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Abstract

Due to its prevalence and association with cardiovascular diseases and premature death,
hypertension is a major public health challenge. Proper prevention and management
measures are needed to effectively reduce the pervasiveness of the condition. Current
clinical guidelines for hypertension provide physicians with general suggestions for
first-line pharmacologic treatment, but do not take patient-specific characteristics into
account. In this study, longitudinal Electronic Health Record (EHR) data are utilized
to determine the optimal antihypertensive treatment for a patient using his or her
individual characteristics and clinical condition. Given the observational nature of the
data, we address potential confounding through generalized propensity score evaluation
and optimal matching. We use multiple machine learning algorithms to estimate
counterfactual predictions for a patient under each treatment option and then apply a
voting mechanism among the different models to recommend a treatment based on the
best expected outcome. We report results on both the unmatched version of the dataset
and the matched dataset. We obtain final out-of-sample R2 values of 0.60 [95% CI,
0.56-0.64] and 0.55 [95% CI, 0.52-0.59] on the unmatched and matched data,
respectively. The final R2 metric is based on instances for which the treatment
suggested by the algorithm matches the patient’s actual treatment, thereby allowing us
to know the ground truth outcome for comparison. For patients for whom the algorithm
recommendation differs from the standard of care, we demonstrate an approximate 15%
decrease in next blood pressure based on the predicted outcome under the
recommended treatment. Additionally, we develop an interactive dashboard to be used
by physicians as a clinical support tool.

Introduction 1

Hypertension, a medical condition associated with high or elevated blood pressure, 2

affects an estimated 1.13 billion people worldwide [1]. Left untreated, hypertension can 3

increase a patient’s risk of developing heart, brain, kidney, and other diseases [2]. 4

Untreated hypertension also increases the risk of stroke [2], which is considered a major 5

cause of premature deaths, and a prevalent co-morbidity of COVID-19 [3]. 6

In 2016, the World Health Organization (WHO) and United States Centers for 7

Disease Control and Prevention (CDC) launched the Global Hearts Initiative, aimed at 8

a 25% reduction in hypertension prevalence by 2025. To reach this objective, 9

appropriate guidelines are needed for the physician community. In conjunction with the 10

Global Hearts Initiative, the WHO released a set of evidence-based protocols [4] that 11

designate who should be treated for hypertension and recommend first-line treatments 12

from any one of four main classes of antihypertensive medications: angiotensin 13

converting enzyme (ACE) inhibitors, angiotensin receptor blockers (ARB), calcium 14

channel blockers (CCB), and thiazide or thiazide-like diuretics. The guidelines state 15

that proper management of the disease typically requires a combination of medications. 16

These treatment recommendations are population-wide, with the exception of pregnant 17

women, for whom ACE Inhibitors, ARBs, and thiazide or thiazide-like diuretics are not 18

recommended [4]. 19

The 2014 Evidence-Based Guidelines for the Management of High Blood Pressure in 20

Adults, developed by the Eighth Joint National Committee (JNC 8), use a similar 21

approach for managing hypertension in adults [5]. These guidelines note the same four 22

classes of possible initial treatments to be used, with the main objective of attaining 23

and then maintaining a goal blood pressure value. If the blood pressure goal is not 24

achieved within a month of starting a single treatment, the dosage is typically increased 25

or a second drug is added to the patient’s regimen. If the goal cannot be reached with 26
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two drugs, a third drug may be introduced. Sub-population considerations are noted for 27

the black population, for whom a thiazide-like diuretic or CCB is recommended as a 28

first-line treatment [5]. 29

Despite such guidelines being strongly supported by evidence resulting from 30

randomized controlled trails (RCTs), current treatment decision protocols are not 31

highly personalized [6]. Both guidelines discussed advise on admissible medications and 32

target blood pressure values. Nevertheless, they state that these recommendations 33

should not be substituted for clinical judgement and the physician’s consideration of the 34

individual characteristics of each patient. With respect to treatment in practice, most 35

commonly, a trial-and-error approach is adopted whereby physicians use their 36

experience to prescribe an initial treatment and then refine treatment based on the 37

patient’s health trajectory. Finding the correct combination of treatments and dosages 38

is typically a lengthy, iterative process. As a result, the prevalence of hypertension is 39

projected to rise rather than to fall in coming years [7]. 40

An added barrier to successful management of hypertension is that blood pressure 41

often fluctuates constantly in response to physical and mental activities and is therefore 42

often characterized by oscillations over short and long-term periods [8]. This presents a 43

challenge for both diagnosis and treatment. Given the prevalence of the disease and the 44

severity of its effects on global human health, the development of a personalized 45

approach to treatment of hypertension would assist providers in improved disease 46

management for their patients [9]. Clinicians could greatly benefit from an interpretable 47

tool that uses patient-specific characteristics to recommend a treatment. 48

Literature review 49

The aim of this study is to create a model that, given a choice of options, can determine 50

the best treatment for an individual patient. Our dataset is comprised of n observations 51

of the form {(xi, yi, zi)}ni=1, where xi ∈ Rp are the features of the ith observation, 52

zi ∈ [T ] = {1, ..., T} is the assigned treatment, and yi ∈ R is the corresponding outcome 53

under the treatment. We use y(1), ..., y(T ) to denote the T “potential outcomes” that 54

result from assigning each of the T respective treatments. 55

Several approaches have been suggested for solving variants of this problem, both 56

from a causal inference perspective and a machine learning perspective. The Potential 57

Outcomes Framework, also known as the Rubin-Neyman Causal Model, describes how 58

patients are given treatment through a probabilistic assignment mechanism [10]. This 59

framework allows for possible dependence of the mechanism process on potential 60

outcomes [11,12]. Under this model, each individual has two potential outcomes, y(1) 61

and y(0), and the causal effect of the treatment is denoted by the difference between the 62

two. The fundamental problem of causal inference, however, is that only one of the two 63

potential outcomes can ever actually be observed. For this reason, causal approaches 64

typically concentrate on determining aggregated causal effects—treatment effects on a 65

population rather than on an individual. 66

The question of determining heterogeneous treatment effects must be addressed 67

using patient-level characteristics to determine the impact of each treatment for each 68

individual in isolation. In high-dimensional settings where large amounts of data are 69

available, utilizing machine learning for this purpose seems like a natural approach. An 70

approach commonly referred to in literature as “Regress and Compare” involves 71

regressing the outcomes against the covariates of samples who received each treatment 72

separately, predicting the individual’s outcome under each treatment, and 73

recommending the treatment with the best outcome [13]. Several studies have utilized 74

such methods to predict patient-level responses to treatment [14], as well as to compare 75

different treatments [15]. Although intuitive, this approach is subject to prediction 76

errors associated with using only a single method. Also, without necessary adjustment 77

August 27, 2020 3/25



(i.e., through covariate adjustment, inverse probability of treatment weighting, 78

matching, etc.) [16] such a method may suffer from bias, limiting the ability of the 79

results to be viably integrated into clinical practice. Certain studies on heterogeneous 80

treatment effects have made use of various methods to account for bias [17, 18], though 81

most of them focus on the comparison of treatments in a binary setting. 82

Alternative machine learning approaches to this problem include extensions of the 83

“Regress and Compare” methodology using a k-nearest neighbors method (k-NN) [19], as 84

well as tree-based methods that involve recursive partitioning [20], casual trees [21], 85

causal forests [22], and optimal prescriptive trees [23]. Recently, a machine learning 86

based framework was introduced to identify the best therapy for patients with Coronary 87

Artery Disease [24]. In this work, a series of regression models were created for each 88

treatment alternative to predict the time from diagnosis to a potential adverse event 89

