
MULTIGRID METHODS

ADITYA KARTHIK SARAVANAKUMAR

Abstract. Multigrid methods are techniques used to accelerate the convergence of standard
iterative methods such as the Jacobi and Gauss-Seidel methods. Developed over the last 25 years,
multigrid methods are well-developed for elliptic problems and offer the possibility of solving a
problem with computation and memory proportional to the number of unknowns O(n). These
methods are also found to be useful in generating effective preconditioners.

Key words. Iterative methods, Multigrid methods, Hybridizable Discontinuous Galerkin
methods (HDG), Elliptic PDE.

1. Introduction. Linear systems of equations are ubiquitous in computational
science and often arise from finite discretizations of partials differential equations
(PDEs). Consequentially, the ability to efficiently solve these systems is of great
importance, and research in this direction has become a fundamental part of linear
algebra in modern times. Techniques used to solve linear systems can be classified as
direct and iterative methods. Most direct methods can be interpreted as variations
of the famous Gauss Elimination algorithm, which generates exact solutions at the
cost of O(n3) for a dense n × n matrix. However, the matrices that arise from the
discretization of physical systems often possess special structures that can be utilized
to devise more efficient algorithms. For example, the Thomas algorithm is a direct
method that can be used to solve tridiagonal linear systems at O(n) cost. [6] reviews
the various direct method algorithms used for sparse linear systems.

In practice, iterative methods are often preferred over direct methods for large
systems of equations. The classic iterative methods, Jacobi and Gauss-Seidel, use
iterations of the form xn+1 = xn +Q(b− Axn) to produce approximate solutions to
large linear systems Ax = b. The successive over-relaxation (SOR) and weighted
Jacobi methods were later introduced to improve the standard GS and Jacobi
methods, respectively. More sophisticated iterative methods include the Krylov
subspace methods [14] such as the generalized minimum residual (GMRES), Arnoldi,
Lanczos, Conjugate Gradient (CG), and BiCGSTAB methods, which often provide
improved convergence and stability properties.

Over the last few decades, multigrid methods have been developed to accelerate
the convergence of iterative methods (such as Gauss-Seidel and under-relaxed Jacobi
methods). This method was first proposed in [7], and its convergence properties were
presented in [8]. Typically, iterative methods (including GS and under-relaxed Jacobi)
function as smoothers in that they can get rid of the high-frequency components of
the error in fewer iterations than the low-frequency components. Furthermore, when
the errors are transferred to a coarse grid, the previously low-frequency components
become high-frequency components in the coarse grid and can therefore be eliminated
cheaply. Multigrid methods exploit these two properties by using a hierarchy of
discretizations and grid-transfer operations to efficiently solve systems of equations
with great accuracy at modest costs. By extension, these methods also rely on the
ideas that smooth functions can be well represented on coarse grids and that coarse
grid solutions are cheaper to compute. A good introduction to multigrid methods can
be found in [2].

Another approach to improving the efficiency of iterative solutions is using
preconditioners. It is well known that the efficiency of iterative methods is often closely

1



linked to the condition number of the linear system in consideration. Preconditioners
improve the condition number of the problem and, therefore, improve iterative
methods’ performance. Practically, this amounts to multiplying both sides of the
linear system Ax = b by a splitting Q−1 and solving the resulting better-conditioned

system Q−1 Ax = Q−1 b. The multigrid method offers another use here as it turns
out they generate efficient preconditioners for external iterative solvers [4].

Multigrid methods are a relatively new class of iterative methods and are still
subject to active research. These methods are currently well-developed for elliptic
problems and offer the possibility of solving a problem with computation and memory
proportional to the number of unknowns O(n).

This work reviews multigrid methods and discusses results from an elementary
1D implementation of a multigrid method in an HDG finite element solver framework.
Section 2 introduces the multigrid algorithm and the tools required to implement the
algorithm. Following this, an exposition of the implementation of the 1D multigrid
method, along with a brief overview of the finite element method used, is provided
in Section 3. An analysis of the multigrid results is presented in Section 4 with
comparisons against other iterative methods along with comparisons between different
multigrid variants. Section 5 summarizes the findings of this work and points to active
directions of research on this topic.

