
Quantum One-Time Programs,
Revisited

Aparna Gupte
MIT

Jiahui Liu
Fujitsu Research

Justin Raizes
CMU

Bhaskar Roberts
UC Berkeley

Vinod Vaikuntanathan
MIT

One-Time Programs (OTP)
[Goldwasser-Kalai-Rothblum’08]

I grant you one evaluation!

Image generated by ChatGPT

One-Time Programs (OTP)
[Goldwasser-Kalai-Rothblum’08]

I grant you one evaluation!

Image generated by ChatGPT

Program
 f : X → Y

One-Time Programs (OTP)
[Goldwasser-Kalai-Rothblum’08]

I grant you one evaluation!

Image generated by ChatGPT

Program
 f : X → Y

𝖮𝖳𝖯(f)

• Classically impossible 😢 (without hardware assumptions)

[Goldwasser-Kalai-Rothblum’08]

One-Time Programs (OTP)

• Classically impossible 😢 (without hardware assumptions)

• Can copy program many times, evaluate each copy

[Goldwasser-Kalai-Rothblum’08]

x1 x2 x3

...

One-Time Programs (OTP)

Quantum No-cloning Theorem:

Quantum One-Time Programs?

Quantum No-cloning Theorem:

Quantum One-Time Programs?

Does quantum no-cloning enable quantum one-time programs?

Quantum No-cloning Theorem:

Quantum One-Time Programs?

|𝖮𝖳𝖯f⟩Classical program

 f : X → Y

Does quantum no-cloning enable quantum one-time programs?

Quantum One-Time Programs?

No 😢
[Broadbent-Gutoski-Stebila ’13]

Quantum One-Time Programs?

No 😢
[Broadbent-Gutoski-Stebila ’13]

No Quantum OTP for deterministic programs

Quantum One-Time Programs?

No 😢
[Broadbent-Gutoski-Stebila ’13]

No Quantum OTP for deterministic programs

Quantum
computation is

reversible

Quantum One-Time Programs?

|𝖮𝖳𝖯f⟩

No 😢
[Broadbent-Gutoski-Stebila ’13]

No Quantum OTP for deterministic programs

Quantum
computation is

reversible

Quantum One-Time Programs?

|𝖮𝖳𝖯f⟩

No 😢
[Broadbent-Gutoski-Stebila ’13]

No Quantum OTP for deterministic programs

Quantum
computation is

reversible
|x⟩𝗂𝗇

Quantum One-Time Programs?

|𝖮𝖳𝖯f⟩ |⋯⟩𝗐𝗈𝗋𝗄𝗌𝗉𝖺𝖼𝖾 | f(x)⟩𝗈𝗎𝗍

𝖤𝗏𝖺𝗅

No 😢
[Broadbent-Gutoski-Stebila ’13]

No Quantum OTP for deterministic programs

Quantum
computation is

reversible
|x⟩𝗂𝗇

Quantum One-Time Programs?

Gentle measurement

|𝖮𝖳𝖯f⟩ |⋯⟩𝗐𝗈𝗋𝗄𝗌𝗉𝖺𝖼𝖾 | f(x)⟩𝗈𝗎𝗍

𝖤𝗏𝖺𝗅

No 😢
[Broadbent-Gutoski-Stebila ’13]

No Quantum OTP for deterministic programs

Quantum
computation is

reversible
|x⟩𝗂𝗇

Quantum One-Time Programs?

Gentle measurement

|𝖮𝖳𝖯f⟩ |⋯⟩𝗐𝗈𝗋𝗄𝗌𝗉𝖺𝖼𝖾 | f(x)⟩𝗈𝗎𝗍

𝖤𝗏𝖺𝗅

𝖤𝗏𝖺𝗅†

No 😢
[Broadbent-Gutoski-Stebila ’13]

No Quantum OTP for deterministic programs

Quantum
computation is

reversible
|x⟩𝗂𝗇

Quantum One-Time Programs?

Gentle measurement

|𝖮𝖳𝖯f⟩ |⋯⟩𝗐𝗈𝗋𝗄𝗌𝗉𝖺𝖼𝖾 | f(x)⟩𝗈𝗎𝗍

𝖤𝗏𝖺𝗅

𝖤𝗏𝖺𝗅†

No 😢
[Broadbent-Gutoski-Stebila ’13]

No Quantum OTP for deterministic programs

Quantum
computation is

reversible
|x⟩𝗂𝗇

What next? 🤔

Quantum One-Time Programs?

Quantum One-Time Programs?
for randomized programs

^

Quantum One-Time Programs?
for randomized programs

^
 Randomized function

• User chooses but not

f : X × R → Y

x r

Quantum One-Time Programs?
for randomized programs

^
 Randomized function

• User chooses but not

f : X × R → Y

x rMaybe? 🤔

Quantum One-Time Programs?
for randomized programs

^

|x⟩𝗂𝗇 |𝖮𝖳𝖯f⟩ ∑
r

|⋯r⟩𝗐𝗈𝗋𝗄𝗌𝗉𝖺𝖼𝖾 | f(x, r)⟩𝗈𝗎𝗍

𝖤𝗏𝖺𝗅

 Randomized function

• User chooses but not

f : X × R → Y

x rMaybe? 🤔

Quantum One-Time Programs?
for randomized programs

^

Attack doesn’t work! For with high min-entropy,
measuring output may destroy state and prevent further evaluations

f

|x⟩𝗂𝗇 |𝖮𝖳𝖯f⟩

𝖤𝗏𝖺𝗅

|⋯r⟩𝗐𝗈𝗋𝗄𝗌𝗉𝖺𝖼𝖾 | f(x, r)⟩𝗈𝗎𝗍

 Randomized function

• User chooses but not

f : X × R → Y

x rMaybe? 🤔

Quantum One-Time Programs?
for randomized programs

^

Attack doesn’t work! For with high min-entropy,
measuring output may destroy state and prevent further evaluations

f

|x⟩𝗂𝗇 |𝖮𝖳𝖯f⟩

𝖤𝗏𝖺𝗅

|⋯r⟩𝗐𝗈𝗋𝗄𝗌𝗉𝖺𝖼𝖾 | f(x, r)⟩𝗈𝗎𝗍

𝖤𝗏𝖺𝗅†

 Randomized function

• User chooses but not

f : X × R → Y

x rMaybe? 🤔

Quantum One-Time Programs?
for randomized programs

^

Attack doesn’t work! For with high min-entropy,
measuring output may destroy state and prevent further evaluations

f

For all , the distribution of
where has high entropy

x ∈ 𝒳 f(x, r)
r ← R

|x⟩𝗂𝗇 |𝖮𝖳𝖯f⟩

𝖤𝗏𝖺𝗅

|⋯r⟩𝗐𝗈𝗋𝗄𝗌𝗉𝖺𝖼𝖾 | f(x, r)⟩𝗈𝗎𝗍

𝖤𝗏𝖺𝗅†

 Randomized function

• User chooses but not

f : X × R → Y

x rMaybe? 🤔

Quantum One-Time Programs?
for randomized programs

^

Maybe! 😃

Signature tokens [Ben-David, Sattath ’16]

Quantum One-Time Programs?
for randomized programs

^

Maybe! 😃

Signature tokens [Ben-David, Sattath ’16]

Signing key

0 1

Quantum One-Time Programs?
for randomized programs

^

Maybe! 😃

Signature tokens [Ben-David, Sattath ’16]

Signing key

0 1 quantum OTP
for a specific randomized

program

≈

Quantum One-Time Programs?
for randomized programs

^

Maybe! 😃

Signature tokens [Ben-David, Sattath ’16]

Signing key

0 1 quantum OTP
for a specific randomized

program

≈

But we cannot be too greedy! 😢
No quantum OTPs that satisfy a strong simulation security notion,

for any (randomized) programs [Broadbent-Gutoski-Stebila ‘13]
🚧

Quantum One-Time Programs?
for randomized programs

^

Maybe! 😃

Signature tokens [Ben-David, Sattath ’16]

Signing key

0 1 quantum OTP
for a specific randomized

program

≈

But we cannot be too greedy! 😢
No quantum OTPs that satisfy a strong simulation security notion,

for any (randomized) programs [Broadbent-Gutoski-Stebila ‘13]
🚧

• I will define this soon!
• Signature token does not

satisfy this strong
security definition

Strong simulation security
impossible [BGS13]

🚧

Strong simulation security
impossible [BGS13]

🚧
Signature tokens [BDS16]
Weak one-time security
for a specific program

Strong simulation security
impossible [BGS13]

Q1: Stronger achievable
one-time security notion? 🚧

Signature tokens [BDS16]
Weak one-time security
for a specific program

Strong simulation security
impossible [BGS13]

Q1: Stronger achievable
one-time security notion?

Q2: What programs can be
one-time protected?