(TAE) and the therapy with the best expected outcome was selected through a voting 90

mechanism that considered the predicted outcome from each model. This work 91

demonstrated how machine learning methods could be utilized to create tailored 92

prescriptions for patients with certain diseases. We draw from the work of many of 93

these studies and from [24] in particular to address the main challenges that persist in 94

the field of personalized medicine, including: counterfactual estimation, confounding 95

and selection bias, and multi-treatment comparison. We follow the framework of [24] in 96

combining several machine learning methods for prediction to improve outcome 97

estimation confidence. Moreover, we apply this methodology in a concentrated setting 98

to solve the problem of antihypertensive treatment selection. 99

Several authors have called attention to the need for personalized management of 100

hypertension [6, 9, 25,26]. Steps toward this goal have included individual patient data 101

meta-analysis to understand the combined effects of self-monitoring and treatment [27] 102

and using randomized trial data to predict absolute risk reduction (ARR) in 103

cardiovascular events from intensive blood pressure therapy [28]. Application of 104

Electronic Health Records (EHRs) to individualized treatment decision rules remains 105

relatively unexplored. 106

Contributions 107

In this paper, we propose the use of EHRs to develop an analytics-based approach to 108

prescribing antihypertensive treatments to patients. Our primary objective is to utilize 109

the ensemble approach proposed by [24] to combine several machine learning model 110

predictions and a voting mechanism to arrive at the optimal treatment at the individual 111

patient level. The main contributions of this paper include: 112

• Development of a quasi-experiment from observational data: Given the 113

observational nature of the data and, therefore, the risk of selection bias, we 114

simulate a quasi-randomized experiment using matching techniques. We extend 115

matching methods that are typically applied when comparing two treatments to 116

the multiple treatment case, ensuring that the populations receiving each of the 117

multiple treatments under consideration have similar pre-treatment covariate 118

distributions. 119

• Development of predictive models to detect improvement/worsening 120

of hypertension states estimate counterfactuals: We define a metric that 121

summarizes the blood pressure status of a patient over time. For each patient, we 122

observe this metric (outcome) conditional on the treatment they actually received 123

but not under any of the alternative treatment options. To estimate the 124

unobserved counterfactual outcomes, patients are divided into cohorts based on 125

their inclusion in six mutually exclusive treatment regimens. Separate machine 126
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learning models are trained for each of the treatments and validated through 127

out-of-sample testing. After training, counterfactual predictions of the outcome 128

under each of the treatments are produced for each patient in the test set. 129

• Development of a prescriptive methodology for antihypertensive 130

treatment: We follow the prescription algorithm set forth by [24] but tailor it to 131

the situation in which a chronic disease (in this case, hypertension) is being 132

treated. Whereas in [24] a one-off decision is being made to select a surgical 133

intervention or treatment believed to result in the greatest amount of time to a 134

TAE, we aim to choose the best option for a continuous treatment regimen. 135

Therefore, departing from [24], if majority agreement on the best treatment option 136

is not attained, we defer to the physician as to whether or not the patient’s 137

treatment regimen should be altered. 138

• Creation of an online dashboard for clinician support: An online 139

application is developed as a decision support tool for clinicians. The application 140

allows the physician to visualize, for an individual patient, predicted outcomes 141

under different treatment regimens. The application also includes a measure of 142

agreement between independent models in determining the optimal treatment. 143

The following link may be used to access the application: 144

http://alisonrb.shinyapps.io/PersonalizedAntihypertension. 145

Methods 146

Dataset characteristics 147

This study utilizes longitudinal EHR data from Boston Medical Center (BMC) patients. 148

BMC is an academic medical center in Boston, MA, that provides pediatric and adult 149

primary care, specialty care, and trauma and emergency services. The raw dataset 150

consists of 150,776 patients, comprising more than 10 million observations 151

corresponding to patient visits between 1982 and 2017. Patients in the raw dataset had 152

at least two records of blood pressure measurements in distinct visits and met at least 153

one of the following inclusion criteria: 154

• Were administered antihypertensive medications; 155

• Had EHR observations with ICD9/10 hypertension diagnosis codes; 156

• Had systolic blood pressure measurements higher than 140 mm Hg or diastolic 157

blood pressure measurements higher than 90 mm Hg (which defines hypertension). 158

For each patient, the EHR included demographic data, systolic and diastolic blood 159

pressure values, drug prescription descriptions, dosages, and duration, height, weight, 160

and body mass index (BMI) measurements, history of medical events, and lab value 161

measurements. 162

Data preprocessing 163

Due to the noise in blood pressure measurements, individual patient observations were 164

aggregated into three-month time interval summaries. For each summary observation, 165

minimum, median, and maximum systolic and diastolic blood pressure measurements 166

were extracted. Lab values in each summary observation correspond to the median 167

value of all measurements included in the time interval. The final dataset was 168

comprised of patients with three visit summaries such that, for each current observation, 169

we had previous visit information and subsequent visit information. Patients in the final 170
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dataset had at least six observations in the current time interval. Furthermore, patients 171

without a nine-month follow-up visit were excluded. Thus, the final cohort (N = 172

19,926) was intended to capture individuals who visit their doctor regularly. 173

After obtaining a final set of patient observations, additional preprocessing was 174

required to handle outliers and missing values. To account for outlying lab values, upper 175

and lower bounds were imposed based on established reference intervals for laboratory 176

measurements. Missing values were imputed using MedImpute, a recently developed 177

imputation method that leverages the fact that the same patient could be included 178

multiple times in the dataset based on multiple visits [29]. 179

Feature engineering 180

To produce a set of covariates for analysis, several features were engineered from the 181

information included in the EHR data. One such feature, referred to herein as blood 182

pressure score, was developed to obtain a de-noised metric that defines a patient’s blood 183

pressure status. The American Heart Association (AHA) recognizes five blood pressure 184

categories based on systolic and diastolic blood pressure measurements that range from 185

normal (Class 0) to hypertensive crisis (Class 4) [30]. Ranges of blood pressure values 186

associated with each category are shown in Table 1. 187

Each unique record of systolic and diastolic blood pressure was assigned to one of 188

the five blood pressure categories. Therefore, each aggregated observation included the 189

frequency at which the patient had blood pressure recordings in each of the five 190

categories. In accordance with the approach developed by Bertsimas et al. in Machine 191

Learning Identifies Guidelines for Blood Pressure Control, submitted in the Journal of 192

Hypertension in 2020, the blood pressure score metric was calculated with Eq (1). For 193

each patient, we could then utilize the previous, current, and next blood pressure score, 194

as well as the blood pressure category frequencies, as continuous features. These 195

features acted as summary functions that could encapsulate the state of the patient over 196

time with a low-dimensional representation. 197

score = 0f0 + 1f1 + 2f2 + 3f3 + 4f4 (1)

Table 1. Five blood pressure categories as recognized by the American
Heart Association.

Class Blood Pressure Category Systolic mm Hg Diastolic mm Hg
0 Normal less than 120 and less than 80
1 Elevated 120-129 and less than 80
2 High Blood Pressure

(Hypertension) Stage 1 130-139 or 80-89
3 High Blood Pressure

(Hypertension) Stage 2 140 or higher or 90 or higher
4 Hypertensive Crisis higher than 180 and/or higher than 120

In total, 90 variables were included in the analysis—continuous and categorical 198

variables are summarized in Table 2 and Table 3, respectively. Predictor variables 199

consisted of those directly recorded in the EHR, as well as those that were derived from 200

the raw data. Demographic variables included patient gender, ethnicity, religion, and 201

native language. For each observation, we utilized the current visit summary age, 202

height, weight, BMI, minimum, maximum, and median blood pressure measurements, 203

and median lab values. Lab-related covariates for which more than 95% of the 204

observations were missing were excluded. The patient’s history of cardiovascular disease 205

and type II diabetes was also included. 206
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Each observation summarized the patient’s blood pressure trajectory through 207

inclusion of previous measurements, such as previous visit blood pressure values and 208

category frequencies. Furthermore, categorical variables capturing previous dosage levels 209

of medications were extracted from patient records. For previous treatment variables, 210

the following treatment types were considered: ACE Inhibitors, Blockers (Alpha, Beta, 211

and/or Calcium Channel), Angiotensin II Inhibitors, Diuretics, others, and none. 212

Table 2. Summary of continuous patient features.

