2) receive

a fraction δ1 (1 − δ1) of their externality from agents in L2 (L1), and receive the rest of their

externality from other agents within their own community. For the structures shown in Figure 1,

δ1 = 0.2 and δ2 = 0.3. We can show that the inter-community effect of both local and global

influences quantified by ξ̄ and ψ̄ is higher in G1 compared with G2, i.e. ξ̄(G1, I) > ξ̄(G2, I) and

ψ̄(G1, I) > ψ̄(G2, I), for g ≥ 0.6. This implies a phase transition in the quality of information

aggregation between G1 and G2. While G1 has a better performance in terms of aggregating

the private information across communities for slow walks, it gets outperformed by G2 over

sufficiently fast walks.

VI. CONCLUSIONS

We investigate the problem of learning from public noisy observations of the history of

aggregate actions in a network of agents with linear quadratic payoffs. Each agent also belongs

to an information community, where they share a private noisy signal about an underlying

dynamic state. We quantify the quality of public learning as the asymptotic precision of the

publicly learned signal about the state, and study how the interactions between/within information

communities affect the quality of aggregate learning. We first show the inefficiency of learning

from the public history: while for a static state, public history asymptotically reveals the true state,

a small perturbation in the state from generation to generation significantly degrades learning.

As another major contribution, we show that the inter-community interactions exhibit a double-

edged effect: while the inter-community interaction of local influencers and influencées improves
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the quality of learning for slow dynamics, the inter-community interaction of global influencers

and influencées defects learning for fast dynamics. We may thus observe a phase transition in

quality of learning between different information-action structures.
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APPENDIX

Proof of Lemma 1. Noting that the conditional expectation ωt = E[θt|s0, . . . , st−1] is a suffi-

cient statistics for the history, we consider the linear equilibrium strategies to be of the form

a∗it = citxit + ditωt and aim to find the appropriate coefficients cit and dit. It follows from the

independence of ωt and xit conditional on θt that

E[θt|Sit] = E[θt|ωt, xit] = ρtxit + (1− ρt)ωt, (21)

where we recall that ρt = τε
τt+τε

. On the other hand,

E[a∗jt|Sit] = cjtE[xjt|Sit] + djtωt =

cjtxit + djtωt, j ∈ I−1
i

cjtE[θt|Sit] + djtωt, j /∈ I−1
i ,

(22)

where I−1
i denotes the information community to which agent i belongs. Substituting (21) and

(22) in (3) and comparing the coefficients of ωt and xit in both sides of the equality, we arrive

at

cit = ρt +
∑
j∈I−1

i

gijcjt +
∑
j /∈I−1

i

ρtgijcjt,

dit = 1− ρt +
∑
j∈I−1

i

gijdjt +
∑
j /∈I−1

i

gij(djt + (1− ρt)cjt). (23)

It follows from the above that cit+dit = 1+
∑n

j=1 gij(cjt + djt). This, together with
∑n

j=1 gij = g

implies that cit + dit = 1
1−g . The equilibrium strategies can hence be written as

a∗it = citxit + (
1

1− g
− cit)ωt, (24)

where cit satisfies (23). With a change of variables cit = ρtkit, this then becomes

kit = 1 +
∑
j∈I−1

i

gijkjt +
∑
j /∈I−1

i

ρtgijkjt, (25)

whose solution is kt = [k1t, . . . , knt]
T = (I −G(ρt))

−11, which completes the proof. �

Proof of Theorem 1. We prove the convergence of the sequence {τt} by showing that τt+1 =

f(τt), where f is uniquely determined from (11) and (12), is a contraction mapping. Noting the

compactness of the support of f (i.e., τt+1 ∈ [0, τv]), it suffices to show that |∂τt+1

∂τt
| < 1. From
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(11), we have 0 ≤ ∂τt+1

∂τ̂t
< 1. Therefore, we aim to show that |∂τ̂t

∂τt
| < 1 using Assumption 1.

Define

∆τ
t =

τεk̄
2
t∑m

j=1K
2
jt

n2 + τε
τη
ρ−2
t

. (26)

Then, noting (12) we need to show that −2 <
∂∆τ

t

∂τt
< 0. Using ∂ρt

∂τt
= − τε

(τt+τε)2
and that

0 < ρt ≤ 1, it thus suffices to show that 0 <
∂∆τ

t

∂ρt
< 2τε.

Define k̂t = [k̂1t, . . . , k̂nt]
T = ∂kt

∂ρt
(similarly, K̂jt =

∑
i∈Ij k̂it). Then, it follows from kt =

(I −G(ρt))
−11 that

k̂t = (I −G(ρt))
−1∂G(ρt)

∂ρt
kt ≤

g

1− g
kt, (27)

where we have used kt ≤ 1
1−g and ∂G(ρt)