All high-min entropy programs? 🚧
Signature tokens [BDS16]
Weak one-time security
for a specific program

Security
strength

Class of programs

Security
strength

Class of programsDeterministic

Impossible
[BGS’13]

Security
strength

Class of programsDeterministic

Impossible
[BGS’13]

Simulation
security

Security
strength

Class of programsHigh min-entropyDeterministic

Impossible
[BGS’13]

Simulation
security

Security
strength

Class of programsHigh min-entropyDeterministic

Impossible
[BGS’13]

Simulation
security

Signature tokens [BDS16]

What about the rest of this regime?
Weaker-than-simulation security definitions

+
More general randomized programs

Security
strength

Class of programsHigh min-entropyDeterministic

Impossible
[BGS’13]

Simulation
security

Signature tokens [BDS16]

Our Work

Definition
Achievable intermediate
one-time security notion

Our Work

Definition
Achievable intermediate
one-time security notion

🌟

Our Work

Definition
Achievable intermediate
one-time security notion

🌟

Our Work

Construction

Definition
Achievable intermediate
one-time security notion

🌟

Our Work

Construction
• OTP in classical oracle model secure for

“unlearnable” programs

Definition
Achievable intermediate
one-time security notion

🌟

Our Work

Construction
• OTP in classical oracle model secure for

“unlearnable” programs
• Inspired by [BDS’16] signature tokens

Definition
Achievable intermediate
one-time security notion

🌟

Our Work

Construction
• OTP in classical oracle model secure for

“unlearnable” programs
• Inspired by [BDS’16] signature tokens

Plain model

(Post-quantum) IO

Definition
Achievable intermediate
one-time security notion

🌟

Our Work

Construction
• OTP in classical oracle model secure for

“unlearnable” programs
• Inspired by [BDS’16] signature tokens

Plain model
• One-time programs for programs

related to constrained PRFs

(Post-quantum) IO

Definition
Achievable intermediate
one-time security notion

🌟

Our Work

Construction
• OTP in classical oracle model secure for

“unlearnable” programs
• Inspired by [BDS’16] signature tokens

Plain model
• One-time programs for programs

related to constrained PRFs
• Impossibility for some other programs

(Post-quantum) IO

Definition
Achievable intermediate
one-time security notion

🌟

Our Work

Construction
• OTP in classical oracle model secure for

“unlearnable” programs
• Inspired by [BDS’16] signature tokens

Plain model
• One-time programs for programs

related to constrained PRFs
• Impossibility for some other programs

Applications

(Post-quantum) IO

Definition
Achievable intermediate
one-time security notion

🌟

Our Work

Construction
• OTP in classical oracle model secure for

“unlearnable” programs
• Inspired by [BDS’16] signature tokens

Plain model
• One-time programs for programs

related to constrained PRFs
• Impossibility for some other programs

Applications
• More signature tokens
• One-time NIZK proofs
• Quantum money

(Post-quantum) IO

Definition
Achievable intermediate
one-time security notion

🌟

Our Work

Concurrent work [Gunn-Movassagh’24] gives similar construction and
a simpler but weaker definition of one-time security.

Construction
• OTP in classical oracle model secure for

“unlearnable” programs
• Inspired by [BDS’16] signature tokens

Plain model
• One-time programs for programs

related to constrained PRFs
• Impossibility for some other programs

Applications
• More signature tokens
• One-time NIZK proofs
• Quantum money

(Post-quantum) IO

Our Construction

Warm up: Signature Tokens [BDS16]
Background: Subspace states

Warm up: Signature Tokens [BDS16]

• Random subspace with S ⊂ 𝔽λ
2 𝖽𝗂𝗆(S) = λ/2

Background: Subspace states

Warm up: Signature Tokens [BDS16]

• Random subspace with S ⊂ 𝔽λ
2 𝖽𝗂𝗆(S) = λ/2

• Subspace states [Aaronson-Christiano’12]

Background: Subspace states

|S⟩ := ∑
s∈S

|s⟩

Warm up: Signature Tokens [BDS16]

• Random subspace with S ⊂ 𝔽λ
2 𝖽𝗂𝗆(S) = λ/2

• Subspace states [Aaronson-Christiano’12]

Background: Subspace states

|S⟩ := ∑
s∈S

|s⟩

• Hides subspace S

Warm up: Signature Tokens [BDS16]

• Random subspace with S ⊂ 𝔽λ
2 𝖽𝗂𝗆(S) = λ/2

• Subspace states [Aaronson-Christiano’12]

Background: Subspace states

|S⟩ := ∑
s∈S

|s⟩

• Hides subspace

• Uncloneable [AC’12]:

S

|S⟩ ↛ |S⟩ ⊗ |S⟩

Warm up: Signature Tokens [BDS16]

• Random subspace with S ⊂ 𝔽λ
2 𝖽𝗂𝗆(S) = λ/2

• Subspace states [Aaronson-Christiano’12]

Background: Subspace states

 (Measure in computational basis)s ∈ S|S⟩ := ∑
s∈S

|s⟩

• Hides subspace

• Uncloneable [AC’12]:

S

|S⟩ ↛ |S⟩ ⊗ |S⟩

Warm up: Signature Tokens [BDS16]

• Random subspace with S ⊂ 𝔽λ
2 𝖽𝗂𝗆(S) = λ/2

• Subspace states [Aaronson-Christiano’12]

Background: Subspace states

 (Measure in computational basis)s ∈ S

 (Measure in Hadamard basis)s′ ∈ S⊥
OR

|S⟩ := ∑
s∈S

|s⟩

• Hides subspace

• Uncloneable [AC’12]:

S

|S⟩ ↛ |S⟩ ⊗ |S⟩

Warm up: Signature Tokens [BDS16]

• Random subspace with S ⊂ 𝔽λ
2 𝖽𝗂𝗆(S) = λ/2

• Subspace states [Aaronson-Christiano’12]

Background: Subspace states

 (Measure in computational basis)s ∈ S

 (Measure in Hadamard basis)s′ ∈ S⊥
AND

|S⟩ := ∑
s∈S

|s⟩

• Hides subspace

• Uncloneable [AC’12]:

S

|S⟩ ↛ |S⟩ ⊗ |S⟩

Warm up: Signature Tokens [BDS16]

• Random subspace with S ⊂ 𝔽λ
2 𝖽𝗂𝗆(S) = λ/2

• Subspace states [Aaronson-Christiano’12]

Background: Subspace states

Direct Product Hardness [BDS’16]. Even given membership oracles
hard for query-bounded adv to find both such that and .

OS, OS⊥

s, s′ ≠ 0 s ∈ S s′ ∈ S⊥

 (Measure in computational basis)s ∈ S

 (Measure in Hadamard basis)s′ ∈ S⊥
AND

Oracles OS, OS⊥

|S⟩ := ∑
s∈S

|s⟩

Warm up: Signature Tokens [BDS16]

 (Measure in computational basis)σ := s ∈ S

 (Measure in Hadamard basis)σ := s′ ∈ S⊥

AND

Oracles OS, OS⊥

|S⟩ := ∑
s∈S

|s⟩

Warm up: Signature Tokens [BDS16]

 (Measure in computational basis)σ := s ∈ S

 (Measure in Hadamard basis)σ := s′ ∈ S⊥

AND

Oracles OS, OS⊥

|S⟩ := ∑
s∈S

|s⟩
To sign :0

Warm up: Signature Tokens [BDS16]

 (Measure in computational basis)σ := s ∈ S

 (Measure in Hadamard basis)σ := s′ ∈ S⊥

AND

Oracles OS, OS⊥

|S⟩ := ∑
s∈S

|s⟩
To sign :0

To sign :1

Warm up: Signature Tokens [BDS16]

 (Measure in computational basis)σ := s ∈ S

 (Measure in Hadamard basis)σ := s′ ∈ S⊥

AND

Oracles OS, OS⊥

|S⟩ := ∑
s∈S

|s⟩
Signing key

Verification key

To sign :0

To sign :1

Warm up: Signature Tokens [BDS16]

 (Measure in computational basis)σ := s ∈ S

 (Measure in Hadamard basis)σ := s′ ∈ S⊥

AND

Oracles OS, OS⊥

|S⟩ := ∑
s∈S

|s⟩
Signing key

Verification key

To sign :0

To sign :1

To verify :
1. Measure
2. If , check
3. If , check

(m, σ)
σ

m = 0 σ ∈ S
m = 1 σ ∈ S⊥

Our OTP Construction
(In the classical oracle model)

Goal: OTP for . For simplicity, .f : {0,1}n × R → Y n = 1

Our OTP Construction
(In the classical oracle model)

Goal: OTP for . For simplicity, .f : {0,1}n × R → Y n = 1

|S⟩ := ∑
s∈S

|s⟩

Our OTP Construction
(In the classical oracle model)

Goal: OTP for . For simplicity, .f : {0,1}n × R → Y n = 1

|S⟩ := ∑
s∈S

|s⟩

Sample from f(0,⋅)

Our OTP Construction
(In the classical oracle model)

Goal: OTP for . For simplicity, .f : {0,1}n × R → Y n = 1

|S⟩ := ∑
s∈S

|s⟩

Sample from f(0,⋅)

Sample from f(1,⋅)
OR

not both

Oracle :O(x, v)

Our OTP Construction
(In the classical oracle model)

Goal: OTP for . For simplicity, .f : {0,1}n × R → Y n = 1

|S⟩ := ∑
s∈S

|s⟩ O

Sample from f(0,⋅)

Sample from f(1,⋅)
OR

not both

Oracle :O(x, v)

If AND , output x = 0 v ∈ S f(0,r)

Our OTP Construction
(In the classical oracle model)

Goal: OTP for . For simplicity, .f : {0,1}n × R → Y n = 1

|S⟩ := ∑
s∈S

|s⟩ O

Sample from f(0,⋅)

Sample from f(1,⋅)
OR

not both

Oracle :O(x, v)

If AND , output x = 0 v ∈ S f(0,r)

If AND , output x = 1 v ∈ S⊥ f(1,r)

Our OTP Construction
(In the classical oracle model)

Goal: OTP for . For simplicity, .f : {0,1}n × R → Y n = 1

|S⟩ := ∑
s∈S

|s⟩ O

Sample from f(0,⋅)

Sample from f(1,⋅)
OR

not both

Oracle :O(x, v)

If AND , output x = 0 v ∈ S f(0,r)

If AND , output x = 1 v ∈ S⊥ f(1,r)

Else, abort

Our OTP Construction
(In the classical oracle model)

Goal: OTP for . For simplicity, .f : {0,1}n × R → Y n = 1

|S⟩ := ∑
s∈S

|s⟩ O

Sample from f(0,⋅)

Sample from f(1,⋅)
OR

not both

Oracle :O(x, v)

If AND , output x = 0 v ∈ S f(0,r)

If AND , output x = 1 v ∈ S⊥ f(1,r)

Else, abort

Our OTP Construction
(In the classical oracle model)

Goal: OTP for . For simplicity, .f : {0,1}n × R → Y n = 1

|S⟩ := ∑
s∈S

|s⟩ O

Broken! Measuring output does
not destroy |S⟩

Oracle :O(x, v)