Variable 1st Quantile Median Mean 3rd Quantile
Previous BP Measurements

Median Systolic 124.00 136.00 137.09 148.00
Minimum Systolic 112.00 124.00 125.67 138.00
Maximum Systolic 134.00 148.00 148.58 160.00
Median Diastolic 74.00 80.00 81.11 88.00

Minimum Diastolic 68.00 74.00 74.98 80.00
Maximum Diastolic 80.00 86.00 87.11 94.00
Cat. 0 Frequency 0.00 0.00 0.14 0.14
Cat. 1 Frequency 0.00 0.29 0.36 0.60
Cat. 2 Frequency 0.00 0.25 0.32 0.50
Cat. 3 Frequency 0.00 0.00 0.14 0.18
Cat. 4 Frequency 0.00 0.00 0.05 0.00

Score 1.00 1.50 1.60 2.00
Current BP Measurements

Median Systolic 126.00 137.50 137.90 149.50
Minimum Systolic 110.00 120.00 121.99 132.00
Maximum Systolic 140.00 152.00 153.61 166.00
Median Diastolic 74.00 80.00 81.41 88.00

Minimum Diastolic 65.00 70.00 72.85 80.00
Maximum Diastolic 82.00 90.00 89.83 97.00
Cat. 0 Frequency 0.00 0.00 0.14 0.17
Cat. 1 Frequency 0.05 0.29 0.33 0.50
Cat. 2 Frequency 0.00 0.29 0.33 0.50
Cat. 3 Frequency 0.00 0.00 0.15 0.25
Cat. 4 Frequency 0.00 0.00 0.05 0.00

Score 1.00 1.63 1.65 2.18
Laboratory Values

Oxygen Saturation (%) 97.00 98.00 97.91 99.00
Cholesterol Serum (mg/dL) 168.00 184.87 185.82 199.07
Cholesterol HDL (mg/dL) 41.00 47.66 48.68 53.69
Cholesterol LDL (mg/dL) 97.13 108.21 108.59 118.23

Triglycerides (mg/dL) 95.94 133.00 143.43 162.93
Hemoglobin, blood (g/dL) 11.48 12.60 12.42 13.48

Hemoglobin MCH (pg) 28.07 29.60 29.44 31.00
Hemoglobin MCHC (g/dL) 32.90 33.51 33.42 34.10

Hemoglobin A1c (%) 6.00 6.82 6.89 7.04
Albumin Serum (g/dL) 3.60 3.69 3.64 3.80

Creatinine (µmol/L) 111.19 166.06 170.01 178.31
Urine pH 5.75 6.02 6.07 6.31

Urine Specific Gravity 1.01 1.02 1.02 1.02
Urobilinogen Semiquantitative 0.22 0.24 0.28 0.30

Protein Semiquantitative 824.95 829.28 915.08 1001.97
Hematocrit (%) 34.50 37.65 37.17 40.17

Chloride Serum (mEq/L) 102.00 103.98 103.78 105.50
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Calcium Serum (mg/dL) 9.10 9.40 9.36 9.69
Ferritin Serum (mg/L) 101.90 210.76 232.16 230.34

Iron Serum (µg/dL) 58.26 64.50 66.19 71.17
Iron-binding Capacity (µg/dL) 291.73 302.02 301.42 311.49

Bilirubin (mg/dL) 0.35 0.50 0.54 0.60
Demographics & Physical

Age 45.25 54.61 55.13 64.60
Height (cm) 160.80 165.19 165.77 170.00
Weight (kg) 71.30 83.60 87.01 98.80

BMI 26.07 30.25 31.25 35.00
Other

Prescription Duration (days) 64.00 121.00 131.81 170.77
Visit Count 7.00 10.00 13.36 15.00

Table 3. Summary of categorical patient features.

Variable Percentage of Population
Gender
Female 58.11%
Male 41.89%

Ethnicity
Asian 1.71%
Black 57.20%

Caucasian 21.31%
Hispanic 12.38%

Other 7.41%
Language

English 76.73%
Chinese 2.15%
Creole 9.76%

Spanish 8.46%
Other 2.91%

Religion
Baptist 17.43%
Catholic 36.34%
Christian 9.68%

Jehovah’s Witness 1.88%
Jewish 0.87%

Methodist 1.52%
Muslim 1.62%

Protestant 15.57%
None 4.50%
Other 10.58%

Medical History
Primary cardiovascular event of myocardial infarction 3.65%

Secondary cardiovascular event of myocardial infarction 3.07%
Urgent cardiovascular event of myocardial infarction 1.58%

Primary cardiovascular event of stroke 7.03%
Secondary cardiovascular event of stroke 5.26%

Urgent cardiovascular event of stroke 5.45%
Primary adverse event of chronic kidney disease 12.21%

Secondary adverse event of chronic kidney disease 15.39%
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Urgent adverse event of chronic kidney disease 7.66%
Type II Diabetes Mellitus 45.41%

Previous Medication Dosage
ACE Inhibitors - Low 21.28%

ACE Inhibitors - Medium 2.12%
ACE Inhibitors - High 8.63%

Angiotensin II Inhibitors - Low 0.36%
Angiotensin II Inhibitors - Medium 0.32%

Angiotensin II Inhibitors - High 0.47%
Blockers - Low 23.64%

Blockers - Medium 20.88%
Blockers - High 15.30%
Diuretics - Low 38.37%

Diuretics - Medium 5.73%
Diuretics - High 3.14%

Others - Low 0.20%
Others - Medium 0.20%

Others - High 0.40%
None 9.82%

Prior to separation of the dataset into cohorts based on treatment type, current 213

treatments were encoded as binary variables and included the following types: ACE 214

Inhibitors, Blockers (Alpha, Beta, and/or Calcium Channel), and Diuretics. The 215

current observation for a patient had to adhere to one of the following characteristics: 216

• Monotherapy: Currently taking one of the three current treatment options; 217

• Two Treatment Combination Therapy: Currently taking a two treatment 218

combination of the three current treatment options. 219

The intention of this inclusion criteria was to effectively capture a large portion of the 220

patient population while also limiting the number of potential treatment options for 221

comparative analysis. Starting with the three-month aggregated observations for which 222

one or more medications were taken (N = 82,736), over 53% of the population took 223

either one or two medications. 224

Outcome of interest 225

The outcome variable of interest was the patient’s next blood pressure score, as defined 226

by Eq (1), using measurements associated with the patient’s next three-month 227

aggregated visit summary. 228

Treatment options 229

In order to compare multiple treatments, separate models were trained for each 230

treatment option. Thus, the final cohort of 19,926 observations was divided into six 231

mutually exclusive subsets based on the current treatment regimen. Percentages of the 232

final cohort belonging to each type of treatment are listed in Table 4. 233

Debiasing approach 234

As stated, the primary objective of this study was to determine the optimal treatment 235

for a patient, given his or her individual characteristics. To accomplish this, each 236
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Table 4. Percentage of final cohort belonging to each treatment option.
Treatment Description Cohort Percentage

ACE Inhibitors

ACE Inhibitors help relax blood vessels
by preventing the formation of a hormone
called angiotensin, a substance in the body

that narrows blood vessels.