2. Multigrid Algorithm. Here we start by describing a simple two-grid
algorithm that presents the fundamental multigrid ideas. Each cycle of the two-grid
method can be decomposed into three stages : 1) pre-smoothing iterations 2) coarse
grid correction and 3) post-smoothing iterations. The two smoothing iterations are
carried out by a iterative method that eliminates the high-frequency error components
in just a few iterations. Eigenvalue analysis can sometimes be used to reveal whether
or not an iterative method functions as smoother [2]. The second stage involves
generating a correction to our approximate using a coarse-grid solution for the same
problem. The error equation for a linear system of the form Ax = b can be derived
in terms of the error e and the residual r as

Ax−Axest = b−Axest =⇒ A (x− xest) = Ae = r(2.1)

Starting from an initial guess xn, pre-smoothing iterations are carried out to obtain
xn+1/3. The residual obtained on the fine grid (of mesh size h) can be transferred to
a coarse grid (say, of size 2h) using a procedure called restriction as

(2.2) r2h = Ih
2h

rh and A
2h

e2h = r2h

Note that we consider the case where the coarse grid has twice the mesh size as the
fine grid here, and this common practice as there is generally no advantage in using
different grid spacing ratios.

We expect it to be quite smooth since our initial approximation has already
been subject to pre-smoothing iterations. Based on this, we can expect the residual
to be reasonably well-represented after restriction to a coarse grid. The simplest
restriction procedure would be injection, wherein we just pick the alternate grid point
values from the fine grid vector to form the coarse grid vector as, r2h,i = rh,2i for
i = 1, . . . , (n − 1)/2. The error equation derived above is then used to compute the
residual on the coarse grid, at a relatively cheap computational cost, as e2h = A−1

2h
r2h.

The computed error can be transferred back to the fine grid using a procedure called
prolongation and used to improve our approximation as

2



(2.3) eh = I2h
h

e2h and x
n+2/3
h = x

n+1/3
h + eh

Finally, the approximation is further updated by post-smoothing iterations to
obtain xn+1. The two-grid algorithm is summarized below

Algorithm 2.1 One cycle of a two-grid algorithm

1: Choose an initial guess x0
h

2: Relax ν1 iterations of A
h
x0
h = bh → x

1/3
h ▷ Pre-smoothing iterations

3: Compute the residual as rh = bh −A
h
x
1/3
h ▷ Coarse grid correction

4: Restrict residual to coarse grid as r2h = Ih
2h

rh
5: Compute coarse grid error as A

2h
e2h = r2h → e2h

6: Prolongate error to fine grid as eh = I2h
h

e2h

7: Correct x
2/3
h = x

1/3
h + eh

8: Relax ν2 iterations of A
h
x
2/3
h = bh → x1

h ▷ Post-smoothing iterations

3. Implementation. In order to validate the multigrid method, we apply it to
the linear system that arises from discretizing the 1D Poisson equation shown below,

(3.1) −∇ · (κ∇u) = f

For simplicity, we will assume homogeneous boundary conditions and that κ = 1
for each test case. Various numerical methods can be used to discretize the PDE,
including finite difference methods and finite volume methods, but in this work, we
employ a hybridizable discontinuous Galerkin (HDG) finite element method.

3.1. Finite element methods. Finite element methods are robust numerical
methods that are widely used in computational science. These methods allow for
hp-adaptivity over unstructured meshes that can handle complex geometries, making
them useful for a variety of problems. In these methods, the domain is discretized
into a finite set of elements, and the solution on each element is approximated using
a locally defined basis function. The classic FEM schemes are the Galerkin schemes,
of which the continuous Galerkin (CG) and discontinuous Galerkin (DG) methods
are two types. A detailed introduction to these methods can be found in [15]. The
HDG methods for convection-diffusion problems were introduced in [22], and they
offer computational savings over the DG method by reducing the size of the global
linear that needs to be solved. The discretization and flux choices in HDG methods
are set up such that the solution across the domain can be computed by solving a
global system for the unknowns along the skeleton of the grid (Λ) (referred to as the
numerical traces),

(3.2) K
g
Λ = F g

Following this, these numerical traces are used to reconstruct the local solution on
each element.