If AND , output x = 0 v ∈ S f(0,r)

If AND , output x = 1 v ∈ S⊥ f(1,r)

Else, abort

Our OTP Construction
(In the classical oracle model)

Goal: OTP for . For simplicity, .f : {0,1}n × R → Y n = 1

|S⟩ := ∑
s∈S

|s⟩ O

Broken! Measuring output does
not destroy |S⟩

1. submit , in superposition
2. measure and then
3. repeat with to get

x = 0 |S⟩
f(0,r)

|S⊥⟩ f(1,r)

Oracle :O(x, v)

If AND , output x = 0 v ∈ S f(0,r)

If AND , output x = 1 v ∈ S⊥ f(1,r)

Else, abort

Our OTP Construction
(In the classical oracle model)

Goal: OTP for . For simplicity, .f : {0,1}n × R → Y n = 1

|S⟩ := ∑
s∈S

|s⟩ O

Random oracle H : {0,1}λ → ℛ

f(0, H(v))

f(1, H(v))

Entangle with randomness
Measuring output destroys

(if has high min-entropy)

|S⟩ r
|S⟩

f

Oracle :

If AND , output

If AND , output

Else, abort

O(x, v)

x = 0 v ∈ S f(0, H(v))

x = 1 v ∈ S⊥ f(1, H(v))

Our OTP Construction

O

𝖮𝖳𝖯f := (|S⟩,)O

Random oracle H : {0,1}λ → R

Goal: OTP for . For simplicity, .f : {0,1}n × R → Y n = 1

Measuring output destroys
(if has high min-entropy)

|S⟩
f

Oracle :

If for all : output

Else, abort

O(x, v1, …, vn)

vi ∈ Sxi
i i ∈ [n] f(x, H(v1, …, vn))

Our OTP Construction
(In the classical oracle model)

Goal: OTP for into a one-time program. For :f : {0,1}n × R → Y n > 1

O

𝖮𝖳𝖯f := (|S1⟩, …, |Sn⟩,)O

Random oracle

S0
i := Si

S1
i := S⊥

i
H : {0,1}λ → R

𝖮𝖳𝖯f := (|S⟩,)O

𝖮𝖳𝖯f := (|S⟩,)O

Seems like if is “random enough”, this construction is a good OTP!f

𝖮𝖳𝖯f := (|S⟩,)O

Seems like if is “random enough”, this construction is a good OTP!f
1. What is the strongest possible one-time security this construction

satisfies?

𝖮𝖳𝖯f := (|S⟩,)O

Seems like if is “random enough”, this construction is a good OTP!f
1. What is the strongest possible one-time security this construction

satisfies?

2. What are the “random enough” ? All high min-entropy ?f f

Security Definitions

Operational Definition
Adversary cannot produce two valid outputs

|𝖮𝖳𝖯f⟩
f

Operational Definition
Adversary cannot produce two valid outputs

|𝖮𝖳𝖯f⟩

 (x1, y1),
(x2, y2)

f

Operational Definition
Adversary cannot produce two valid outputs

Adv wins if
 and 𝖵𝖾𝗋𝗂𝖿𝗒f(x1, y1) = 𝖠𝖼𝖼𝖾𝗉𝗍

𝖵𝖾𝗋𝗂𝖿𝗒f(x2, y2) = 𝖠𝖼𝖼𝖾𝗉𝗍

|𝖮𝖳𝖯f⟩

 (x1, y1),
(x2, y2)

f

Operational Definition
Adversary cannot produce two valid outputs

Adv wins if
 and 𝖵𝖾𝗋𝗂𝖿𝗒f(x1, y1) = 𝖠𝖼𝖼𝖾𝗉𝗍

𝖵𝖾𝗋𝗂𝖿𝗒f(x2, y2) = 𝖠𝖼𝖼𝖾𝗉𝗍

|𝖮𝖳𝖯f⟩

 (x1, y1),
(x2, y2)

Need some way to verify
that a sample is valid/correct

f

Security
strength

Class of programsHigh min-entropyDeterministic

Impossible
[BGS’13]

Simulation
security

Signature tokens [BDS16]

Security
strength

Class of programsHigh min-entropyDeterministic

Impossible
[BGS’13]

Simulation
security

Operational
security: cannot

get two valid
samples

Signature tokens [BDS16]

• “Two-valid-outputs” security might not be enough in some settings

|𝖮𝖳𝖯f⟩

output 1, output 2

• “Two-valid-outputs” security might not be enough in some settings

• Even if adversary cannot outputs two entire correct outputs, maybe it learns some
other secret about that we still want to protectf

|𝖮𝖳𝖯f⟩

output 1, output 2

• “Two-valid-outputs” security might not be enough in some settings

• Even if adversary cannot outputs two entire correct outputs, maybe it learns some
other secret about that we still want to protectf

• Eg. Adversary output 1, half of output 2↛

|𝖮𝖳𝖯f⟩

output 1, output 2

• “Two-valid-outputs” security might not be enough in some settings

• Even if adversary cannot outputs two entire correct outputs, maybe it learns some
other secret about that we still want to protectf

• Eg. Adversary output 1, half of output 2↛
• Eg. For PRFs, adversary should not be able to distinguish PRF output from true

randomness on two different queries

|𝖮𝖳𝖯f⟩

output 1, output 2

• “Two-valid-outputs” security might not be enough in some settings

• Even if adversary cannot outputs two entire correct outputs, maybe it learns some
other secret about that we still want to protectf

• Eg. Adversary output 1, half of output 2↛
• Eg. For PRFs, adversary should not be able to distinguish PRF output from true

randomness on two different queries

|𝖮𝖳𝖯f⟩

output 1, output 2

Simulation security?
“Adversary should learn nothing other than one sample of its choice.”

Attempt #1: Simulation-based Definition

O(1)
f𝖲𝗂𝗆

Real world Ideal world

|𝖮𝖳𝖯f⟩

[GKR’08, BGS’13]

Attempt #1: Simulation-based Definition

One-time oracle:
Answers 1 (quantum) query,

then self-destructs.

O(1)
f𝖲𝗂𝗆

Real world Ideal world

|𝖮𝖳𝖯f⟩

[GKR’08, BGS’13]

Attempt #1: Simulation-based Definition

One-time oracle:
Answers 1 (quantum) query,

then self-destructs.

O(1)
f𝖲𝗂𝗆

Real world Ideal world

|𝖮𝖳𝖯f⟩

≈c

[GKR’08, BGS’13]

 f

Attempt #1: Simulation-based Definition

One-time oracle:
Answers 1 (quantum) query,

then self-destructs.

O(1)
f𝖲𝗂𝗆

Real world Ideal world

|𝖮𝖳𝖯f⟩

≈c

[GKR’08, BGS’13]

 , such that , distinguishers

∀ 𝖠𝖽𝗏 ∃ 𝖲𝗂𝗆 ∀ f ∀

𝖠𝖽𝗏(|𝖮𝖳𝖯f⟩) ≈c 𝖲𝗂𝗆O(1)
f

 f

Attempt #1: Simulation-based Definition

One-time oracle:
Answers 1 (quantum) query,

then self-destructs.

O(1)
f𝖲𝗂𝗆

Real world Ideal world

|𝖮𝖳𝖯f⟩

≈c

[GKR’08, BGS’13]

 f

Attempt #1: Simulation-based Definition

One-time oracle:
Answers 1 (quantum) query,

then self-destructs.

O(1)
f𝖲𝗂𝗆

Real world Ideal world

Impossible for all
(randomized) programs!
[BGS’13]

|𝖮𝖳𝖯f⟩

≈c

[GKR’08, BGS’13]

 f

Attempt #1: Simulation-based Definition

One-time oracle:
Answers 1 (quantum) query,

then self-destructs.

O(1)
f𝖲𝗂𝗆

Real world Ideal world

Impossible for all
(randomized) programs!
[BGS’13]

|𝖮𝖳𝖯f⟩ ≈c

[GKR’08, BGS’13]

 f

Attempt #1: Simulation-based Definition

One-time oracle:
Answers 1 (quantum) query,

then self-destructs.

O(1)
f𝖲𝗂𝗆

Real world Ideal world

Impossible for all
(randomized) programs!
[BGS’13]

|𝖮𝖳𝖯f⟩ ≈c

Evaluate on random x

[GKR’08, BGS’13]

 f

Attempt #1: Simulation-based Definition

One-time oracle:
Answers 1 (quantum) query,

then self-destructs.

O(1)
f𝖲𝗂𝗆

Real world Ideal world

Impossible for all
(randomized) programs!
[BGS’13]

|𝖮𝖳𝖯f⟩ ≈c

• cannot win in plain
model unless it learns the
entire program in 1 query.

𝖲𝗂𝗆

Evaluate on random x

[GKR’08, BGS’13]

 f

Attempt #1: Simulation-based Definition

One-time oracle:
Answers 1 (quantum) query,

then self-destructs.

O(1)
f

𝖲𝗂𝗆

Real world Ideal world

Impossible for all
(randomized) programs!
[BGS’13]

|𝖮𝖳𝖯f⟩ ≈c

• cannot win in plain
model unless it learns the
entire program in 1 query.

𝖲𝗂𝗆

• Allow to output one-
time oracle-aided program?

