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• Classically impossible 😢 (without hardware assumptions)

• Can copy program many times, evaluate each copy

[Goldwasser-Kalai-Rothblum’08]

x1 x2 x3

...

One-Time Programs (OTP)
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Gentle measurement
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No 😢
[Broadbent-Gutoski-Stebila ’13] 

No Quantum OTP for deterministic programs

Quantum 
computation is 

reversible
|x⟩𝗂𝗇

What next? 🤔
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Signature tokens [Ben-David, Sattath ’16]

Signing key

0 1 quantum OTP 
for a specific randomized 

program

≈

But we cannot be too greedy! 😢 
No quantum OTPs that satisfy a strong simulation security notion, 

for any (randomized) programs [Broadbent-Gutoski-Stebila ‘13]
🚧

• I will define this soon!  
• Signature token does not 

satisfy this strong 
security definition
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Strong simulation security  
impossible [BGS13]

Q1: Stronger achievable 
one-time security notion?

Q2: What programs can be 
one-time protected?  

All high-min entropy programs? 🚧
Signature tokens [BDS16] 
Weak one-time security  
for a specific program
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What about the rest of this regime? 
Weaker-than-simulation security definitions 

+ 
More general randomized programs

Security 
strength

Class of programsHigh min-entropyDeterministic

Impossible 
[BGS’13]

Simulation 
security

Signature tokens [BDS16]
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one-time security notion

🌟

Our Work

Concurrent work [Gunn-Movassagh’24] gives similar construction and  
a simpler but weaker definition of one-time security.

Construction 
• OTP in classical oracle model secure for 

“unlearnable” programs
• Inspired by [BDS’16] signature tokens

Plain model
• One-time programs for programs  

related to constrained PRFs
• Impossibility for some other programs

Applications
• More signature tokens
• One-time NIZK proofs
• Quantum money

(Post-quantum) IO
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• Random subspace  with S ⊂ 𝔽λ
2 𝖽𝗂𝗆(S) = λ/2

• Subspace states [Aaronson-Christiano’12]

Background: Subspace states

Direct Product Hardness [BDS’16]. Even given membership oracles  
hard for query-bounded adv to find both  such that  and .

OS, OS⊥

s, s′ ≠ 0 s ∈ S s′ ∈ S⊥
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Warm up: Signature Tokens [BDS16]

 (Measure in computational basis)σ := s ∈ S

 (Measure in Hadamard basis)σ := s′ ∈ S⊥

AND

Oracles OS, OS⊥

|S⟩ := ∑
s∈S

|s⟩
Signing key

Verification key

To sign :0

To sign :1

To verify : 
1. Measure  
2. If , check  
3. If , check 

(m, σ)
σ

m = 0 σ ∈ S
m = 1 σ ∈ S⊥
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Our OTP Construction
(In the classical oracle model)

Goal: OTP for . For simplicity, .f : {0,1}n × R → Y n = 1

|S⟩ := ∑
s∈S

|s⟩ O

Broken! Measuring output does 
not destroy |S⟩

1.  submit ,  in superposition 
2.  measure  and then  
3. repeat with  to get 

x = 0 |S⟩
f(0,r)

|S⊥⟩ f(1,r)



Oracle :O(x, v)

If   AND  , output  x = 0 v ∈ S f(0,r)

If   AND  , output  x = 1 v ∈ S⊥ f(1,r)

Else, abort

Our OTP Construction
(In the classical oracle model)

Goal: OTP for . For simplicity, .f : {0,1}n × R → Y n = 1

|S⟩ := ∑
s∈S

|s⟩ O

Random oracle H : {0,1}λ → ℛ

f(0, H(v))

f(1, H(v))

Entangle  with randomness  
Measuring output destroys   

(if   has high min-entropy)

|S⟩ r
|S⟩

f
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If   AND  , output   

If   AND  , output   

Else, abort

O(x, v)

x = 0 v ∈ S f(0, H(v))

x = 1 v ∈ S⊥ f(1, H(v))