9.03%

Blockers

May include Calcium Channel Blockers,
Beta Blockers, or Alpha Blockers. Calcium

Channel Blockers prevent calcium from entering
the heart and blood vessel muscle cells,

causing the cells to relax. Beta Blockers work
by blocking the effects of adrenaline, which
cause your heart to beat slower and with less
force. Alpha Blockers relax certain muscles
and help small blood vessels remain open.

21.88%

Diuretics
Diuretics remove excess water and sodium
from the body, which decreases the amount
of fluid flowing through the blood vessels.

13.12%

Blockers & ACE Inhibitors Any combination of the drugs classified
as either Blockers or ACE Inhibitors.

15.48%

Blockers & Diuretics Any combination of the drugs classified
as either Blockers or Diuretics.

30.88%

Diuretics & ACE Inhibitors Any combination of the drugs classified
as either Diuretics or ACE Inhibitors.

9.61%

treatment option had to be compared to assess which would result in the most favorable 237

outcome for the patient. 238

Comparison of treatments is typically achieved through RCTs, which represent the 239

gold standard for determining treatment effects [31]. In a typical RCT, patients are 240

randomly assigned to a treatment group and a control group. Each unit in the trial, xi, 241

has two potential outcomes: Y0(xi) is the potential outcome had the unit not been 242

treated, and Y1(xi) is the potential outcome had the unit been treated. From these 243

values, we can estimate the conditional average treatment effect (CATE) for unit i 244

according to Eq (2) which, mathematically, corresponds to the difference in expectations 245

of outcomes under treatment and control. 246

CATE(xi) = EY1∼(y1|xi)[Y1 | xi]− EY0∼(y0|xi)[Y1 | xi] (2)

However, in reality, only one of these two values can be observed, which is the 247

fundamental problem of causal inference. Therefore, in order to estimate the CATE for 248

an individual, we must impute the unobserved counterfactual outcome and compare it 249

with the observed factual outcome. The strength of RCTs stem from the treatment 250

assignment mechanism being random. In many cases however, and especially in the 251

context of medicine, random assignment may be either prohibitively expensive, 252

unethical, or infeasible [31]. For this reason, observational data is often used to estimate 253

causal effects. 254

With respect to our study, which utilizes observational data, it is reasonable to 255

assume that patients were not likely to have received a random assignment of 256

treatments. For this reason, inferring causality from the data can be challenging due to 257

the presence of confounding variables and selection bias. Specifically, when attempting 258

to make causal inferences through comparison of groups that are different not only in 259

terms of treatment but also with respect to predictors that are related to both the 260

treatment and the outcome, we can be misled by the results [32]. Matching studies are 261

designed to minimize imbalances on measured preintervention characteristics, thereby 262

reducing bias in estimates of treatment effects. 263

Several methods have been proposed to adjust for bias; the most commonly 264

considered are covariate adjustment, inverse probability of treatment weighting (IPTW), 265
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stratification, and matching, each of which are detailed in [33]. In this study, we utilized 266

generalized propensity scores, which were developed as an extension of the propensity 267

score measure for binary treatment [34–36], to confirm common support existed among 268

all treatment options. We then used matching methods and extended them to the 269

multi-treatment case. 270

Before matching, it is worthwhile to confirm that there is substantial overlap of the 271

propensity score distributions among the different treatment groups—this is known as 272

the notion of common support. Identification of common support is a critical aspect of 273

the strong ignorability assumption for identifying causal effects from observational 274

data [34]. We verified that common support existed through the use of generalized 275

propensity score (GPS) [35]. After determining pre-treatment covariates believed to 276

affect both treatment assignment and the outcome (possible confounders), we estimated 277

the GPS for each patient observation using multinomial logistic regression. Through 278

this effort, we ascertained that the data was composed of units that are eligible to 279

receive all of the treatments. 280

By randomly assigning units to receive or not receive a treatment, one can ensure 281

that there are no systematic differences between treatment groups before the treatment 282

is assigned. In observational studies, random treatment assignment is not possible and 283

there are several variables, commonly referred to as confounding variables, that may 284

affect both the treatment assignment and the outcome [32]. For example, a patient’s 285

age might dictate which treatment options he or she is eligible to receive and might also 286

affect how that patient responds to the received treatment. Thus, it is possible that the 287

age distribution of the population receiving one treatment may differ from the age 288

distribution of the population receiving a different treatment. Such differences in 289

covariate distributions give rise to a problem known as selection bias which, if not 290

properly accounted for, can lead to biased estimates of the effect of a treatment [32]. In 291

these instances, it is imperative to separate the causal effect of the treatment from the 292

effect of preexisting differences between patients belonging to different treatment groups. 293

In our effort to control for selection bias, we utilized matching techniques. The 294

overall goal of matching is to replicate a RCT by forming groups, without using the 295

outcome, for which the observed covariate distributions are alike (balanced). Thus, we 296

aimed to find populations for each treatment for which the pre-treatment covariate 297

distributions were similar. Achieving such balance allows the initial attribution of the 298

observed difference in outcomes to be an effect of the treatments rather than the 299

differences in covariates. The idea is that for each individual receiving any one 300

treatment, we wish to observe a similar individual who has received each of the other 301

treatments. In the case of a single treatment and control, matching methods developed 302

by Cochran and Rubin are often utilized for this purpose [37–39]. 303

There are a number of algorithms, including nearest neighbor matching and optimal 304

matching, that have been developed for matching in the single treatment-control case. 305

While nearest neighbor matching is more commonly used, optimal matching has been 306

shown in many instances to achieve better balance on the confounders [40]. In this 307

study, we used a form of optimal matching known as cardinality matching [41]. With 308

cardinality matching, a linear integer programming problem is solved, where the 309

objective is to maximize the size of the matched sample subject to constraints on 310

covariate balance. Specifically, we sought to minimize the differences in means between 311

the pre-treatment covariates across all pairwise comparisons of treatment groups while 312

also maximizing the number of matched units. 313

Matching methods have generally been developed for the binary treatment case; 314

when considering more than two treatments, many of these methods become 315

computationally intractable. Following the work of Silber et al. [42] and Bennett et 316

al. [43] to overcome this limitation, we matched individuals from each treatment group 317
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to the treatment group with the fewest number of observations, which we considered as 318

our representative sample. Matching was implemented with the designmatch package 319

in R [43]. The designmatch function for optimal cardinality matching in observational 320

studies was used. 321

Statistical literature has warned that regression analysis cannot reliably adjust for 322

differences in observed covariates if substantial differences in the covariate distributions 323

exist [44,45]. Post-matching, we assessed the balance between the treatment groups 324

using pairwise standardized absolute mean differences, as suggested by [47]. Typically, 325

different groups are considered balanced if the standardized absolute mean differences 326

between the groups are less than 0.25 [47,48]. Once this level of balance is achieved, 327

outcome analysis can be performed. 328

Predictive models 329

In order to arrive at a medication recommendation, we had to infer the patient’s 330

response to each of the treatment options. For this task we utilized a separate model 331

approach. Thus, rather than adding an indicator of treatment type as a feature, which 332

would risk the learned function not taking the treatment assignment variable into 333

account, we created a suite of models for each treatment separately. 334

We developed predictive models for both the unmatched version of the dataset and 335

the matched version of the dataset, and we present results for both. In both cases, the 336

final cohort for each treatment option was used to train models to predict the next 337

blood pressure score for each observation. For each treatment, we further divided the 338

populations into 75% training and 25% testing sets. We also performed bootstrapping 339

of the results across five random splits of the data to obtain confidence intervals for the 340

evaluation metrics. If there were multiple observations for a single patient, we restricted 341

all observations to either be in only the training set or only the testing set. 342