𝖲𝗂𝗆
Evaluate on random x

[GKR’08, BGS’13]

 f

Impossible even in oracle model: The un-computation attack
Attempt #1: Simulation-based Definition

[GKR’08, BGS’13]

Impossible even in oracle model: The un-computation attack

Eval

|𝖮𝖳𝖯f⟩

Input register |x1⟩

Output register |0⟩

Attempt #1: Simulation-based Definition
[GKR’08, BGS’13]

Impossible even in oracle model: The un-computation attack

Eval

|𝖮𝖳𝖯f⟩

Input register |x1⟩

Output register |0⟩ Verify

Accept/reject |0⟩

Attempt #1: Simulation-based Definition
[GKR’08, BGS’13]

Impossible even in oracle model: The un-computation attack

Eval

|𝖮𝖳𝖯f⟩

Input register |x1⟩

Output register |0⟩ Verify

Accept/reject |0⟩
Real world: Correctness of OTP gentle
measurement, outcome = 1 for both

⟹
x1, x2

Attempt #1: Simulation-based Definition
[GKR’08, BGS’13]

Impossible even in oracle model: The un-computation attack

Eval

|𝖮𝖳𝖯f⟩

Input register |x1⟩

Output register |0⟩ Verify

Accept/reject |0⟩
Real world: Correctness of OTP gentle
measurement, outcome = 1 for both

⟹
x1, x2

Attempt #1: Simulation-based Definition

Eval†

[GKR’08, BGS’13]

Impossible even in oracle model: The un-computation attack

Eval

|𝖮𝖳𝖯f⟩

Input register |x1⟩

Output register |0⟩ Verify

Accept/reject |0⟩

|𝖮𝖳𝖯f⟩

Repeat with input |x2⟩

Real world: Correctness of OTP gentle
measurement, outcome = 1 for both

⟹
x1, x2

Attempt #1: Simulation-based Definition

Eval†

[GKR’08, BGS’13]

Impossible even in oracle model: The un-computation attack

Input register |x1⟩

Output register |0⟩

Attempt #1: Simulation-based Definition

O(1)
f

[GKR’08, BGS’13]

Impossible even in oracle model: The un-computation attack

EvalInput register |x1⟩

Output register |0⟩

Attempt #1: Simulation-based Definition

O(1)
f

[GKR’08, BGS’13]

Impossible even in oracle model: The un-computation attack

EvalInput register |x1⟩

Output register |0⟩

Attempt #1: Simulation-based Definition
[GKR’08, BGS’13]

Impossible even in oracle model: The un-computation attack

EvalInput register |x1⟩

Output register |0⟩

Attempt #1: Simulation-based Definition

Verify

Accept/reject |0⟩ Ideal world: Accepts for , x1

[GKR’08, BGS’13]

Impossible even in oracle model: The un-computation attack

EvalInput register |x1⟩

Output register |0⟩

Attempt #1: Simulation-based Definition

Verify

Accept/reject |0⟩ Ideal world: Accepts for , x1
but fails for after one-time oracle self-
destructs.

x2

Repeat with input |x2⟩

Eval†

[GKR’08, BGS’13]

Security
strength

Class of programsHigh min-entropyDeterministic

Impossible
[BGS’13]

Simulation
security

Operational
security: cannot

get two valid
samples

Signature tokens [BDS16]

We just saw this impossibility

O(1)
f𝖲𝗂𝗆

Real world Ideal world

|𝖮𝖳𝖯f⟩

≈c

Attempt #1: Simulation-based Definition

Impossible, even for
randomized programs,
even in the oracle model 😢

[GKR’08, BGS’13]

One-time oracle:
Answers 1 (quantum) query,

then self-destructs.

O(1)
f𝖲𝗂𝗆

Real world Ideal world

|𝖮𝖳𝖯f⟩

≈c

Attempt #1: Simulation-based Definition

Impossible, even for
randomized programs,
even in the oracle model 😢

[GKR’08, BGS’13]

One-time oracle:
Answers 1 (quantum) query,

then self-destructs.

Unsatisfying impossibility: Adv didn’t
learn any secrets about the program.

Can we tweak definition slightly to
make it achievable?

Attempt #2: Restrict adversary to classical output

O(1)
f𝖲𝗂𝗆

Real world Ideal world

|𝖮𝖳𝖯f⟩

≈c

Rule out “dummy” adversary

One-time oracle:
Answers 1 query

and turns off.

Attempt #2: Restrict adversary to classical output

O(1)
f𝖲𝗂𝗆

Real world Ideal world

|𝖮𝖳𝖯f⟩

≈c
Classical output

Rule out “dummy” adversary

One-time oracle:
Answers 1 query

and turns off.

Attempt #2: Restrict adversary to classical output

O(1)
f𝖲𝗂𝗆

Real world Ideal world

|𝖮𝖳𝖯f⟩

≈c
Classical output

Impossible, even for high min-
entropy programs!
[GLRRV’24]

Rule out “dummy” adversary

One-time oracle:
Answers 1 query

and turns off.

Impossibility: partially deterministic high-entropy programs [GLRRV’24]

Attempt #2: Restrict adversary to classical output

Impossibility: partially deterministic high-entropy programs [GLRRV’24]

Attempt #2: Restrict adversary to classical output

Input
x

Output
fa,k (x ; r)

Impossibility: partially deterministic high-entropy programs [GLRRV’24]

Attempt #2: Restrict adversary to classical output

Input
x

Output
fa,k (x ; r)

0 a || PRFk (0 || r)

Impossibility: partially deterministic high-entropy programs [GLRRV’24]

Attempt #2: Restrict adversary to classical output

Input
x

Output
fa,k (x ; r)

0 a || PRFk (0 || r)

a k || PRFk (a || r)

Impossibility: partially deterministic high-entropy programs [GLRRV’24]

Attempt #2: Restrict adversary to classical output

Input
x

Output
fa,k (x ; r)

0 a || PRFk (0 || r)

a k || PRFk (a || r)

x ≠ 0, a PRFk (x || r)

Impossibility: partially deterministic high-entropy programs [GLRRV’24]

Attempt #2: Restrict adversary to classical output

Input
x

Output
fa,k (x ; r)

0 a || PRFk (0 || r)

a k || PRFk (a || r)

x ≠ 0, a PRFk (x || r)

|𝖮𝖳𝖯fa,k⟩

1.Query input gentle measure ,
uncompute

|0⟩ → a

Impossibility: partially deterministic high-entropy programs [GLRRV’24]

Attempt #2: Restrict adversary to classical output

Input
x

Output
fa,k (x ; r)

0 a || PRFk (0 || r)

a k || PRFk (a || r)

x ≠ 0, a PRFk (x || r)

|𝖮𝖳𝖯fa,k⟩

1.Query input gentle measure ,
uncompute

|0⟩ → a

2.Query input gentle measure |a⟩ → k

Impossibility: partially deterministic high-entropy programs [GLRRV’24]

Attempt #2: Restrict adversary to classical output

Input
x

Output
fa,k (x ; r)

0 a || PRFk (0 || r)

a k || PRFk (a || r)

x ≠ 0, a PRFk (x || r)

|𝖮𝖳𝖯fa,k⟩

1.Query input gentle measure ,
uncompute

|0⟩ → a

2.Query input gentle measure |a⟩ → k

Impossibility: partially deterministic high-entropy programs [GLRRV’24]

Attempt #2: Restrict adversary to classical output

Input
x

Output
fa,k (x ; r)

0 a || PRFk (0 || r)

a k || PRFk (a || r)

x ≠ 0, a PRFk (x || r)

|𝖮𝖳𝖯fa,k⟩

Classical output = k

1.Query input gentle measure ,
uncompute

|0⟩ → a

2.Query input gentle measure |a⟩ → k

Impossibility: partially deterministic high-entropy programs [GLRRV’24]

Attempt #2: Restrict adversary to classical output

Input
x

Output
fa,k (x ; r)

0 a || PRFk (0 || r)

a k || PRFk (a || r)

x ≠ 0, a PRFk (x || r)

|𝖮𝖳𝖯fa,k⟩

≈cClassical output = k

O(1)
fa,k𝖲𝗂𝗆

Cannot learn
when are chosen randomly

k
a, k

1.Query input gentle measure ,
uncompute

|0⟩ → a

2.Query input gentle measure |a⟩ → k

Impossibility: partially deterministic high-entropy programs [GLRRV’24]

Attempt #2: Restrict adversary to classical output

Input
x

Output
fa,k (x ; r)

0 a || PRFk (0 || r)

a k || PRFk (a || r)

x ≠ 0, a PRFk (x || r)

|𝖮𝖳𝖯fa,k⟩

≈cClassical output = k

O(1)
fa,k𝖲𝗂𝗆

Cannot learn
when are chosen randomly

k
a, k

Lesson #1: Restricting adv to classical
outputs does not help

Lesson #2: high min-entropy is the
wrong notion!

Security
strength

Class of programsHigh min-entropyDeterministic

Impossible
[BGS’13]

Operational
security: cannot

get two valid
samples

Signature tokens [BDS16]

Simulation
security

Security
strength

Class of programsHigh min-entropyDeterministic

Impossible
[BGS’13]

Operational
security: cannot

get two valid
samples

Signature tokens [BDS16]

Simulation
security

(Classical
output)

Security
strength

Class of programsHigh min-entropyDeterministic

Impossible
[BGS’13]

Operational
security: cannot

get two valid
samples

Signature tokens [BDS16]

Simulation
security

(Classical
output)

• Cannot force the adversary to make destructive measurements

Key Idea

• Cannot force the adversary to make destructive measurements

• Adversary can always (1) make many gentle measurements and (2) uncompute
before making a destructive measurement

Key Idea

• Cannot force the adversary to make destructive measurements

• Adversary can always (1) make many gentle measurements and (2) uncompute
before making a destructive measurement

Key Idea

• Intuition: For “random enough” programs,

No destructive measurement adversary does not learn useful information⟹

• Cannot force the adversary to make destructive measurements

• Adversary can always (1) make many gentle measurements and (2) uncompute
before making a destructive measurement

Key Idea

• Intuition: For “random enough” programs,

No destructive measurement adversary does not learn useful information⟹

• So let’s allow to also make gentle measurements & uncompute! 𝖲𝗂𝗆
(As long as it makes only 1 destructive measurement)

Our Definition: Single Effective Query Model

𝖲𝗂𝗆

Real world Ideal world

|𝖮𝖳𝖯f⟩
O𝖲𝖤𝖰

f

≈c

Allow simulator also to make gentle queries and un-computations

Our Definition: Single Effective Query Model

𝖲𝗂𝗆

Real world Ideal world

|𝖮𝖳𝖯f⟩
O𝖲𝖤𝖰

f

Single Effective query oracle:
At most 1 destructive query

≈c

Allow simulator also to make gentle queries and un-computations

Our Definition: Single Effective Query Model

𝖲𝗂𝗆

Real world Ideal world

|𝖮𝖳𝖯f⟩
O𝖲𝖤𝖰

f

Single Effective query oracle:
At most 1 destructive query

≈c

Allow simulator also to make gentle queries and un-computations

Keep track of destructive queries using
Zhandry’s compressed oracle technique.