Our OTP Construction

O

𝖮𝖳𝖯f := (|S⟩, )O

Random oracle H : {0,1}λ → R

Goal: OTP for . For simplicity, .f : {0,1}n × R → Y n = 1

Measuring output destroys   
(if   has high min-entropy)

|S⟩
f



Oracle : 

If  for all : output  

Else, abort

O(x, v1, …, vn)

vi ∈ Sxi
i i ∈ [n] f(x, H(v1, …, vn))

Our OTP Construction
(In the classical oracle model)

Goal: OTP for   into a one-time program. For :f : {0,1}n × R → Y n > 1

O

𝖮𝖳𝖯f := (|S1⟩, …, |Sn⟩, )O

     
 

Random oracle 

S0
i := Si

S1
i := S⊥

i
H : {0,1}λ → R
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𝖮𝖳𝖯f := ( |S⟩, )O

Seems like if  is “random enough”, this construction is a good OTP!f
1. What is the strongest possible one-time security this construction 

satisfies?

2. What are the “random enough”  ? All high min-entropy ?f f
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|𝖮𝖳𝖯f⟩

 (x1, y1),
(x2, y2)

Need some way to verify 
that a sample is valid/correct

f
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• “Two-valid-outputs” security might not be enough in some settings

• Even if adversary cannot outputs two entire correct outputs, maybe it learns some 
other secret about   that we still want to protectf

• Eg. Adversary  output 1, half of output 2↛
• Eg. For PRFs, adversary should not be able to distinguish PRF output from true 

randomness on two different queries

|𝖮𝖳𝖯f⟩

output 1, output 2

Simulation security?  
“Adversary should learn nothing other than one sample of its choice.”
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Attempt #1: Simulation-based Definition

One-time oracle: 
Answers 1 (quantum) query, 

then self-destructs.

O(1)
f

𝖲𝗂𝗆

Real world Ideal world

Impossible for all 
(randomized) programs! 
[BGS’13]

|𝖮𝖳𝖯f⟩ ≈c

•  cannot win in plain 
model unless it learns the 
entire program in 1 query.

𝖲𝗂𝗆

• Allow  to output one-
time oracle-aided program?

𝖲𝗂𝗆
Evaluate on random x

[GKR’08, BGS’13]

    f
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Output register |0⟩

Attempt #1: Simulation-based Definition
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Impossible even in oracle model: The un-computation attack

EvalInput register |x1⟩

Output register |0⟩

Attempt #1: Simulation-based Definition

Verify

Accept/reject |0⟩ Ideal world: Accepts for , x1
but fails for  after one-time oracle self-
destructs.

x2

Repeat with input |x2⟩

Eval†

[GKR’08, BGS’13]
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We just saw this impossibility
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Real world Ideal world

|𝖮𝖳𝖯f⟩

≈c

Attempt #1: Simulation-based Definition

Impossible, even for 
randomized programs,  
even in the oracle model 😢

[GKR’08, BGS’13]

One-time oracle: 
Answers 1 (quantum) query, 

then self-destructs.

Unsatisfying impossibility: Adv didn’t 
learn any secrets about the program.  

Can we tweak definition slightly to 
make it achievable?
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O(1)
f𝖲𝗂𝗆

Real world Ideal world

|𝖮𝖳𝖯f⟩

≈c
Classical output

Impossible, even for high min-
entropy programs!  
[GLRRV’24]

Rule out “dummy” adversary

One-time oracle: 
Answers 1 query 

and turns off.
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1.Query input   gentle measure ,  
uncompute

|0⟩ → a

2.Query input   gentle measure |a⟩ → k

Impossibility: partially deterministic high-entropy programs [GLRRV’24]

Attempt #2: Restrict adversary to classical output

Input 
x

Output  
fa,k (x ; r)

0 a || PRFk (0 || r)

a k || PRFk (a || r)

x ≠ 0, a PRFk (x || r)

|𝖮𝖳𝖯fa,k⟩

≈cClassical output = k

O(1)
fa,k𝖲𝗂𝗆

Cannot learn   
when  are chosen randomly

k
a, k

Lesson #1: Restricting adv to classical 
outputs does not help 

Lesson #2: high min-entropy is the 
wrong notion!
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• Cannot force the adversary to make destructive measurements