3.2. Test cases. We will be using a few test cases to validate the multigrid
method and make comparisons with other competing algorithms. The method of

3



Fig. 1: The numerical trace is represented in terms of piece-wise linear basis functions
(image taken from [16])

manufactured solutions has been used to generate these problems [23]. The first
problem (referred to as P1 henceforth) is defined as,

−uxx = 20x3 − 30x2 +
108

8
x− 25

16
, 0 < x < 1, u(0) = u(1) = 0(3.3)

u(x) = x(x− 1/4)(x− 1/2)(x− 3/4)(x− 1)(3.4)

Note that since the solution is a fifth-order polynomial, we expect the HDG method
to generate an exact solution when p ≥ 5.

For the second problem, we construct a solution that lies outside the polynomial
space such that the numerical method cannot generate an exact solution. The second
problem (referred to as P2 henceforth) is defined as,

−uxx = 25π2(sin(5πx) + 9 sin(15πx)) 0 < x < 1, u(0) = u(1) = 0(3.5)
u(x) = sin(5πx) + sin(15πx)(3.6)

3.3. Restriction and prolongation. Defining the restriction and prolongation
operators used to transfer vectors between grids is an integral part of multigrid
methods. In the 1D HDG formulation used here, hat functions are used as basis
functions for the numerical traces as λ(x) =

∑N
i=1 λiϕi(x). An illustration of these

hat functions is shown in Fig 1
Therefore, here we use a simple linear interpolation as our 1D prolongation

operator wherein the values at the intermediate nodes are approximated as averages
of the neighbouring node values. This operation can be represented in matrix form
as,

(3.7) Ih
2h
u2h =


1
1/2 1/2

1
1/2 1/2

1


 u2h,1

u2h,2

u2h,3

 =


uh,1

uh,2

uh,3

uh,4

uh,5

 = uh

When the restriction and interpolation can be represented as
4



0.0 0.2 0.4 0.6 0.8 1.0
x

−0.003

−0.002

−0.001

0.000

0.001

0.002

0.003

u(
x)

U
u_computed
u_exact

(a) u(x)− P1

0.0 0.2 0.4 0.6 0.8 1.0
x

−0.02

0.00

0.02

0.04

0.06

0.08

q(
x)

Q

q_computed
q_exact

(b) q(x)− P1

Fig. 2: Validation of the multigrid method for P1

(3.8) Ih
2h

= c (I2h
h
)T , c ∈ R

they are said to satisfy a variational property that is useful for theoretical convergence
proofs. We follow suit with this to define our restriction operation to be a weighted
linear operator defined as

(3.9) I2h
h
uh =

1

4

 2 1
1 2 1

2 1




uh,1

uh,2

uh,3

uh,4

uh,5

 =

 u2h,1

u2h,2

u2h,3

 = u2h

4. Results and Comparisons. In this section, we first validate the two-grid
method described earlier and then proceede to make comparisons against other
iterative methods. Finally, we briefly introduce other variants of the commonly used
multigrid methods.

4.1. Validation. We validate the two-grid correction method (algorithm 2.1) by
solving P1 with ν1 = 1 and ν2 = 1. Figure 2 shows that the computed solution and
derivative (q(x) = u′(x)) match closely with the analytical solutions. The domain
was discretized by two 5th order p = 5 elements and after 2 multigrid iterations, the
L2 error of the computed solution was down to machine precision ϵmach.

4.2. Comparison with classic iterative methods. The Gauss-Seidel (GS)
method, introduced in the late 1800s, is a classic iterative method used to solve linear
systems Ax = b. The procedure involves decomposing the matrix as A = D−L−U ,
where D is diagonal, L is strictly lower trianglular and U is strictly upper triangular.
Using this decomposition, we can define the GS iteration as

(4.1) xn+1 = (D − L)−1U xn + (D − L)−1b

5



0.0 0.2 0.4 0.6 0.8 1.0
x

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

u(
x)

U
u_computed
u_exact

(a) u(x)− P2

0.0 0.2 0.4 0.6 0.8 1.0
x

−60

−40

−20

0

20

40

60

q(
x)