Why is the SEQ model any good?

Why is the SEQ model any good?
1. Achievable!

Theorem [GLRRV’24]. In the classical oracle model, there is a OTP compiler that
achieves SEQ simulation-based security for every program .f

Why is the SEQ model any good?
1. Achievable!

Theorem [GLRRV’24]. In the classical oracle model, there is a OTP compiler that
achieves SEQ simulation-based security for every program .f

But wait! No OTP for deterministic programs,
even in the weakest sense of one-time security …

Why is the SEQ model any good?
1. Achievable!

Theorem [GLRRV’24]. In the classical oracle model, there is a OTP compiler that
achieves SEQ simulation-based security for every program .f

But wait! No OTP for deterministic programs,
even in the weakest sense of one-time security …

• SEQ security is meaningless for deterministic programs,
just like obfuscation and copy-protection are meaningless
for “learnable” programs.

Why is the SEQ model any good?
1. Achievable!

Theorem [GLRRV’24]. In the classical oracle model, there is a OTP compiler that
achieves SEQ simulation-based security for every program .f

For “random enough” programs,

SEQ security operational security⟹

2. Meaningful: can recover operational one-time security definitions for “random
enough” programs

“Random enough”
= SEQ-unlearnability

“Random enough”
= SEQ-unlearnability

O𝖲𝖤𝖰
f

“Random enough”
= SEQ-unlearnability

 (x1, y1),
(x2, y2) Adv wins if

 and 𝖵𝖾𝗋𝗂𝖿𝗒f(x1, y1) = 𝖠𝖼𝖼𝖾𝗉𝗍
𝖵𝖾𝗋𝗂𝖿𝗒f(x2, y2) = 𝖠𝖼𝖼𝖾𝗉𝗍

O𝖲𝖤𝖰
f

“Random enough”
= SEQ-unlearnability

 (x1, y1),
(x2, y2) Adv wins if

 and 𝖵𝖾𝗋𝗂𝖿𝗒f(x1, y1) = 𝖠𝖼𝖼𝖾𝗉𝗍
𝖵𝖾𝗋𝗂𝖿𝗒f(x2, y2) = 𝖠𝖼𝖼𝖾𝗉𝗍

O𝖲𝖤𝖰
f

Can define more general learning games.
Eg. One-time PRF security game.

SEQ (Un)learnability

SEQ (Un)learnability

[GLRRV’24] The following programs
are SEQ-unlearnable:

• Truly random functions

• Pairwise independence

• Functions related to Blind
Unforgeable signatures [AMRS20]

SEQ (Un)learnability

Examples of SEQ-learnable programs:

• Deterministic programs

• Even some high min-entropy (but
partially deterministic) programs

[GLRRV’24] The following programs
are SEQ-unlearnable:

• Truly random functions

• Pairwise independence

• Functions related to Blind
Unforgeable signatures [AMRS20]

SEQ (Un)learnability

Examples of SEQ-learnable programs:

• Deterministic programs

• Even some high min-entropy (but
partially deterministic) programs

Input Output

0 a || PRFk (0 || r)

a k || PRFk (a || r)

x ≠ 0, a 0 || PRFk (x || r)

[GLRRV’24] The following programs
are SEQ-unlearnable:

• Truly random functions

• Pairwise independence

• Functions related to Blind
Unforgeable signatures [AMRS20]

SEQ (Un)learnability

Examples of SEQ-learnable programs:

• Deterministic programs

• Even some high min-entropy (but
partially deterministic) programs

Input Output

0 a || PRFk (0 || r)

a k || PRFk (a || r)

x ≠ 0, a 0 || PRFk (x || r)

[GLRRV’24] The following programs
are SEQ-unlearnable:

• Truly random functions

• Pairwise independence

• Functions related to Blind
Unforgeable signatures [AMRS20]

No hope of ever producing a OTP secure for two-valid-sample game.

Why is the SEQ model any good?

Makes progress on both our guiding questions:

Why is the SEQ model any good?

Makes progress on both our guiding questions:

1. Stronger-than-operational notion of OTP that is achievable?

Why is the SEQ model any good?

Makes progress on both our guiding questions:

1. Stronger-than-operational notion of OTP that is achievable?

SEQ simulation security

Why is the SEQ model any good?

Makes progress on both our guiding questions:

1. Stronger-than-operational notion of OTP that is achievable?

2. What class of programs can be compiled into an OTP?

SEQ simulation security

Why is the SEQ model any good?

Makes progress on both our guiding questions:

1. Stronger-than-operational notion of OTP that is achievable?

2. What class of programs can be compiled into an OTP?

SEQ simulation security

SEQ-unlearnable functions

Security
strength

Class of programsHigh min-entropyDeterministic

Operational
security: cannot

get two valid
samples

Simulation
security

Signature tokens [BDS16]

Security
strength

Class of programsHigh min-entropyDeterministic

Operational
security: cannot

get two valid
samples

Simulation
security

SEQ-unlearnable
programsSEQ-learnable programs

SEQ
simulation

security

Signature tokens [BDS16]

Security
strength

Class of programsHigh min-entropyDeterministic

Operational
security: cannot

get two valid
samples

Simulation
security

SEQ-unlearnable
programsSEQ-learnable programs

SEQ
simulation

security

Signature tokens [BDS16]

Our Definition: Single Effective Query Model

𝖲𝗂𝗆

Real world Ideal world

|𝖮𝖳𝖯f⟩
O𝖲𝖤𝖰

f

≈c

Allow simulator also to make gentle queries and un-computations

Our Definition: Single Effective Query Model

𝖲𝗂𝗆

Real world Ideal world

|𝖮𝖳𝖯f⟩
O𝖲𝖤𝖰

f

Single Effective query oracle:
At most 1 destructive query

≈c

Allow simulator also to make gentle queries and un-computations

Our Definition: Single Effective Query Model

𝖲𝗂𝗆

Real world Ideal world

|𝖮𝖳𝖯f⟩
O𝖲𝖤𝖰

f

Single Effective query oracle:
At most 1 destructive query

≈c

Allow simulator also to make gentle queries and un-computations

Keep track of destructive queries using
Zhandry’s compressed oracle technique.

Defining the “Single Effective Query” Oracle

Defining the “Single Effective Query” Oracle

• Step 1: SEQ Random oracle

Defining the “Single Effective Query” Oracle

• Step 1: SEQ Random oracle

• Use compressed oracle technique as a blackbox

Bonus slides

Defining the “Single Effective Query” Oracle

• Step 1: SEQ Random oracle

• Use compressed oracle technique as a blackbox

• Step 2: SEQ oracle for randomized functions

Bonus slides

Step 0: Classical SEQ Random oracle

Step 0: Classical SEQ Random oracle

x

Step 0: Classical SEQ Random oracle

x

or after 1st query

H(x)
⊥

Step 0: Classical SEQ Random oracle

• Initialize empty database D

x

or after 1st query

H(x)
⊥

Step 0: Classical SEQ Random oracle

• Initialize empty database D

• On query :xx

or after 1st query

H(x)
⊥

Step 0: Classical SEQ Random oracle

• Initialize empty database D

• On query :x

‣ If is emptyD

• Record and output x H(x)

x

or after 1st query

H(x)
⊥

Step 0: Classical SEQ Random oracle

• Initialize empty database D

• On query :x

‣ If is emptyD

• Record and output x H(x)
‣ Else:

• Output ⊥

x

or after 1st query

H(x)
⊥

Step 1: Quantum SEQ Random oracle

H𝖲𝖤𝖰

Step 1: Quantum SEQ Random oracle

∑
x

αx |x,0⟩
H𝖲𝖤𝖰

Step 1: Quantum SEQ Random oracle

 ∑
x

αx |x, H(x)⟩

∑
x

αx |x,0⟩
H𝖲𝖤𝖰

• Initialize empty database D

Step 1: Quantum SEQ Random oracle

 ∑
x

αx |x, H(x)⟩

∑
x

αx |x,0⟩
H𝖲𝖤𝖰

• Initialize empty database D

• On query :x

Step 1: Quantum SEQ Random oracle

 ∑
x

αx |x, H(x)⟩

∑
x

αx |x,0⟩
H𝖲𝖤𝖰

• Initialize empty database D

• On query :x

‣ If is emptyD

• Record and output x H(x)

Step 1: Quantum SEQ Random oracle

 ∑
x

αx |x, H(x)⟩

∑
x

αx |x,0⟩
H𝖲𝖤𝖰

• Initialize empty database D

• On query :x

‣ If is emptyD

• Record and output x H(x)

Step 1: Quantum SEQ Random oracle

 ∑
x

αx |x, H(x)⟩

∑
x

αx |x,0⟩
H𝖲𝖤𝖰

How to record
quantum query?

• Initialize empty database D

• On query :x

‣ If is emptyD

• Record and output x H(x)

Step 1: Quantum SEQ Random oracle

 ∑
x

αx |x, H(x)⟩

∑
x

αx |x,0⟩

∑
x

αx |x,0⟩ }

H𝖲𝖤𝖰

How to record
quantum query?

• Initialize empty database D

• On query :x

‣ If is emptyD

• Record and output x H(x)
‣ If current query == last query

• Output and erase recordH(x)

Step 1: Quantum SEQ Random oracle

 ∑
x

αx |x, H(x)⟩

∑
x

αx |x,0⟩

∑
x

αx |x,0⟩ }

H𝖲𝖤𝖰

How to record
quantum query?