• Adversary can always (1) make many gentle measurements and (2) uncompute 
before making a destructive measurement

Key Idea

• Intuition: For “random enough” programs,

No destructive measurement  adversary does not learn useful information⟹

• So let’s allow  to also make gentle measurements & uncompute! 𝖲𝗂𝗆
(As long as it makes only 1 destructive measurement)
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f

Single Effective query oracle: 
At most 1 destructive query

≈c

Allow simulator also to make gentle queries and un-computations

Keep track of destructive queries using 
Zhandry’s compressed oracle technique.
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Why is the SEQ model any good?
1. Achievable!

Theorem [GLRRV’24]. In the classical oracle model, there is a OTP compiler that 
achieves SEQ simulation-based security for every program .f

For “random enough” programs, 

SEQ security  operational security⟹

2.   Meaningful: can recover operational one-time security definitions for “random 
enough” programs
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= SEQ-unlearnability

 (x1, y1),
(x2, y2) Adv wins if 

 and 𝖵𝖾𝗋𝗂𝖿𝗒f(x1, y1) = 𝖠𝖼𝖼𝖾𝗉𝗍
𝖵𝖾𝗋𝗂𝖿𝗒f(x2, y2) = 𝖠𝖼𝖼𝖾𝗉𝗍

O𝖲𝖤𝖰
f

Can define more general learning games. 
Eg. One-time PRF security game.
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SEQ (Un)learnability

Examples of SEQ-learnable programs: 

• Deterministic programs 

• Even some high min-entropy (but 
partially deterministic) programs 

Input Output

0 a || PRFk (0 || r)

a k || PRFk (a || r)

x ≠ 0, a 0 || PRFk (x || r)

[GLRRV’24] The following programs  
are SEQ-unlearnable: 

• Truly random functions 

• Pairwise independence 

• Functions related to Blind 
Unforgeable signatures [AMRS20] 

No hope of ever producing a OTP secure for two-valid-sample game.
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Why is the SEQ model any good?

Makes progress on both our guiding questions:

1. Stronger-than-operational notion of OTP that is achievable?

2. What class of programs can be compiled into an OTP?

SEQ simulation security

SEQ-unlearnable functions
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Real world Ideal world
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Allow simulator also to make gentle queries and un-computations
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Zhandry’s compressed oracle technique.
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Defining the “Single Effective Query” Oracle

• Step 1: SEQ Random oracle 

• Use compressed oracle technique as a blackbox

• Step 2: SEQ oracle for randomized functions

Bonus slides
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Step 2: SEQ oracle for  f : X × R → Y

O𝖲𝖤𝖰
f

 ∑
x

αx |x, f(x, H(x))⟩

∑
x

αx |x,0⟩

H𝖲𝖤𝖰

∑
x

αx |x,0⟩ |0⟩

∑
x

αx |x,0⟩ |H(x)⟩

Need to un-compute the  
register to avoid recording 

“gentle” queries

H(x)
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One-time security definitions

Attempt #1:  
One-time oracle

O(1)
f

Attempt #2: 
Classical output adv

Attempt #3: 
SEQ oracle

O𝖲𝖤𝖰
f

Simulation 
security

Operational 
security

O(1)
f

One-time PRF security

Two-sample security

For “SEQ-unlearnable”
programs
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• Use IO to heuristically instantiate oracles

Theorem [GLRRV’24] 
Post-quantum IO + LWE  OTP for randomized constrained PRFs in plain model⟹

Theorem [GLRRV’24]  
 SEQ-unlearnable programs that have no OTP in the plain model.∃
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Constrained PRFs. Given ,kC ← 𝖢𝗈𝗇𝗌𝗍𝗋𝖺𝗂𝗇(k, C)