Q
q_computed
q_exact

(b) q(x)− P2

0 50 100 150 200 250 300
No. of iterations

10−4

10−3

10−2

10−1

100

Re
la
tiv

e 
er
ro
r

Gauss-Seidel
Two-Grid

(c) p = 2

0 100 200 300 400 500 600 700 800
No. of iterations

10−6

10−5

10−4

10−3

10−2

10−1

100

Re
la
tiv

e 
er
ro
r

Gauss-Seidel
Two-Grid

(d) p = 3

Fig. 3: Validation of the multigrid method for P2 using 32 elements

These GS iterations will converge to the solution when A is either diagonally dominant
or symmetric positive definite (SPD). The matrices that arise from the test cases
used in this study are always diagonally dominant, making this method applicable.
Although the GS method should not be considered an algorithm that competes
with multigrid methods, comparisons against this method serves to illustrate the
effectiveness of multigrid methods.

We solve P2 using the GS method and the two-grid method (with ν1 = ν2 = 1)
using two different orders of discretizations (p = 2, 3). A comparison of the number
of iterations required to converge to a specified tolerance is shown in Fig 3, and it
can be clearly seen that the multigrid method requires far fewer iterations than GS.
We note that each multigrid cycle involves two GS smoothing iterations, two matrix-
vector multiplications for grid-transfers and a direct solve for the coarse grid problem.
However, when the number of unknowns n is very large, the solution to the coarse
grid problem is negligible compared to the fine grid problem. Further, even when the
multigrid iteration count is scaled by (ν1 + ν2), the iteration count is much smaller
than the GS iteration count.

6



0 2 4 6 8 10 12 14 16
No. of iterations

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Re
la
tiv

e 
er
ro
r

two-grid
conjugate gradient

(a) P2− p = 2

0 2 4 6 8 10 12 14 16
No. of iterations

10−13

10−11

10−9

10−7

10−5

10−3

10−1

Re
la
tiv
e 
er
ro
r

t o-grid
conjugate gradient

(b) P2− p = 3

Fig. 4: Comparison between conjugate gradient method and two-grid method

4.3. Comparison with the conjugate gradient method. It can be shown
that the linear system that arises from an HDG discretization of the 1D Poisson
equation is symmetric positive-definite []. Therefore, a suitable alternative to the
multigrid algorithm for this problem would be the conjugate gradient (CG) method
(a Krylov subspace method). In this subsection, we compare the CG algorithm against
the two-grid method. The CG algorithm can be summarised as

Algorithm 4.1 Conjugate gradient algorithm
1: r0 = b−Ax0

2: ρ
0
= r0

3: k = 0
4: while rk+1 ≥ tolerance do
5: αk = rTk rk/ρ

T
k
Aρ

k
▷ step size

6: xk+1 = xk + αkρk
7: rk+1 = rk − αkAρ

k
▷ new residual

8: βk = rTk+1rk+1/r
T
k rk

9: ρ
k+1

= rk+1 + βkρk ▷ new search direction
10: k = k + 1

Although the CG algorithm has many computations per cycle, the computation
of the matrix-vector product Aρ

k
is most expensive and therefore dominates over the

remaining computations. In contrast, the two-grid algorithm has (ν1 + ν2) matrix-
vector products for the smoothing iterations followed by two more products for the grid
transfer operations. We compare the two methods by solving P2 using 32 elements
and find that CG converges in just two iterations while the two-grid method takes
many more iterations. It seems clear that the CG is the better choice for the 1D
elliptic problem we have considered here. However, it is useful to note that CG only
works for SPD matrices, whereas multigrid methods are more generally applicable.

4.4. V-cycle algorithm. The most expensive step in the two-grid scheme
presented in Algorithm 2.1 is the direct solve needed to compute the coarse grid
error. Noticing that Axh = f

h
and Ae2h = r2h have the same structure, we can

7



improve on the two-grid method by solving the error equations using an even coarser
grid. This forms the fundamental idea behind the v-cycle algorithm described below.