Allow
un-computation

• Initialize empty database D

• On query :x

‣ If is emptyD

• Record and output x H(x)
‣ If current query == last query

• Output and erase recordH(x)
‣ Else:

• Output ⊥

Step 1: Quantum SEQ Random oracle

 ∑
x

αx |x, H(x)⟩

∑
x

αx |x,0⟩

∑
x

αx |x,0⟩ }

H𝖲𝖤𝖰

How to record
quantum query?

Allow
un-computation

• Initialize empty database D

• On query :x

‣ If is emptyD

• Record and output x H(x)
‣ If current query == last query

• Output and erase recordH(x)
‣ Else:

• Output ⊥

Step 1: Quantum SEQ Random oracle

 ∑
x

αx |x, H(x)⟩

∑
x

αx |x,0⟩

∑
x

αx |x,0⟩ }
can implement using

Compressed oracle technique [Zha’18]

H𝖲𝖤𝖰

How to record
quantum query?

Allow
un-computation

Step 2: SEQ oracle for f : X × R → Y

O𝖲𝖤𝖰
f

∑
x

αx |x,0⟩

Use as a
subroutine to generate
randomness

H𝖲𝖤𝖰

H(x)

Step 2: SEQ oracle for f : X × R → Y

O𝖲𝖤𝖰
f

∑
x

αx |x,0⟩

Use as a
subroutine to generate
randomness

H𝖲𝖤𝖰

H(x)

Step 2: SEQ oracle for f : X × R → Y

O𝖲𝖤𝖰
f

∑
x

αx |x,0⟩

H𝖲𝖤𝖰

∑
x

αx |x,0⟩ |0⟩

Use as a
subroutine to generate
randomness

H𝖲𝖤𝖰

H(x)

Step 2: SEQ oracle for f : X × R → Y

O𝖲𝖤𝖰
f

∑
x

αx |x,0⟩

H𝖲𝖤𝖰

∑
x

αx |x,0⟩ |0⟩

∑
x

αx |x,0⟩ |H(x)⟩

Use as a
subroutine to generate
randomness

H𝖲𝖤𝖰

H(x)

Step 2: SEQ oracle for f : X × R → Y

O𝖲𝖤𝖰
f

 ∑
x

αx |x, f(x, H(x))⟩

∑
x

αx |x,0⟩

H𝖲𝖤𝖰

∑
x

αx |x,0⟩ |0⟩

∑
x

αx |x,0⟩ |H(x)⟩

Use as a
subroutine to generate
randomness

H𝖲𝖤𝖰

H(x)

Step 2: SEQ oracle for f : X × R → Y

O𝖲𝖤𝖰
f

 ∑
x

αx |x, f(x, H(x))⟩

∑
x

αx |x,0⟩

H𝖲𝖤𝖰

∑
x

αx |x,0⟩ |0⟩

∑
x

αx |x,0⟩ |H(x)⟩

Need to un-compute the
register to avoid recording

“gentle” queries

H(x)

One-time security definitions

Attempt #1:
One-time oracle

O(1)
f

Simulation
security

Operational
security

One-time security definitions

Attempt #1:
One-time oracle

O(1)
f

Attempt #2:
Classical output adv

Simulation
security

Operational
security

O(1)
f

One-time security definitions

Attempt #1:
One-time oracle

O(1)
f

Attempt #2:
Classical output adv

Attempt #3:
SEQ oracle

O𝖲𝖤𝖰
f

Simulation
security

Operational
security

O(1)
f

One-time security definitions

Attempt #1:
One-time oracle

O(1)
f

Attempt #2:
Classical output adv

Attempt #3:
SEQ oracle

O𝖲𝖤𝖰
f

Simulation
security

Operational
security

O(1)
f

One-time PRF security

Two-sample security

For “SEQ-unlearnable”
programs

Instantiating OTPs in the
Plain Model

Instantiating our OTP the Plain Model

• Use IO to heuristically instantiate oracles

Instantiating our OTP the Plain Model

• Use IO to heuristically instantiate oracles

Theorem [GLRRV’24]
Post-quantum IO + LWE OTP for randomized constrained PRFs in plain model⟹

Instantiating our OTP the Plain Model

• Use IO to heuristically instantiate oracles

Theorem [GLRRV’24]
Post-quantum IO + LWE OTP for randomized constrained PRFs in plain model⟹

Theorem [GLRRV’24]
 SEQ-unlearnable programs that have no OTP in the plain model.∃

Randomized Constrained PRFs
[KPTZ13, BW13, BGI14]

Randomized Constrained PRFs
[KPTZ13, BW13, BGI14]

Randomized PRF

for PRF
F′ k(x; r) = (r , Fk(x∥r))

F

Randomized Constrained PRFs

Constrained PRFs. Given ,kC ← 𝖢𝗈𝗇𝗌𝗍𝗋𝖺𝗂𝗇(k, C)

[KPTZ13, BW13, BGI14]

Randomized PRF

for PRF
F′ k(x; r) = (r , Fk(x∥r))

F

Randomized Constrained PRFs

Constrained PRFs. Given ,kC ← 𝖢𝗈𝗇𝗌𝗍𝗋𝖺𝗂𝗇(k, C)

• Can evaluate for all 𝖤𝗏𝖺𝗅(kC, x) = Fk(x) C(x) = 1

[KPTZ13, BW13, BGI14]

Randomized PRF

for PRF
F′ k(x; r) = (r , Fk(x∥r))

F

Randomized Constrained PRFs

Constrained PRFs. Given ,kC ← 𝖢𝗈𝗇𝗌𝗍𝗋𝖺𝗂𝗇(k, C)

• Can evaluate for all 𝖤𝗏𝖺𝗅(kC, x) = Fk(x) C(x) = 1

• pseudorandom for all Fk(x) C(x) = 0

[KPTZ13, BW13, BGI14]

Randomized PRF

for PRF
F′ k(x; r) = (r , Fk(x∥r))

F

One-time PRF security game
“Two-valid-outputs” game might not be secure enough for some programs, like PRFs

Randomized PRF

for PRF
F′ k(x; r) = (r , Fk(x∥r))

F

One-time PRF security game
“Two-valid-outputs” game might not be secure enough for some programs, like PRFs

Sample PRF key k|𝖮𝖳𝖯F′ k
⟩

Randomized PRF

for PRF
F′ k(x; r) = (r , Fk(x∥r))

F

One-time PRF security game
“Two-valid-outputs” game might not be secure enough for some programs, like PRFs

Sample PRF key k|𝖮𝖳𝖯F′ k
⟩

(x1, r1), (x2, r2)

Randomized PRF

for PRF
F′ k(x; r) = (r , Fk(x∥r))

F

One-time PRF security game
“Two-valid-outputs” game might not be secure enough for some programs, like PRFs

Sample PRF key k|𝖮𝖳𝖯F′ k
⟩

(x1, r1), (x2, r2)
Sample
If then
If then random

b1, b2 ← {0,1}
bi = 0 yi := Fk(xi∥ri)
bi = 1 yi ←y1, y2

Randomized PRF

for PRF
F′ k(x; r) = (r , Fk(x∥r))

F

One-time PRF security game
“Two-valid-outputs” game might not be secure enough for some programs, like PRFs

Sample PRF key k|𝖮𝖳𝖯F′ k
⟩

(x1, r1), (x2, r2)
Sample
If then
If then random

b1, b2 ← {0,1}
bi = 0 yi := Fk(xi∥ri)
bi = 1 yi ←y1, y2

b̂1, b̂2
Adv wins if:

 and b1 = b̂1 b2 = b̂2

Randomized PRF

for PRF
F′ k(x; r) = (r , Fk(x∥r))

F

Classical oracle construction:

Construction in plain model
OTP for constrained PRF F′ k

𝖮𝖳𝖯f := (|S⟩,)

:

If

Else: abort

O(x, u)

r ←

O

H (u)

OSx : output (u) = 1 F′ k(x; r)

Classical oracle construction:

Construction in plain model
OTP for constrained PRF F′ k

𝖮𝖳𝖯f := (|S⟩,)

:

If

Else: abort

O(x, u)

r ←

O
Plain model

H (u)

OSx : output (u) = 1 F′ k(x; r)

Classical oracle construction:

Construction in plain model
OTP for constrained PRF F′ k

𝖮𝖳𝖯f := (|S⟩,)

:

If

Else: abort

O(x, u)

r ←

Plain model

H (u)

OSx : output (u) = 1 F′ k(x; r)

𝗂𝖮(O)

Classical oracle construction:

Construction in plain model
OTP for constrained PRF F′ k

𝖮𝖳𝖯f := (|S⟩,)

:

If

Else: abort

O(x, u)

r ←

Plain model

H (u)

: output 𝗂𝖮(OSx)(u) = 1 F′ k(x; r)

𝗂𝖮(O)

Classical oracle construction:

Construction in plain model
OTP for constrained PRF F′ k

𝖮𝖳𝖯f := (|S⟩,)

:

If

Else: abort

O(x, u)

r ←

Plain model

𝖨𝗇𝗏𝖾𝗋𝗍𝗂𝖻𝗅𝖾𝖯𝖱𝖥(u)

: output 𝗂𝖮(OSx)(u) = 1 F′ k(x; r)

𝗂𝖮(O)

Classical oracle construction:

Construction in plain model
OTP for constrained PRF F′ k

𝖮𝖳𝖯f := (|S⟩,)

:

If

Else: abort

O(x, u)

r ←

Plain model

𝖨𝗇𝗏𝖾𝗋𝗍𝗂𝖻𝗅𝖾𝖯𝖱𝖥(u)

: output 𝗂𝖮(OSx)(u) = 1 F′ k(x; r)

𝗂𝖮(O)

*Use coset states instead of subspace states for plain model security proof [CLLZ21, VZ21]

Proof sketch:

• Constrain PRF to whose preimages are valid subspace vectorsF′ k r

Classical oracle construction:

Construction in plain model
OTP for constrained PRF F′ k

𝖮𝖳𝖯f := (|S⟩,)

:

If

Else: abort

O(x, u)

r ←

Plain model

𝖨𝗇𝗏𝖾𝗋𝗍𝗂𝖻𝗅𝖾𝖯𝖱𝖥(u)

: output 𝗂𝖮(OSx)(u) = 1 F′ k(x; r)

𝗂𝖮(O)

*Use coset states instead of subspace states for plain model security proof [CLLZ21, VZ21]

Proof sketch:

• Constrain PRF to whose preimages are valid subspace vectorsF′ k r

• Then, adversary must have found s ∈ S, s′ ∈ S⊥

Applications

Applications

• More signature tokens:

• Blind unforgeable signatures [AMRS20] signature tokens⟹

Applications

• More signature tokens:

• Blind unforgeable signatures [AMRS20] signature tokens⟹
• One-time NIZK proofs

• One-time proving token that allows a prover to prove only one statement

Applications

• More signature tokens:

• Blind unforgeable signatures [AMRS20] signature tokens⟹
• One-time NIZK proofs

• One-time proving token that allows a prover to prove only one statement

• Quantum money

• One-time program for a signature scheme

Open Question #1

Strongest achievable notion of one-time security?