• Can evaluate  for all 𝖤𝗏𝖺𝗅(kC, x) = Fk(x) C(x) = 1

•  pseudorandom for all Fk(x) C(x) = 0

[KPTZ13, BW13, BGI14]
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F
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One-time PRF security game
“Two-valid-outputs” game might not be secure enough for some programs, like PRFs

Sample PRF key k|𝖮𝖳𝖯F′ k
⟩

(x1, r1), (x2, r2)
Sample  
If  then  
If  then random

b1, b2 ← {0,1}
bi = 0 yi := Fk(xi∥ri)
bi = 1 yi ←y1, y2

b̂1, b̂2
Adv wins if: 

 and b1 = b̂1 b2 = b̂2

Randomized PRF 
 

for PRF 
F′ k(x; r) = (r , Fk(x∥r))

F
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Classical oracle construction:

Construction in plain model
OTP for constrained PRF F′ k

𝖮𝖳𝖯f := ( |S⟩, )

: 

 

If 

Else: abort

O(x, u)

r ←

Plain model

𝖨𝗇𝗏𝖾𝗋𝗍𝗂𝖻𝗅𝖾𝖯𝖱𝖥(u)

: output 𝗂𝖮(OSx)(u) = 1 F′ k(x; r)

𝗂𝖮(O)

*Use coset states instead of subspace states for plain model security proof [CLLZ21, VZ21]

Proof sketch:

• Constrain PRF  to  whose preimages are valid subspace vectorsF′ k r

• Then, adversary must have found s ∈ S, s′ ∈ S⊥
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Applications

• More signature tokens:  

• Blind unforgeable signatures [AMRS20]  signature tokens⟹
• One-time NIZK proofs 

• One-time proving token that allows a prover to prove only one statement

• Quantum money 

• One-time program for a signature scheme



Open Question #1

Strongest achievable notion of one-time security?

• We gave the SEQ simulation security definition 

• Is it the strongest notion achievable?



Open Question #2

More applications for one-time randomized programs?

• We suggest a few: more signature tokens, one-time proofs, quantum money 

• Flagship application of [Gunn-Movassagh’24] is Generative AI/LLMs 

• Heuristic security, difficult to prove



Open Question #3

Construction for one-time quantum channels?

• [BGS13] give a construction assuming one-time memory hardware devices 

• Not clear how to generalize our construction 

• We used unclonable subspace states to generate classical randomness 

• How to tamper with inherent quantum randomness?



Thank you!
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• Initialize empty database  

• On query : 

‣ If  is empty 

• Record  and output  

‣ If current query == last query 

• Output  and erase record 

‣ Else: 

• Output 

D

x

D

x H(x)

H(x)

⊥

Step 1: Quantum SEQ Random oracle

 ∑
x

αx |x, H(x)⟩

∑
x

αx |x,0⟩

∑
x

αx |x,0⟩ }
can implement using 

Compressed oracle technique [Zha’18]
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Allow  
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• Technique developed to record quantum queries to random oracle

• Useful for 

• On-the-fly simulation of quantum-accessible random oracles

• (Re-)proving quantum query lower bounds

Compressed Oracle [Zha’18]

Quantum queries to random oracle   
Action on standard basis states: 

H
|x, u⟩ ↦ |x, u + H(x)⟩



Compressed Oracle [Zha’18]
Purify the randomness of the RO to record adversary’s quantum queries



Compressed Oracle [Zha’18]

• Purify oracle register ∑
H

|H⟩

Purify the randomness of the RO to record adversary’s quantum queries



Compressed Oracle [Zha’18]

• Purify oracle register ∑
H

|H⟩

• Oracle query entangles query and oracle registers; detect this entanglement just looking at oracle register

Purify the randomness of the RO to record adversary’s quantum queries



Compressed Oracle [Zha’18]

• Purify oracle register ∑
H

|H⟩

• Oracle query entangles query and oracle registers; detect this entanglement just looking at oracle register

|x, u⟩ ⊗ ∑
H

|H⟩ ↦ ∑
H

|x, u ⊕ H(x)⟩ ⊗ |H⟩

Purify the randomness of the RO to record adversary’s quantum queries



Compressed Oracle [Zha’18]