Algorithm 4.2 One cycle of a V-cycle algorithm

1: Choose an initial guess x0
h ▷ V Gh(x

n
h, bh) → xn+1

h

2: Relax ν1 iterations of A
h
x0
h = bh → x

1/3
h ▷ Pre-smoothing iterations

3: Compute the residual as rh = bh −A
h
x
1/3
h

4: Restrict residual to coarse grid as r2h = Ih
2h

rh
5: if h corresponds to coarsest grid then
6: x

2/3
h = x

1/3
h

7: Skip to step 13
8: else
9: Compute coarse grid error as V Gh(0, r2h) → e2h ▷ Coarse grid correction

10: Prolongate error to fine grid as eh = I2h
h

e2h

11: Correct x
2/3
h = x

1/3
h + eh

12: end if
13: Relax ν2 iterations of A

h
x
2/3
h = bh → x1

h ▷ Post-smoothing iterations =0

As we deal with coarser and coarser grids, the cost of operating on the
corresponding vectors and matrices sharply decreases. Therefore, we can expect an
improved performance of the V-cycle in comparison to the two-grid method. This
method was implemented, and it was found to perform marginally better than the
two-grid method for our test cases.

5. Conclusion. Multigrid methods are definitely amongst the most exciting
algorithms for linear systems that have come up in the last few decades. Currently,
these methods are well-developed for elliptic problems and are especially popular
for 2D and 3D problems. Efficient application of such methods for other systems of
equations, unstructured grids and different discretizations [5, 9, 11, 13, 17] are subjects
of active research. The iterative nature of these multigrid methods also suggests that
they can be suitable candidates for nonlinear problems, and this avenue has been
explored. An interesting question is whether these methods are applicable when no
grid is associated with the linear system. Algebraic multigrid (AMG) methods address
this very situation, and an introduction to the fundamental ideas can be found in [3].
On the whole, multigrid methods are receiving substantial amounts of well-deserved
attention, giving rise to possibilities of exciting developments in the near future.

REFERENCES

[1] A Multigrid Tutorial, Second Edition, https://epubs.siam.org/doi/book/10.1137/1.
9780898719505 (accessed 2022-05-03).

[2] J. H. Bramble, Multigrid methods, Chapman and Hall/CRC, New York, Nov. 2019, https:
//doi.org/10.1201/9780203746332.

[3] M. Brezina, R. Falgout, S. MacLachlan, T. Manteuffel, S. McCormick, and
J. Ruge, Adaptive Algebraic Multigrid, SIAM Journal on Scientific Computing, 27 (2006),
pp. 1261–1286, https://doi.org/10.1137/040614402, https://epubs.siam.org/doi/abs/10.
1137/040614402 (accessed 2022-05-11). Publisher: Society for Industrial and Applied
Mathematics.

[4] L. Chen, J. Wang, Y. Wang, and X. Ye, An auxiliary space multigrid preconditioner
for the weak Galerkin method, Computers & Mathematics with Applications, 70 (2015),

8

https://epubs.siam.org/doi/book/10.1137/1.9780898719505
https://epubs.siam.org/doi/book/10.1137/1.9780898719505
https://doi.org/10.1201/9780203746332
https://doi.org/10.1201/9780203746332
https://doi.org/10.1137/040614402
https://epubs.siam.org/doi/abs/10.1137/040614402
https://epubs.siam.org/doi/abs/10.1137/040614402


pp. 330–344, https://doi.org/10.1016/j.camwa.2015.04.016, https://www.sciencedirect.
com/science/article/pii/S0898122115001972 (accessed 2022-05-03).

[5] B. Cockburn, O. Dubois, J. Gopalakrishnan, and S. Tan, Multigrid for an HDG
methodâ , IMA Journal of Numerical Analysis, 34 (2014), pp. 1386–1425, https://doi.org/
10.1093/imanum/drt024, https://doi.org/10.1093/imanum/drt024 (accessed 2022-03-29).