• We gave the SEQ simulation security definition

• Is it the strongest notion achievable?

Open Question #2

More applications for one-time randomized programs?

• We suggest a few: more signature tokens, one-time proofs, quantum money

• Flagship application of [Gunn-Movassagh’24] is Generative AI/LLMs

• Heuristic security, difficult to prove

Open Question #3

Construction for one-time quantum channels?

• [BGS13] give a construction assuming one-time memory hardware devices

• Not clear how to generalize our construction

• We used unclonable subspace states to generate classical randomness

• How to tamper with inherent quantum randomness?

Thank you!

Bonus slides I
Compressed Oracle Technique

• Initialize empty database

• On query :

‣ If is empty

• Record and output

‣ If current query == last query

• Output and erase record

‣ Else:

• Output

D

x

D

x H(x)

H(x)

⊥

Step 1: Quantum SEQ Random oracle

 ∑
x

αx |x, H(x)⟩

∑
x

αx |x,0⟩

∑
x

αx |x,0⟩ }
can implement using

Compressed oracle technique [Zha’18]

H𝖲𝖤𝖰

How to record
quantum query?

Allow
un-computation

Compressed Oracle [Zha’18]

• Technique developed to record quantum queries to random oracle

Compressed Oracle [Zha’18]

• Technique developed to record quantum queries to random oracle

• Useful for

• On-the-fly simulation of quantum-accessible random oracles

Compressed Oracle [Zha’18]

• Technique developed to record quantum queries to random oracle

• Useful for

• On-the-fly simulation of quantum-accessible random oracles

• (Re-)proving quantum query lower bounds

Compressed Oracle [Zha’18]

• Technique developed to record quantum queries to random oracle

• Useful for

• On-the-fly simulation of quantum-accessible random oracles

• (Re-)proving quantum query lower bounds

Compressed Oracle [Zha’18]

Quantum queries to random oracle
Action on standard basis states:

H
|x, u⟩ ↦ |x, u + H(x)⟩

Compressed Oracle [Zha’18]
Purify the randomness of the RO to record adversary’s quantum queries

Compressed Oracle [Zha’18]

• Purify oracle register ∑
H

|H⟩

Purify the randomness of the RO to record adversary’s quantum queries

Compressed Oracle [Zha’18]

• Purify oracle register ∑
H

|H⟩

• Oracle query entangles query and oracle registers; detect this entanglement just looking at oracle register

Purify the randomness of the RO to record adversary’s quantum queries

Compressed Oracle [Zha’18]

• Purify oracle register ∑
H

|H⟩

• Oracle query entangles query and oracle registers; detect this entanglement just looking at oracle register

|x, u⟩ ⊗ ∑
H

|H⟩ ↦ ∑
H

|x, u ⊕ H(x)⟩ ⊗ |H⟩

Purify the randomness of the RO to record adversary’s quantum queries

Compressed Oracle [Zha’18]

• Purify oracle register ∑
H

|H⟩

• Oracle query entangles query and oracle registers; detect this entanglement just looking at oracle register

|x, u⟩ ⊗ ∑
H

|H⟩ ↦ ∑
H

|x, u ⊕ H(x)⟩ ⊗ |H⟩

• Writing as a truth table,H : [N] → R

|x, u⟩ ⊗ ∑
r1

|r1⟩ ⊗ ⋯ ⊗ ∑
rN

|rN⟩

Purify the randomness of the RO to record adversary’s quantum queries

Compressed Oracle [Zha’18]

• Purify oracle register ∑
H

|H⟩

• Oracle query entangles query and oracle registers; detect this entanglement just looking at oracle register

|x, u⟩ ⊗ ∑
H

|H⟩ ↦ ∑
H

|x, u ⊕ H(x)⟩ ⊗ |H⟩

• Writing as a truth table,H : [N] → R

|x, u⟩ ⊗ ∑
r1

|r1⟩ ⊗ ⋯ ⊗ ∑
rN

|rN⟩

Purify the randomness of the RO to record adversary’s quantum queries

∑
rx

|x, u ⊕ rx⟩ ⊗ ∑
r1

|r1⟩ ⊗ ⋯ ⊗ |rx⟩ ⊗ ⋯ ⊗ ∑
rN

|rN⟩

Compressed Oracle [Zha’18]

• Purify oracle register ∑
H

|H⟩

• Oracle query entangles query and oracle registers; detect this entanglement just looking at oracle register

|x, u⟩ ⊗ ∑
H

|H⟩ ↦ ∑
H

|x, u ⊕ H(x)⟩ ⊗ |H⟩

• Writing as a truth table,H : [N] → R

|x, u⟩ ⊗ ∑
r1

|r1⟩ ⊗ ⋯ ⊗ ∑
rN

|rN⟩

Purify the randomness of the RO to record adversary’s quantum queries

Measure output
Oracle register collapses too.

Can detect this in the Fourier basis.

|x, u ⊕ rx⟩ ⊗ ∑
r1

|r1⟩ ⊗ ⋯ ⊗ |rx⟩ ⊗ ⋯ ⊗ ∑
rN

|rN⟩

Compressed Oracle [Zha’18]

• Purify oracle register ∑
H

|H⟩

• Oracle query entangles query and oracle registers; detect this entanglement just looking at oracle register

|x, u⟩ ⊗ ∑
H

|H⟩ ↦ ∑
H

|x, u ⊕ H(x)⟩ ⊗ |H⟩

• Writing as a truth table,H : [N] → R

|x, u⟩ ⊗ ∑
r1

|r1⟩ ⊗ ⋯ ⊗ ∑
rN

|rN⟩

Purify the randomness of the RO to record adversary’s quantum queries

Measure output
Oracle register collapses too.

Can detect this in the Fourier basis.

|x, u ⊕ rx⟩ ⊗ ∑
r1

|r1⟩ ⊗ ⋯ ⊗ |rx⟩ ⊗ ⋯ ⊗ ∑
rN

|rN⟩

Compressed oracle: Isometry to convert long truth table to short databases. [Zha’18]

Single Effective Query (SEQ) Model
Use Zhandry’s compressed oracle technique to keep track of destructive queries

Single Effective Query (SEQ) Model

• SEQ oracle uses random oracle for randomness H

|x, u⟩ ⊗ ∑
H

|H⟩ ↦ ∑
H

|x, u ⊕ f(x, H(x))⟩ ⊗ |H⟩

Use Zhandry’s compressed oracle technique to keep track of destructive queries

Single Effective Query (SEQ) Model

• SEQ oracle uses random oracle for randomness H

|x, u⟩ ⊗ ∑
H

|H⟩ ↦ ∑
H

|x, u ⊕ f(x, H(x))⟩ ⊗ |H⟩

• Writing as a truth table

|x, u⟩ ⊗ ∑
r1

|r1⟩ ⊗ ⋯ ⊗ ∑
rN

|rN⟩

Use Zhandry’s compressed oracle technique to keep track of destructive queries

Single Effective Query (SEQ) Model

• SEQ oracle uses random oracle for randomness H

|x, u⟩ ⊗ ∑
H

|H⟩ ↦ ∑
H

|x, u ⊕ f(x, H(x))⟩ ⊗ |H⟩

• Writing as a truth table

|x, u⟩ ⊗ ∑
r1

|r1⟩ ⊗ ⋯ ⊗ ∑
rN

|rN⟩

∑
rx

|x, u ⊕ f(x; rx)⟩ ⊗ ∑
r1

|r1⟩ ⊗ ⋯ ⊗ |rx⟩ ⊗ ⋯ ⊗ ∑
rN

|rN⟩

Use Zhandry’s compressed oracle technique to keep track of destructive queries

Single Effective Query (SEQ) Model

• SEQ oracle uses random oracle for randomness H

|x, u⟩ ⊗ ∑
H

|H⟩ ↦ ∑
H

|x, u ⊕ f(x, H(x))⟩ ⊗ |H⟩

• Writing as a truth table

|x, u⟩ ⊗ ∑
r1

|r1⟩ ⊗ ⋯ ⊗ ∑
rN

|rN⟩
Measure output

|x, u ⊕ f(x; rx)⟩ ⊗ ∑
r1

|r1⟩ ⊗ ⋯ ⊗ |rx⟩ ⊗ ⋯ ⊗ ∑
rN

|rN⟩

Use Zhandry’s compressed oracle technique to keep track of destructive queries

Single Effective Query (SEQ) Model

• SEQ oracle uses random oracle for randomness H

|x, u⟩ ⊗ ∑
H

|H⟩ ↦ ∑
H

|x, u ⊕ f(x, H(x))⟩ ⊗ |H⟩

• Writing as a truth table

|x, u⟩ ⊗ ∑
r1

|r1⟩ ⊗ ⋯ ⊗ ∑
rN

|rN⟩
Measure output

Destructive Query
• Highly random , oracle register collapses
• Can detect in Fourier basis