• Purify oracle register ∑
H

|H⟩

• Oracle query entangles query and oracle registers; detect this entanglement just looking at oracle register

|x, u⟩ ⊗ ∑
H

|H⟩ ↦ ∑
H

|x, u ⊕ H(x)⟩ ⊗ |H⟩

• Writing  as a truth table,H : [N] → R

|x, u⟩ ⊗ ∑
r1

|r1⟩ ⊗ ⋯ ⊗ ∑
rN

|rN⟩

Purify the randomness of the RO to record adversary’s quantum queries



Compressed Oracle [Zha’18]

• Purify oracle register ∑
H

|H⟩

• Oracle query entangles query and oracle registers; detect this entanglement just looking at oracle register

|x, u⟩ ⊗ ∑
H

|H⟩ ↦ ∑
H

|x, u ⊕ H(x)⟩ ⊗ |H⟩

• Writing  as a truth table,H : [N] → R

|x, u⟩ ⊗ ∑
r1

|r1⟩ ⊗ ⋯ ⊗ ∑
rN

|rN⟩

Purify the randomness of the RO to record adversary’s quantum queries

∑
rx

|x, u ⊕ rx⟩ ⊗ ∑
r1

|r1⟩ ⊗ ⋯ ⊗ |rx⟩ ⊗ ⋯ ⊗ ∑
rN

|rN⟩



Compressed Oracle [Zha’18]

• Purify oracle register ∑
H

|H⟩

• Oracle query entangles query and oracle registers; detect this entanglement just looking at oracle register

|x, u⟩ ⊗ ∑
H

|H⟩ ↦ ∑
H

|x, u ⊕ H(x)⟩ ⊗ |H⟩

• Writing  as a truth table,H : [N] → R

|x, u⟩ ⊗ ∑
r1

|r1⟩ ⊗ ⋯ ⊗ ∑
rN

|rN⟩

Purify the randomness of the RO to record adversary’s quantum queries

Measure output
Oracle register collapses too. 

Can detect this in the Fourier basis.

|x, u ⊕ rx⟩ ⊗ ∑
r1

|r1⟩ ⊗ ⋯ ⊗ |rx⟩ ⊗ ⋯ ⊗ ∑
rN

|rN⟩



Compressed Oracle [Zha’18]

• Purify oracle register ∑
H

|H⟩

• Oracle query entangles query and oracle registers; detect this entanglement just looking at oracle register

|x, u⟩ ⊗ ∑
H

|H⟩ ↦ ∑
H

|x, u ⊕ H(x)⟩ ⊗ |H⟩

• Writing  as a truth table,H : [N] → R

|x, u⟩ ⊗ ∑
r1

|r1⟩ ⊗ ⋯ ⊗ ∑
rN

|rN⟩

Purify the randomness of the RO to record adversary’s quantum queries

Measure output
Oracle register collapses too. 

Can detect this in the Fourier basis.

|x, u ⊕ rx⟩ ⊗ ∑
r1

|r1⟩ ⊗ ⋯ ⊗ |rx⟩ ⊗ ⋯ ⊗ ∑
rN

|rN⟩

Compressed oracle: Isometry to convert long truth table to short databases. [Zha’18]
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Single Effective Query (SEQ) Model

• SEQ oracle uses random oracle  for randomness H

|x, u⟩ ⊗ ∑
H

|H⟩ ↦ ∑
H

|x, u ⊕ f(x, H(x))⟩ ⊗ |H⟩

• Writing as a truth table 

|x, u⟩ ⊗ ∑
r1
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Single Effective Query (SEQ) Model

• Initialize empty compressed oracle database for RO

• On query ,|x, u⟩
• If database contains no entries, answer query

• If database contains , answer queryx

• If database contains , don’t answer queryx′ ≠ x

O𝖲𝖤𝖰
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#recorded queries: 0  1→

Uncomputation: #recorded queries: 1  0→

#recorded queries: 1  1 →
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Plain model barrier
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Plain model OTP allows you 
to do non-black box things 

like QFHE evaluation