We trained a variety of regression models for each treatment type, consisting of 343

linear and non-linear methods ranging from highly interpretable to black-box, to learn 344

relationships between the outcome and the covariates, as well as interactions between 345

covariates. 346

Models leveraged for the regression task included l-1 regularized regression (LASSO), 347

support vector regression (SVR), classification and regression trees (CART), random 348

forest (RF), gradient boosting machine (GBM), optimal regression trees (ORT), and 349

optimal prescriptive trees (OPT) (see S1 Table). While the majority of the machine 350

learning methods used are applied for a wide variety of tasks, OPTs were designed with 351

personalized decision making in mind [23]; thus, their application is highly relevant to 352

this problem. 353

OPTs utilize joint learning, whereby the entire sample is used for training purposes 354

to predict counterfactuals and to assign the optimal treatment. The objective function 355

introduced in the OPT framework is one that balances optimality and accuracy through 356

the use of a prescription factor, µ, which controls the trade-off between prescription 357

quality and predictive accuracy. In our work, we used a prescription factor of 0.5. The 358

tree-based output of OPTs results in all observations in the same leaf being assigned to 359

the same optimal treatment group. To align the output from OPTs to those from the 360

other predictive models, we extracted the predictions for patients in each treatment 361

group and used the prediction for the actual treatment received to evaluate performance. 362

Cross-validation was used to select hyperparameters for each of the models. 363

Out-of-sample R2 and MAE were used to evaluate model performance. Subsequent to 364

training, for every patient in the combined test set, prediction outcomes were obtained 365

from each of the trained models to utilize in the prescription algorithm. 366
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Prescriptive component 367

After using models trained on each separate treatment cohort to predict the 368

counterfactual estimations of the next blood pressure score, we obtained a matrix of 369

model-treatment combinations for each patient in the test set. An example of such a 370

matrix is shown in Table 5. Our algorithmic framework for treatment prescription is 371

similar to that described by Bertsimas et al. [24], except that we only change the 372

treatment regimen if the majority of the models agree that an alternate treatment will 373

result in a better outcome than the current treatment. Our methodology is as follows: 374

1. Using the matrix of counterfactual estimates, we derive which treatment each 375

regression model selects as the best treatment, based on the lowest expected 376

outcome (next blood pressure score). 377

2. We also ascertain which of the treatment options is most frequently chosen as the 378

best treatment. 379

3. If the majority of the regression models agree that a certain treatment will result 380

in the lowest outcome, we average the predictions from the models in agreement 381

to obtain a final prediction for the next blood pressure score under the chosen 382

treatment. 383

4. If there is not majority agreement among the regression models, the algorithm 384

defers to the physician to determine if the patient should remain on their current 385

treatment regimen or if current treatment should be refined. 386

Table 5. Example predictions of outcome for a single patient.

Ace
Inhibitors

Blockers Blockers &
ACE Inhibitors

Blockers &
Diuretics

Diuretics Diuretics &
ACE Inhibitors

CART 1.761 2.206 1.858 1.800 1.911 2.089
GBM 1.788 2.053 2.007 2.122 2.012 1.993
LASSO 1.929 2.072 2.176 2.083 1.993 1.842
OPT 1.200 2.019 2.313 2.108 2.099 2.199
ORT 1.551 2.116 2.197 1.775 1.865 1.961
RF 1.626 1.941 1.941 1.936 1.957 1.961
SVM 1.524 1.669 2.129 1.931 1.713 1.780

Utilizing the patient output displayed in Table 5, we will walk through the 387

prescription algorithm to demonstrate a full example. For this particular patient, six of 388

the seven models (CART, GBM, OPT, ORT, RF, SVM) agree that ACE Inhibitors is 389

the treatment that will result in the lowest blood pressure score for the next 390

three-month period, while one model (LASSO) predicts a combination of Diuretics and 391

ACE Inhibitors to be the best treatment option. Given that model agreement is 85.7% 392

(6 of 7 models agree), ACE Inhibitors is selected as the treatment recommendation and 393

the final prediction for the patient’s next blood pressure score is calculated by averaging 394

the models that agree, resulting in a final prediction of 1.575 for the next blood pressure 395

score. Supposing the patient’s current blood pressure score is 2.5, for example, this 396

implies that the treatment recommendation will result in the patient’s AHA category 397

lowering by one class. A blood pressure score of 2.5 indicates that a majority of the 398

patient’s blood pressure readings fall within the hypertension stage 1 and hypertension 399

stage 2 categories, and a decrease in score to 1.575 would result in a much lower 400

frequency of hypertension stage 2 readings and, correspondingly, a higher frequency of 401

readings in a category associated with lower systolic and diastolic blood pressure 402

measurements. 403
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Results 404

In this section, we present prediction evaluation metrics for each model-treatment 405

combination associated with both the full sample (unmatched data) and the matched 406

sample, as well as prescription evaluation metrics for both samples. We then present the 407

remainder of the results using the matched data, as we believe that this approach is 408

more robust to potential biases in outcomes. 409

Matching results 410

In this study, we weighed the need to retain a large enough dataset for each treatment 411

cohort to properly train machine learning models with the need to balance 412

pre-treatment covariates for each of the treatment options. Iterating through the 413

procedure described in the debiasing approach section, we were able to retain 75% of 414

the original final dataset (resulting in Nmatched = 14,998) while achieving pairwise 415

balance across all treatments below 0.25 for all but one of the 34 pre-treatment 416

covariates, as shown in Fig 1. For the variable not meeting balance criteria, the pairwise 417

difference was still reduced considerably in comparison with the original, unmatched 418

data. Furthermore, 82% of the pre-treatment variables after matching had a 419

standardized absolute mean difference below 0.10. In Supporting Information S2 Table 420

and S3 Table, we summarize the pre-treatment variables stratified by treatment before 421

and after the matching procedure. 422

Fig 1. Pre-Treatment covariate balance after matching.

Predictive regression modeling results 423

We used R2 and MAE metrics to evaluate the out-of-sample performance of the 424

separate treatment models. The R2, or coefficient of determination, metric represents 425

the proportional improvement in prediction accuracy compared to a model that predicts 426

the outcome for all samples to be the mean value of all samples in the training set, 427

while the MAE metric measures the average absolute magnitude of the errors in the 428

predictions. The R2 values ranged from 0.15 to 0.50, depending on the treatment subset 429

and model type. MAE ranged from 0.44 to 0.59. The out-of-sample performance for 430

the Diuretics models were superior to all other treatment types. In terms of predictive 431

accuracy, LASSO, RF, and GBM models outperformed the others. Evaluation metrics 432

for the full, unmatched sample are presented in Table 6 and S4 Table. We display the 433

mean value as well as the 95% confidence interval (CI) resulting from evaluation on five 434

random splits of the data. 435

Again for the matched sample, we utilized R2 and MAE as performance evaluation 436

metrics. The R2 values ranged from 0.22 to 0.49, and the MAE values ranged from 437

0.43 to 0.59. The predictive accuracy of the individual treatment models is very similar 438

between the unmatched and matched datasets. Also similar to the full sample results, 439

the LASSO, RF, and GBM models display the highest predictive accuracy in general. 440

Evaluation metrics for the matched sample are presented in Table 7 and S5 Table. 441

Prescription algorithm results 442

In [24], the authors propose several methods for prescriptive algorithm evaluation. We 443

adopted a metric similar to their “prediction accuracy of TAE” metric, where we 444

computed the R2 with patients for whom the prescription algorithm recommendation 445

matched the treatment that the patient actually received. This evaluation procedure 446
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Table 6. R2 metrics (mean and 95% CI) for full sample.
LASSO SVM CART Random Forest