f

|x, u ⊕ f(x; rx)⟩ ⊗ ∑
r1

|r1⟩ ⊗ ⋯ ⊗ |rx⟩ ⊗ ⋯ ⊗ ∑
rN

|rN⟩

Use Zhandry’s compressed oracle technique to keep track of destructive queries

Single Effective Query (SEQ) Model

• SEQ oracle uses random oracle for randomness H

|x, u⟩ ⊗ ∑
H

|H⟩ ↦ ∑
H

|x, u ⊕ f(x, H(x))⟩ ⊗ |H⟩

• Writing as a truth table

|x, u⟩ ⊗ ∑
r1

|r1⟩ ⊗ ⋯ ⊗ ∑
rN

|rN⟩
Measure output

Gentle Query
• Eg. Deterministic program: does not depend on
• Oracle register does not collapse

f(x; r) r

Destructive Query
• Highly random , oracle register collapses
• Can detect in Fourier basis

f

|x, u ⊕ f(x; rx)⟩ ⊗ ∑
r1

|r1⟩ ⊗ ⋯ ⊗ |rx⟩ ⊗ ⋯ ⊗ ∑
rN

|rN⟩

Use Zhandry’s compressed oracle technique to keep track of destructive queries

Single Effective Query (SEQ) Model

• SEQ oracle uses random oracle for randomness H

|x, u⟩ ⊗ ∑
H

|H⟩ ↦ ∑
H

|x, u ⊕ f(x, H(x))⟩ ⊗ |H⟩

• Writing as a truth table

|x, u⟩ ⊗ ∑
r1

|r1⟩ ⊗ ⋯ ⊗ ∑
rN

|rN⟩
Measure output

Gentle Query
• Eg. Deterministic program: does not depend on
• Oracle register does not collapse

f(x; r) r

Destructive Query
• Highly random , oracle register collapses
• Can detect in Fourier basis

f

|x, u ⊕ f(x; rx)⟩ ⊗ ∑
r1

|r1⟩ ⊗ ⋯ ⊗ |rx⟩ ⊗ ⋯ ⊗ ∑
rN

|rN⟩

Compressed oracle: Isometry to convert
long truth table to short databases. [Zha’18]

Use Zhandry’s compressed oracle technique to keep track of destructive queries

Single Effective Query (SEQ) Model

O𝖲𝖤𝖰
f

Use Zhandry’s compressed oracle technique to maintain a database of queries made

Disclaimer: (Very) informal description of the SEQ oracle

Single Effective Query (SEQ) Model

• Initialize empty compressed oracle database for RO

O𝖲𝖤𝖰
f

Use Zhandry’s compressed oracle technique to maintain a database of queries made

Disclaimer: (Very) informal description of the SEQ oracle

Single Effective Query (SEQ) Model

• Initialize empty compressed oracle database for RO

• On query ,|x, u⟩
• If database contains no entries, answer query

O𝖲𝖤𝖰
f

#recorded queries: 0 1→

Use Zhandry’s compressed oracle technique to maintain a database of queries made

Disclaimer: (Very) informal description of the SEQ oracle

Single Effective Query (SEQ) Model

• Initialize empty compressed oracle database for RO

• On query ,|x, u⟩
• If database contains no entries, answer query

• If database contains , answer queryx

O𝖲𝖤𝖰
f

#recorded queries: 0 1→

Uncomputation: #recorded queries: 1 0→

Use Zhandry’s compressed oracle technique to maintain a database of queries made

Disclaimer: (Very) informal description of the SEQ oracle

Single Effective Query (SEQ) Model

• Initialize empty compressed oracle database for RO

• On query ,|x, u⟩
• If database contains no entries, answer query

• If database contains , answer queryx

• If database contains , don’t answer queryx′ ≠ x

O𝖲𝖤𝖰
f

#recorded queries: 0 1→

Uncomputation: #recorded queries: 1 0→

#recorded queries: 1 1 →

Use Zhandry’s compressed oracle technique to maintain a database of queries made

Disclaimer: (Very) informal description of the SEQ oracle

Bonus slides II
Plain model barrier

Theorem [GLRRV’24]
 SEQ-unlearnable programs that have no OTP in the plain model.

Inspired by [ABDS20, AP21]
∃

Theorem [GLRRV’24]
 SEQ-unlearnable programs that have no OTP in the plain model.

Inspired by [ABDS20, AP21]
∃

Input
x

Output
fsk, a, b (x ; r)

Theorem [GLRRV’24]
 SEQ-unlearnable programs that have no OTP in the plain model.

Inspired by [ABDS20, AP21]
∃

Input
x

Output
fsk, a, b (x ; r)

a Encsk (b; r)

Theorem [GLRRV’24]
 SEQ-unlearnable programs that have no OTP in the plain model.

Inspired by [ABDS20, AP21]
∃

Input
x

Output
fsk, a, b (x ; r)

a Encsk (b; r)

x ≠ a Encsk (x; r)

Theorem [GLRRV’24]
 SEQ-unlearnable programs that have no OTP in the plain model.

Inspired by [ABDS20, AP21]
∃

Input
x

Output
fsk, a, b (x ; r)

a Encsk (b; r)

x ≠ a Encsk (x; r)

 aux

• public key

•

• Obfuscation of

𝖰𝖥𝖧𝖤 pk′

𝖤𝗇𝖼pk′ (a)
̂P P

Theorem [GLRRV’24]
 SEQ-unlearnable programs that have no OTP in the plain model.

Inspired by [ABDS20, AP21]
∃

Input
x

Output
fsk, a, b (x ; r)

a Encsk (b; r)

x ≠ a Encsk (x; r)

 aux

• public key

•

• Obfuscation of

𝖰𝖥𝖧𝖤 pk′

𝖤𝗇𝖼pk′ (a)
̂P P

{(sk, sk′) if 𝖣𝖾𝖼sk(𝖣𝖾𝖼sk′ (x)) = b

0 otherwise
P(x) =

Theorem [GLRRV’24]
 SEQ-unlearnable programs that have no OTP in the plain model.

Inspired by [ABDS20, AP21]
∃

Input
x

Output
fsk, a, b (x ; r)

a Encsk (b; r)

x ≠ a Encsk (x; r)

 aux

• public key

•

• Obfuscation of

𝖰𝖥𝖧𝖤 pk′

𝖤𝗇𝖼pk′ (a)
̂P P

{(sk, sk′) if 𝖣𝖾𝖼sk(𝖣𝖾𝖼sk′ (x)) = b

0 otherwise
P(x) =

Plain model + aux|𝖮𝖳𝖯f⟩

Theorem [GLRRV’24]
 SEQ-unlearnable programs that have no OTP in the plain model.

Inspired by [ABDS20, AP21]
∃

Input
x

Output
fsk, a, b (x ; r)

a Encsk (b; r)

x ≠ a Encsk (x; r)

 aux

• public key

•

• Obfuscation of

𝖰𝖥𝖧𝖤 pk′

𝖤𝗇𝖼pk′ (a)
̂P P

{(sk, sk′) if 𝖣𝖾𝖼sk(𝖣𝖾𝖼sk′ (x)) = b

0 otherwise
P(x) =

Plain model + aux|𝖮𝖳𝖯f⟩

QFHE evaluation on 𝖤𝗇𝖼pk′ (a)

𝖤𝗇𝖼sk′ (𝖤𝗇𝖼sk(b))

Theorem [GLRRV’24]
 SEQ-unlearnable programs that have no OTP in the plain model.

Inspired by [ABDS20, AP21]
∃

Input
x

Output
fsk, a, b (x ; r)

a Encsk (b; r)

x ≠ a Encsk (x; r)

 aux

• public key

•

• Obfuscation of

𝖰𝖥𝖧𝖤 pk′

𝖤𝗇𝖼pk′ (a)
̂P P

{(sk, sk′) if 𝖣𝖾𝖼sk(𝖣𝖾𝖼sk′ (x)) = b

0 otherwise
P(x) =

Plain model + aux|𝖮𝖳𝖯f⟩

QFHE evaluation on 𝖤𝗇𝖼pk′ (a)

𝖤𝗇𝖼sk′ (𝖤𝗇𝖼sk(b)) ̂P (sk, sk′)

Theorem [GLRRV’24]
 SEQ-unlearnable programs that have no OTP in the plain model.

Inspired by [ABDS20, AP21]
∃

Input
x

Output
fsk, a, b (x ; r)

a Encsk (b; r)

x ≠ a Encsk (x; r)

 aux

• public key

•

• Obfuscation of

𝖰𝖥𝖧𝖤 pk′

𝖤𝗇𝖼pk′ (a)
̂P P

{(sk, sk′) if 𝖣𝖾𝖼sk(𝖣𝖾𝖼sk′ (x)) = b

0 otherwise
P(x) =

Plain model + aux|𝖮𝖳𝖯f⟩

QFHE evaluation on 𝖤𝗇𝖼pk′ (a)

𝖤𝗇𝖼sk′ (𝖤𝗇𝖼sk(b)) ̂P (sk, sk′)

,)(a b

Theorem [GLRRV’24]
 SEQ-unlearnable programs that have no OTP in the plain model.

Inspired by [ABDS20, AP21]
∃

Input
x

Output
fsk, a, b (x ; r)

a Encsk (b; r)

x ≠ a Encsk (x; r)

 aux

• public key

•

• Obfuscation of

𝖰𝖥𝖧𝖤 pk′

𝖤𝗇𝖼pk′ (a)
̂P P

{(sk, sk′) if 𝖣𝖾𝖼sk(𝖣𝖾𝖼sk′ (x)) = b

0 otherwise
P(x) =

Plain model + aux|𝖮𝖳𝖯f⟩

QFHE evaluation on 𝖤𝗇𝖼pk′ (a)

𝖤𝗇𝖼sk′ (𝖤𝗇𝖼sk(b)) ̂P (sk, sk′)

,)(a b

Plain model OTP allows you
to do non-black box things

like QFHE evaluation

