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Main Contributions

• We propose a Sobolev norm-based loss
function to modify the frequency bias property
and accelerate training for functions supported
on higher frequencies.

• We study how the frequency bias property
depends on the choice of activation function σ.

Introduction

Neural networks (NNs) are known to learn lower
Fourier frequency components first before higher
components when trained with gradient descent [1].
This frequency bias property means that NNs take
a long time to learn target functions that are sup-
ported on higher-frequency components (Figure 1).

Figure 1: Training a NN with the target function
y(x) = sin(2πx) + sin(2π · 4x) + sin(2π · 8x). After 4000
iterations, we plot the target and learned functions (left) and
their Discrete Fourier Transforms (DFTs) (right). The NN has
learned the low-frequency component sin(2πx) but not the
high-frequency component sin(2π · 8x).

Preliminaries

We study an over-parameterized NN with one-
hidden layer:

f (x; W, a) = 1√
m

m∑
r=1

ar σ(wT
r x)

where W, a are the weights and σ is the activation
function. The NN takes in inputs that are uniformly
distributed on the unit sphere, x ∈ Sd−1 ⊂ Rd.
Given samples {xi, yi}n

i=1, we train the NN using
gradient descent, with a learning rate η, to learn the
inner weights W while keeping the outer weights a
fixed. We seek to minimize the L2 loss function

Φ(W) =
n∑

i=1
(yi − f (xi; W, a))2.

Sobolev norm-based Loss Function

For a function g : Rd → R, the Hs norm is a special
case of the Sobolev norm, defined as

∥g∥2
Hs =

∫
Rd

(
1 + |ξ|2

)s/2
ĝ(ξ) dξ,

where ĝ : Rd → R is the Fourier transform of g.
We discretize this suitably to obtain a loss function
(parameterized by s ∈ R) that weighs different fre-
quencies differently,

Φ(W) = ∥r∥2
Hs = r⊤Pr,

where r = (f (x1) − y1, . . . , f (xn) − yn)⊤ is the
residue vector. For s = 0, −1, 1, we observe the
resulting frequency bias behaviour of the NN:
• s = 0: the NN has inherent low frequency bias,

since this case is equivalent to L2 loss,
• s > 0: larger weights are given to higher

frequencies,
• s < 0: larger weights are given to lower

frequencies.

Neural Tangent Kernel (NTK)

Based on the NTK framework, we analyze the train-
ing dynamics in the infinite-width limit (as m →
∞). Arora et al. [2] showed that

∥r(t)∥2
2 ≈

n∑
i=1

(1 − ηλi)2t(v⊤
i y)2,

where λi, vi are the eigenvalues and eigenvectors of
the NTK matrix K. As a result, components of
the target function y along eigenvectors with larger
eigenvalues are learned first. Further, by giving an
explicit expression of K, Basri et al. [3] showed that
for the L2 loss function and ReLU activation, eigen-
vectors of K are the spherical harmonics, and the
eigenvalues λk = Θ(1/kd). This confirms the low-
frequency bias of neural networks.
With a Sobolov norm-based loss function, the NTK
matrix becomes KP. Since P has the same eigen-
vectors as K and its eigenvalues µk = Θ(k2s), we
can choose a Hs norm where s = d/2 to counter-
balance the inherent low frequency bias.

Our Results

• Sobolev norm-based loss function with s > 0 reinforces inherent low frequency bias of NN. When s < 0,
it counterbalances low frequency bias and accelerates training on target functions with higher frequency
components. See Figure 2.

• The eigenvalues of the NTK matrix K decay polynomially for ReLU and Leaky ReLU activation
functions (weaker low frequency bias) and exponentially for Sigmoid and Tanh functions (stronger low
frequency bias). See Figure 3.

(a) H−1 (b) H0 (c) H1

Figure 2: Frequency bias properties with Sobolev norm-based
loss functions for different values of s ∈ {−1, 0, 1}. For
s = −1, underfitting is observed: the intermediate and high
frequency components are not learned by the NN. For s = 1,
the NN has learned all three frequency components of the
target function.
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Figure 3: Numerically estimated eigenvalues of the NTK
matrix K for different activation functions. The eigenvalues of
K decay polynomially for ReLU and Leaky ReLU and
exponentially for Sigmoid and Tanh.

Effect of Activation Function

We study how the activation function affects the fre-
quency bias property by numerically estimating the
eigenvalues of the NTK matrix K for different acti-
vation functions, including ReLU, Leaky ReLU, Sig-
moid and Tanh (Figure 3).
Our numerical experiments are based on the Funk-
Hecke theorem: For kernel K (which depends on the
activation function), the eigenvalue corresponding to
the k-th degree zonal harmonic, is given by

λd
k = Vol(Sd)

∫ 1

−1
K(t)Pk,d(t)(1 − t2)

d−2
2 dt, (1)

where Pk,d(t) denotes the Gegenbauer polynomial.

Applications

While it is currently difficult to apply the Sobolev norm-based
loss function to real world data sets because of the lack of
uniform data distributions, one promising application is to ac-
celerate PINNs (Physics-Informed Neural Networks) in solving
ordinary and partial differential equations.

Future Work

A future direction to explore would be to extend the theory
and experiments to non-uniform data distributions and higher
dimensions. This will potentially allow us to apply the Sobolev
norm-based loss function to real world datasets.
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