ACE Inhibitors 0.43 (0.40, 0.45) 0.37 (0.34, 0.41) 0.36 (0.32, 0.40) 0.43 (0.40, 0.46)
Blockers 0.43 (0.42, 0.45) 0.40 (0.38, 0.42) 0.38 (0.35, 0.41) 0.43 (0.42, 0.45)
Diuretics 0.50 (0.49, 0.51) 0.46 (0.45, 0.46) 0.45 (0.44, 0.46) 0.49 (0.49, 0.50)
Blockers & ACE Inhibitors 0.36 (0.31, 0.41) 0.33 (0.28, 0.37) 0.30 (0.24, 0.35) 0.35 (0.30, 0.40)
Blockers & Diuretics 0.39 (0.37, 0.41) 0.37 (0.35, 0.39) 0.33 (0.31, 0.35) 0.38 (0.37, 0.40)
Diuretics & ACE Inhibitors 0.37 (0.31, 0.44) 0.34 (0.28, 0.40) 0.29 (0.22, 0.36) 0.37 (0.30, 0.44)

Boosted Trees ORT OPT (µ = 0.5)
ACE Inhibitors 0.44 (0.41, 0.46) 0.37 (0.34, 0.41) 0.17 (0.11, 0.23)
Blockers 0.43 (0.42, 0.44) 0.37 (0.36, 0.39) 0.32 (0.28, 0.36)
Diuretics 0.50 (0.49, 0.51) 0.43 (0.40, 0.47) 0.29 (0.25, 0.33)
Blockers & ACE Inhibitors 0.35 (0.30, 0.40) 0.29 (0.25, 0.34) 0.21 (0.16, 0.26)
Blockers & Diuretics 0.38 (0.37, 0.40) 0.33 (0.32, 0.34) 0.27 (0.22, 0.32)
Diuretics & ACE Inhibitors 0.37 (0.30, 0.45) 0.26 (0.19, 0.34) 0.15 (0.06, 0.24)

Table 7. R2 metrics (mean and 95% CI) for matched sample.
LASSO SVM CART Random Forest

ACE Inhibitors 0.42 (0.39, 0.45) 0.37 (0.32, 0.41) 0.36 (0.32, 0.40) 0.42 (0.39, 0.44)
Blockers 0.45 (0.41, 0.48) 0.41 (0.38, 0.44) 0.39 (0.35, 0.42) 0.45 (0.42, 0.47)
Diuretics 0.49 (0.44, 0.54) 0.44 (0.39, 0.48) 0.43 (0.39, 0.48) 0.48 (0.43, 0.53)
Blockers & ACE Inhibitors 0.35 (0.30, 0.40) 0.31 (0.27, 0.35) 0.30 (0.24, 0.35) 0.35 (0.30, 0.39)
Blockers & Diuretics 0.39 (0.37, 0.41) 0.35 (0.33, 0.37) 0.33 (0.31, 0.35) 0.38 (0.37, 0.39)
Diuretics & ACE Inhibitors 0.38 (0.35, 0.41) 0.33 (0.28, 0.38) 0.30 (0.26, 0.35) 0.38 (0.34, 0.41)

Boosted Trees ORT OPT (µ = 0.5)
ACE Inhibitors 0.43 (0.40, 0.46) 0.36 (0.32, 0.41) 0.26 (0.19, 0.32)
Blockers 0.44 (0.41, 0.48) 0.39 (0.35, 0.43) 0.34 (0.31, 0.37)
Diuretics 0.49 (0.43, 0.54) 0.42 (0.36, 0.47) 0.35 (0.24, 0.46)
Blockers & ACE Inhibitors 0.35 (0.30, 0.39) 0.29 (0.23, 0.34) 0.22 (0.12, 0.32)
Blockers & Diuretics 0.38 (0.36, 0.41) 0.31 (0.29, 0.34) 0.27 (0.26, 0.28)
Diuretics & ACE Inhibitors 0.37 (0.34, 0.41) 0.29 (0.23, 0.34) 0.22 (0.18, 0.26)

was used because we can only ever realize one factual outcome for each observation, and 447

the other five counterfactual outcomes must be imputed. Thus, the evaluation metric 448

considers only instances where we can compare the ground truth to a prediction. This 449

approach, though limited, enables us to infer the strength of our prescription algorithm 450

with respect to recommendation accuracy. The final R2 obtained from this procedure 451

was 0.60 [95% CI, 0.56-0.64] using the unmatched dataset and 0.55 [95% CI, 0.52-0.59] 452

using the matched dataset. 453

We also adopted the Prescription Effectiveness (PE) and Prescription Robustness 454

(PR) metrics introduced by [24]. The goal of these metrics is to consider different 455

predictions of the outcome with respect to a multitude of ground truths. The baseline 456

ground truth corresponds to the outcome that was actually observed in the data and, 457

thus, provides us with the next blood pressure score that was associated with the 458

treatment that was prescribed by the physician. Alternative ground truths refer to 459

predictions of the patient’s next blood pressure score associated with each of the 460

regression models. With the PE metric, we consider each regression model in isolation 461

and compare the effectiveness of the predicted prescription outcome relative to the 462

baseline ground truth outcome. The PR metric is determined by generating alternative 463

ground truths assuming that each regression model knew the outcome reality and 464

comparing the effectiveness of each of the other regression models against that outcome. 465

In this way, we can evaluate the robustness of the treatment effect estimation under 466

different ground truths. To make these metrics more interpretable for our outcome of 467
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interest, we transform the raw outcome (which corresponds to the decrease in next 468

blood pressure score for each model relative to each ground truth) into a percentage 469

decrease in next blood pressure score. We present these results in Table 8, while the raw 470

outcome PE and PR metrics are summarized in Supporting Information S6 Table. 471

Table 8. PE and PR metrics for all models and ground truths considered,
converted to percentage decrease in next blood pressure score.

Ground Truth
Estimation Model Baseline (PE) LASSO SVM CART RF GBM ORT OPT

LASSO 4.39 5.55 3.42 5.45 5.70 5.53 5.41 5.13
SVM 7.80 8.92 6.86 8.81 9.06 8.89 8.78 8.51

CART 10.67 11.75 9.76 11.66 11.89 11.73 11.63 11.36
RF 6.30 7.44 5.34 7.33 7.58 7.41 7.30 7.02

GBM 7.75 8.87 6.80 8.76 9.01 8.84 8.73 8.46
ORT 11.16 12.24 10.26 12.15 12.38 12.22 12.12 11.85
OPT 21.41 22.37 20.62 22.28 22.49 22.35 22.25 22.02

Prescription Algorithm 15.02 16.05 14.15 15.96 16.18 16.03 15.93 15.67

Table 8 presents the expected decrease in a patient’s next blood pressure score when 472

comparing the current treatment allocation plan with our prescription algorithm plan 473

using different estimatation models as the ground truth. Relative to the current 474

allocation plan, our prescription algorithm allocation plan represents a 15.02% expected 475

decrease in next blood pressure score. By observing the first column of Table 8, we find 476

that OPT is the most optimistic model, estimating a 21.41% decrease over the baseline 477

ground truth. LASSO, on the other hand, is the most conservative, estimating an 478

approximate 4.39% decrease in blood pressure score relative to the baseline. The 479

remaining regression models estimate fairly similar decreases, between 6.30% and 480

11.16%. Across all models, we demonstrate an expected benefit from the algorithm 481

allocation relative to the current allocation. Our PR metrics results show consistency in 482

estimations across all models and alternate ground truths considered. As was the case 483

for the PE metric, OPT is the most optimistic model across all ground truths and 484