∂ρt
1 ≤ g1. As a result, we have

∑m
j=1Kjt

n
=

∑n
i=1 kit
n
≤ 1

1−g

and
∑m
j=1 K̂jt

n
=

∑n
i=1 k̂it
n
≤ g

(1−g)2 . We now get back to proving that 0 <
∂∆τ

t

∂ρt
< 2τε. We start by

showing that the denumerator of ∆τ
t is decreasing with ρt. We write,

∂
∑m
j=1K

2
jt

n2

∂ρt
+
τε
τη

∂ρ−2
t

∂ρt
= 2

∑m
j=1KjtK̂jt

n2
− 2

τε
τη
ρ−3
t

≤ 2

∑m
j=1Kjt

n

∑m
j=1 K̂jt

n
− 2

(1− g)3

≤ 2g

(1− g)3
− 2

(1− g)3
< 0, (28)

using Assumption 1. On the other hand, ∂k̄2t
∂ρt

= 2k̄t
∑n
i=1 k̂it
n

≥ 0. These together imply that
∂∆τ

t

∂ρt
> 0. Similarly, we can show that ∂∆τ

t

∂ρt
< 2τε is equivalent to

k̄t

∑n
i=1 k̂it
n

(

∑m
j=1K

2
jt

n2
+
τε
τη
ρ−2
t )− k̄2

t (

∑m
j=1KjtK̂jt

n2
− τε
τη
ρ−3
t ) < (

∑m
j=1K

2
jt

n2
+
τε
τη
ρ−2
t )2. (29)

To prove this, we write

LHS ≤ g

(1− g)3

∑m
j=1K

2
jt

n2
+
τε
τη
ρ−3
t (

g

(1− g)3
+

1

(1− g)2
)

<
τε
τη

∑m
j=1K

2
jt

n2
+
τ 2
ε

τ 2
η

ρ−3
t

< (

∑m
j=1 K

2
jt

n2
+
τε
τη
ρ−2
t )2. (30)

This completes the proof of the convergence of {τt} to the fixed point τ = τt+1 = f(τt) = τt.
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It follows from (11) and (12) that

τ 2

τv − τ
=

τεk̄
2∑m

j=1K
2
j

n2 + τε
τη
ρ−2

. (31)

The uniqueness of τ easily follows from the fact that RHS is increasing in ρ (hence decreasing

in τ ) while LHS is increasing in τ . This completes the proof. �

Proof of Proposition 1. We rewrite (13) as

(τ + τε)
2τ 2

τητε
+
τ 2

∑m
j=1 K

2
j

n2
+ τεk̄

2τ = τεk̄
2τν . (32)

Then (14) follows by dividing both sides by τ and shifting τ → 0. Similarly, (15) follows by

dividing both sides by τ 4 and then shifting τ →∞. �

Proof of Proposition 2. Let us starting by finding some useful but straightforward properties for

τ . From (13), we have

τ 2 ≥ τε(τν − τ)
1

(1−g)2 + (τ+τε)2

τετη

. (33)

This yields τ →∞ as τν →∞. For any two information-action structures (G1, I1) and (G2, I2)

and any τ̄ > 0, this implies the existence of τ̄ν > 0 such that τ(G1, I1), τ(G2, I2) > τ̄ for

τν > τ̄ν . Define,

h(G, I, ρ) =
τερ

2k̄2(G(ρ))
ρ2

∑m
j=1K

2
j (G(ρ),I)

n2 + τε
τη

. (34)

Then, τ2

τν−τ = h(G, I, ρ). it is easy to verify that h(G, I, 0) = ∂h
∂ρ

(G, I, 0) = 0. Also,

∂2h

∂ρ2
(G, I, 0) = 2τηk̄

2(G(0)) = 2τηκ̄
2(G, I)

∂3h

∂ρ3
(G, I, 0) = 4τηk̄(G(0))

∂k̄(G(0))

∂ρ
= 4τηκ̄(G, I)ξ̄(G, I), (35)

where we have used k(G(ρ)) = (I−G(ρ))−11. Now, for both cases (i) and (ii) (i.e., κ̄(G1, I1) >

κ̄(G2, I2), or κ̄(G1, I1) = κ̄(G2, I2) and ξ̄(G1, I1) > ξ̄(G2, I2)), (35) yields h(G1, I1, ρ) >

h(G2, I2, ρ) in a vicinity of zero. Since ρ = τε
τ+τε

, there exists τ̄ > 0 such that h(G1, I1, ρ) >

h(G2, I2, ρ) for τ > τ̄ . As we discussed before, by choosing τν sufficiently large we can ensure

τ(G1, I1), τ(G2, I2) > τ̄ . Therefore, h(G1, I1, ρ1) > h(G2, I2, ρ1), where ρ1 = τε
τ(G1,I1)+τε

. Now,

if ρ1 ≥ ρ2 (ρ2 = τε
τ(G2,I2)+τε

), then h(G1, I1, ρ1) > h(G2, I2, ρ1) ≥ h(G2, I2, ρ2), noting that h is
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increasing in ρ as shown in the proof of Theorem 1. This in turn implies τ(G1, I1) > τ(G2, I2)

since τ2

τν−τ = h(G, I, ρ), which clearly contradicts ρ1 ≥ ρ2. Therefore, we should have ρ1 < ρ2

or τ(G1, I1) > τ(G2, I2) which completes the proof. �

Proof of Proposition 3. Part (i) easily follows from the fact that if h(G1, I1, 1) > h(G2, I2, 1),

then τ(G1, I1) > τ(G2, I2), where h(G, I, ρ) = τεk̄2(G(ρ))∑m
j=1

K2
j
(G(ρ),I)

n2
+ τε
τη
ρ−2

. For the second part, similar

to the proof of Proposition 2, we can show that if ∂h
∂ρ

(G1, I1, 1) < ∂h
∂ρ

(G2, I2, 1), then τ(G1, I1) >

τ(G2, I2). The proof then follows from simple algebra and noting that Kj(G(1), I) =
|Ij |
1−g and

∂k(G(1))
∂ρ

= ψ(G, I). �
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