LASSO is the least optimistic. Although we observe that OPT is more optimistic than 485

our prescription algorithm, we find that the final R2 values obtained from comparing 486

cases where the treatment that OPT determines as optimal matches the actual 487

treatment is substantially lower than the final R2 values from our algorithm, which 488

combines estimations from multiple models. We can see from these metrics that some 489

regression methods overestimate the expected outcome while others underestimate it, 490

and thus that the strongest results are obtained from averaging models that agree on 491

the optimal treatment decision. 492

Variable importance 493

We observed a high level of agreement between the different regression models as to 494

which of the variables were identified as important to the prediction task. Current and 495

previous blood pressure score were among the variables with highest importance for all 496

treatments and across all models, suggesting the usefulness of such a summary function. 497

Variables summarizing the frequency of a patient’s blood pressure measurements falling 498

into each of the AHA categories were identified as important across all models as well. 499

Median value measures of systolic and diastolic blood pressure were also highly 500

predictive of the outcome for many models. 501

Modeling results also revealed several variables whose importance was particular to a 502

treatment type. Depending on the treatment, visit summary lab values were indicated 503

by several of the regression methods as important variables. For example, hemoglobin 504

and cholesterol related lab values were identified as important by the models trained on 505
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the Blockers & Diuretics patient subset as well as on the Diuretics & ACE Inhibitors 506

subset. Additional lab measurements that were frequently identified as significant 507

included creatinine, iron, and triglycerides. Age was identified as an important factor 508

for the Blockers, Blockers & Diuretics, and Diuretics & ACE Inhibitors models. 509

Furthermore, duration of drug prescription was important for the ACE Inhibitors, 510

Blockers, and Diuretics & ACE Inhibitors models. As demonstrated by these examples, 511

factors identified as important for a particular monotherapy were typically also 512

identified by the combination therapies for which the monotherapy was a component. 513

Feature importance was consistent between the unmatched and matches samples for 514

each treatment type. 515

Model agreement 516

For the prescription algorithm, we recorded the level of agreement among the regression 517

models. In Table 9, we report the percentage of agreement of the machine learning 518

models by treatment type and overall. Of the testing set observations, majority 519

agreement among the seven models is achieved in approximately 46% of instances. 520

Higher level of agreement corresponds to greater confidence in the prescription 521

recommendation, whereas lower level of agreement indicates lower confidence. For this 522

reason, below a majority threshold (corresponding to three or fewer models out of seven 523

in agreement), the prescription algorithm defers to the physician for further evaluation 524

as to whether or not the current regimen should be altered. 525

Table 9. Percentage of agreement of machine learning models.
Number of Models

in Agreement
Ace

Inhibitors
Blockers Diuretics Blockers &

ACE Inhibitors
Blockers &
Diuretics

Diuretics &
ACE Inhibitors

Overall

2 of 7 10.68% 30.36% 10.23% 39.58% 27.57% 12.66% 14.02%
3 of 7 42.29% 41.45% 36.14% 42.88% 46.41% 42.22% 39.89%
4 of 7 29.83% 19.00% 30.62% 14.52% 20.56% 29.54% 28.41%
5 of 7 13.41% 7.41% 16.76% 2.36% 4.97% 12.47% 13.37%
6 of 7 3.30% 1.65% 5.56% 0.65% 0.49% 2.85% 3.83%
7 of 7 0.49% 0.13% 0.69% 0.00% 0.00% 0.26% 0.48%

Treatment recommendation distributions 526

In Table 10, we present the results of the prescription algorithm in the context of 527

distribution of final treatment recommendations. In cases where majority agreement is 528

not met, we assume for these distributions that the patient will remain on his or her 529

current line of treatment. By looking at the reallocation percentages, the results suggest 530

that monotherapies are preferable to combination therapies. Furthermore, Diuretics and 531

ACE Inhibitors appear to be the most frequently chosen treatment options. Blockers, 532

on the other hand, is the least frequent monotherapy option. Among the two-treatment 533

combination therapy options, Diuretics & ACE Inhibitors is the most frequently 534

prescribed option. 535

These findings are generally in agreement with current treatment protocols and 536

guidelines, which favor thiazide-like diuretics as a first-line therapy and, generally, do 537

not recommend Beta Blockers for initial treatment due to complications associated with 538

cardiovascular death, myocardial infarction, or stroke [4]. 539

Improvement over standard of care 540

In cases where the majority of models agree on a best treatment, our algorithm agrees 541

with the actual treatment the patient received between 14% and 18% of the time, 542

depending on the split of the data. After obtaining final prediction outcomes for patients 543
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Table 10. Distribution of predicted best treatment.

Actual
Predicted

ACE Inhibitors Blockers Blockers &
ACE Inhibitors

Blockers &
Diuretics

Diuretics Diuretics &
ACE Inhibitors

ACE Inhibitors 65.75% 2.49% 0.64% 1.33% 20.94% 8.85%
Blockers 12.97% 55.92% 0.44% 2.21% 19.22% 9.23%
Blockers & ACE Inhibitors 14.78% 2.40% 54.75% 2.34% 19.52% 6.22%
Blockers & Diuretics 13.33% 1.33% 0.20% 55.94% 18.05% 11.14%
Diuretics 8.18% 1.36% 0.39% 1.65% 75.96% 12.48%
Diuretics & ACE Inhibitors 10.08% 1.66% 0.63% 1.51% 21.84% 64.29%

for whom the algorithm disagrees with the standard of care on an optimal treatment, 544

we evaluate the potential improvement in patient outcomes based on the predictions. 545

Table 11 displays the mean actual outcome, mean predicted best outcome, and the 546

corresponding percentage decrease in patients’ next blood pressure scores, where 547

patients are grouped by their current treatment regimen. Patients predicted to 548

experience the greatest decrease in their next blood pressure score are those that are 549

currently taking Blockers, Blockers & ACE Inhibitors, and Blockers & Diuretics. For 550

these patients, the best potential outcome represents a decrease in score of 551

approximately 17%. 552

Table 11. Potential outcome improvement over standard of care.

Actual Treatment Average of
Actual Next Score

Average of
Best Next Score

% Decrease
in Next Score

Ace Inhibitors 1.485 1.281 13.78%
Blockers 1.531 1.268 17.21%
Blockers & Ace Inhibitors 1.644 1.337 18.71%
Blockers & Diuretics 1.568 1.316 16.09%
Diuretics 1.550 1.357 12.41%
Diuretics & Ace Inhibitors 1.387 1.203 13.22%

We provide a concrete example below to illustrate the potential benefit that is 553

suggested by these results. Let us suppose that patient A has a current blood pressure 554

score of 1.70, based on the following calculation as dictated by Eq (1): 555

score = 0 · 0% + 1 · 50% + 2 · 30% + 3 · 20% + 4 · 0% = 1.70 (3)

Based on this score, a majority (50%) of patient A’s blood pressure measurements 556

fall into the Elevated Blood Pressure category, while 30% and 20% of the measurements 557

belong to the Stage 1 Hypertension and Stage 2 Hypertension categories, respectively. 558

An example calculation corresponding to a 18.8% decrease in blood pressure score, 559

hypothetically switching the patient from the current regimen to the predicted best 560

treatment option, might be: 561

score = 0 · 0% + 1 · 62% + 2 · 38% + 3 · 0% + 4 · 0% = 1.38 (4)

In this hypothetical instance, the frequency of measurements shifts from higher-risk 562

categories to lower-risk categories. As demonstrated by this example, the prescription 563

algorithm results suggest considerable improvement over current standard of care. 564

Improvement among specific sub-groups is detailed in the subgroup analysis section. 565

Subgroup analysis 566

We expand the results of our study through subgroup analysis, whereby we investigate 567

the model agreement, final out-of-sample R2, and potential decrease in next blood 568

pressure score for each subgroup shown in Table 12. 569
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Table 12. Subgroup analysis by ethnicity, age, and gender.

Subgroup % of Models with
Majority Agreement

Out-of-Sample
R2

Average of Actual
Next Score

Average of Best
Next Score

% Decrease in
Next Score

Ethnicity
Black 46.20% 0.38 (0.31, 0.46) 1.620 1.347 16.87%

Caucasian 46.67% 0.74 (0.66, 0.81) 1.339 1.152 13.95%
Hispanic 46.42% 0.50 (0.33, 0.66) 1.528 1.298 15.10%

Other 43.58% 0.55 (0.48, 0.63) 1.648 1.372 16.75%
AgeBucket

[18-40) 47.03% 0.39 (0.16, 0.63) 1.570 1.310 16.55%
[40-60) 46.68% 0.62 (0.56, 0.69) 1.530 1.279 16.38%
[60-80) 45.28% 0.48 (0.37, 0.58) 1.549 1.316 15.04%
[80-110) 44.44% 0.54 (0.35, 0.73) 1.592 1.303 18.15%
Gender
Female 46.87% 0.56 (0.51, 0.60) 1.549 1.292 16.61%
Male 44.95% 0.56 (0.51, 0.60) 1.539 1.305 15.22%

Ethnicity 570

Through subgroup analysis based on patient ethnicity, the highest out-of-sample R2
571

values were observed for patients whose ethnicity is Caucasian, for which a mean 572

out-of-sample accuracy of 74.0% was achieved when comparing patients for whom 573

recommended treatment matched actual treatment. Additional insights from this 574

analysis are that patients predicted to experience the greatest decrease in their next 575

blood pressure score are those whose ethnicity is Black or Other. 576

Age 577

We also grouped patients into 4 different age buckets to investigate model performance 578

on different age populations. We found that out-of-sample performance was highest for 579

patients whose age is between 40 and 60. We also found that the patients in the eldest 580

[80-110) age group had the greatest potential benefit in terms of decrease in blood 581

pressure score. 582

Gender 583

Outcomes in terms of model agreement, out-of-sample performance, and potential blood 584

pressure score decrease are similar. This finding is not surprising, given that gender was 585

not indicated as an important factor by the regression models. 586

Online application for practitioners 587

In an effort to provide a useful and interpretable tool for practitioners, we developed an 588

online web application using our prescription recommendation algorithm. Through this 589

application (accessible at: 590

http://alisonrb.shinyapps.io/PersonalizedAntihypertension) a physician 591

could enter new patient health data to obtain personalized treatment recommendations. 592

Once the patient information is entered, the application generates a table of 593

model-treatment predictions, similar to that shown in Table 5. In addition, within our 594

tool we display a plot showing the patient’s blood pressure score trajectory, where the 595

last point plotted represents the predicted blood pressure score based on the 596

recommended treatment. The intention of this online application is to provide an 597

example of how physicians may utilize the output of machine learning models as a 598

support tool in their decision-making process. The user interface for our online web 599

application is displayed in Fig 2. 600
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Fig 2. Online application prototype.

Discussion 601

In this study we leveraged longitudinal EHR data from an academic medical center and 602

multiple machine learning techniques to arrive at personalized treatment 603

recommendations for patients with hypertension. Furthermore, we developed an online 604

tool for physicians that can make direct use of EHR data to provide actionable insights 605

from our predictive models. By harnessing the power of a large database of information 606

combined with state-of-the-art machine learning algorithms, we demonstrate the 607

potential of personalized treatments to improve medical outcomes. 608

Our prescription algorithm and corresponding final treatment recommendations 609

display a high level of accuracy in identifying a patient’s next blood pressure score, as 610

calculated according to Eq (1). Moreover, our MAE results indicate that our 611

predictions accurately capture which blood pressure category a patient’s blood pressure 612

measurements will fall into in the next three-month period. Our results also indicate 613

that our algorithm performs particularly well on certain subgroups, namely the 614

Caucasian population and the population of patients whose age is between 40 and 60. 615

With respect to potential improvement over the standard of care, we find that patients 616

aged 80 to 110 have the greatest potential benefit based on our recommendations. 617

The strength of our approach is derived from our ability to combine predictions from 618

independent machine learning models to increase trust in our final predictions. 619

Furthermore, our approach takes into account the biases present in observational data, 620

which gives us greater confidence in our ability to identify causal relationships between 621

different treatments and medical outcomes. This debiasing effort is especially important 622

when applying machine learning methods to observational data where randomization is 623

not possible, and it provides further credibility to our results. 624

Given that we use a wide range of machine learning methods, investigation of feature 625

importance plays a vital role in interpreting our outcomes. Across all models the most 626

important variables were those that were either direct blood pressure measurements or 627

measurements derived from blood pressure values. For all methods, the patient’s blood 628

pressure score was the most significant factor, pointing to the importance of developing 629

a summary function to encapsulate a patient’s status over time. As discussed, blood 630

pressure is a noisy, unstable measurement that can vary significantly within even a 631

24-hour period [49]. Thus, an important learning outcome is the need to take multiple 632

measurements into account when making continuous treatment regimen decisions for 633

hypertensive patients. 634

The goal of this work was to provide a framework for better management of 635

hypertension by focusing on treatment at an individual level. Our work demonstrates 636

the heterogeneity in treatment responses, resulting in a wide variety of outcomes across 637

the patient population. We recognize that physicians have domain knowledge that 638

cannot be replaced by algorithms, and thus our intention is to provide a method that 639

supports physicians in the process they currently use to determine treatments, and to 640

increase the personalization of the treatment process. 641

Limitations 642

The results of our study are subject to several limitations. To begin, our data source 643

was limited to one medical center, BMC, for which the patient population is not 644

necessarily representative of the general United States population. Additionally, the 645

EHR data is limited in its capacity to capture other factors which may be relevant for 646

determining treatment decisions and/or patient outcomes. For example, diet and 647
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physical activity, both of which are critical components of hypertension management, 648

are not directly recorded in the EHR. Lab values, however, may inherently capture 649

information related to such factors. Furthermore, it is important to note that our 650

matching methodology reduces bias resulting from observed confounding variables. 651

Adherence to treatment, which is also critical for controlling blood pressure, is not 652

captured within the dataset. By imposing requirements on observations for inclusion 653

based on frequency and number of visits, however, we aim to capture patients that 654

adhere to their treatment regimen. Finally, we would like to acknowledge that including 655

additional predictor variables not present in our dataset may improve prediction 656

accuracy and decrease variance of the results. Even still, we achieve significant 657

improvement over baseline models with respect to both R2 and MAE metrics. Further 658

improvements, especially from a clinical practice perspective, might also be gained by 659

considering additional treatment types, or combinations thereof. 660

Conclusion 661

Through this study we present, to the best of our knowledge, the first prescription 662

algorithm for personalized antihypertensive treatment recommendations. We 663

demonstrate the potential value in leveraging longitudinal EHR data for personalized 664

treatment decisions through prediction of heterogeneous treatment effects. We also 665

display strong evidence for the degree to which personalized treatments can improve 666

patient outcomes, relative to the standard of care. We place particular emphasis on 667

essential components of causal inference by applying generalized propensity scoring and 668

matching methods to confirm common support between various treatments and to 669

reduce selection bias surrounding selection of a patient into a treatment regimen. Based 670

on the predictive performance of our models and prescription algorithm, we show that, 671

in instances where counterfactual outcomes cannot be observed, we can reduce 672

uncertainty and improve confidence in the prediction by aggregating the output of 673

multiple machine learning models. Furthermore, we emphasize the importance of 674

interpretability and transparency through the development of an online dashboard that 675

can be used by physicians as a clinical support tool. As additional medical data become 676

available, we believe there is opportunity to expand upon the framework we have 677

developed to provide an even more robust solution for personalized treatment 678

decision-making for hypertensive patients. 679
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