[6] T. A. Davis, S. Rajamanickam, and W. M. Sid-Lakhdar, A survey of direct
methods for sparse linear systems, Acta Numerica, 25 (2016), pp. 383–566,
https://doi.org/10.1017/S0962492916000076, https://www.cambridge.org/core/
journals/acta-numerica/article/survey-of-direct-methods-for-sparse-linear-systems/
8AE7AC55909389F7EA1F027855AC4044 (accessed 2022-05-04). Publisher: Cambridge
University Press.

[7] R. P. Fedorenko, A relaxation method for solving elliptic difference equations, Journal of
Comput. Math. Math. Phys., (1962), pp. 1092–1096.

[8] R. P. Fedorenko, The speed of convergence of one iterative process, Journal of Comput.
Math. Math. Phys., (1964), pp. 227–235.

[9] N. Fehn, P. Munch, W. A. Wall, and M. Kronbichler, Hybrid multigrid methods for
high-order discontinuous Galerkin discretizations, Journal of Computational Physics, 415
(2020), p. 109538, https://doi.org/10.1016/j.jcp.2020.109538, https://www.sciencedirect.
com/science/article/pii/S0021999120303120 (accessed 2022-05-03).

[10] N. Fehn, P. Munch, W. A. Wall, and M. Kronbichler, Hybrid multigrid methods for
high-order discontinuous Galerkin discretizations, Journal of Computational Physics, 415
(2020), p. 109538, https://doi.org/10.1016/j.jcp.2020.109538, https://www.sciencedirect.
com/science/article/pii/S0021999120303120 (accessed 2022-03-30).

[11] D. Fortunato, C. H. Rycroft, and R. Saye, Efficient Operator-Coarsening Multigrid
Schemes for Local Discontinuous Galerkin Methods, SIAM Journal on Scientific
Computing, 41 (2019), pp. A3913–A3937, https://doi.org/10.1137/18M1206357, https:
//epubs.siam.org/doi/abs/10.1137/18M1206357 (accessed 2022-05-03). Publisher: Society
for Industrial and Applied Mathematics.

[12] G. Fu and W. Kuang, Uniform block-diagonal preconditioners for divergence-conforming
HDG Methods for the generalized Stokes equations and the linear elasticity equations,
arXiv:2104.13886 [cs, math], (2022), http://arxiv.org/abs/2104.13886 (accessed 2022-05-
03). arXiv: 2104.13886.

[13] J. Gopalakrishnan and S. Tan, A Convergent Multigrid Cycle for the Hybridized Mixed
Method, 2009.

[14] M. H. Gutknecht, A Brief Introduction to Krylov Space Methods for Solving Linear
Systems, in Frontiers of Computational Science, Y. Kaneda, H. Kawamura, and
M. Sasai, eds., Berlin, Heidelberg, 2007, Springer, pp. 53–62, https://doi.org/10.1007/
978-3-540-46375-7_5.

[15] J. Hesthaven and T. Warburton, Nodal Discontinuous Galerkin Methods: Algorithms,
Analysis, and Applications, vol. 54, Jan. 2007.

[16] M. LLC, Finite element basis functions, http://hplgit.github.io/INF5620/doc/pub/
sphinx-fem/._main_fem003.html (accessed 2022-05-10).

[17] P. Lu, A. Rupp, and G. Kanschat, Homogeneous multigrid for HDG, IMA Journal of
Numerical Analysis, (2021), p. drab055, https://doi.org/10.1093/imanum/drab055, https:
//doi.org/10.1093/imanum/drab055 (accessed 2022-03-29).

[18] S. Muralikrishnan, T. Bui-Thanh, and J. N. Shadid, A multilevel approach for
trace system in HDG discretizations, Journal of Computational Physics, 407 (2020),
p. 109240, https://doi.org/10.1016/j.jcp.2020.109240, https://www.sciencedirect.com/
science/article/pii/S0021999120300140 (accessed 2022-05-03).

[19] S. Muralikrishnan, M.-B. Tran, and T. Bui-Thanh, iHDG: An Iterative HDG Framework
for Partial Differential Equations, SIAM Journal on Scientific Computing, 39 (2017),
pp. S782–S808, https://doi.org/10.1137/16M1074187, https://epubs.siam.org/doi/abs/10.
1137/16M1074187 (accessed 2022-05-03). Publisher: Society for Industrial and Applied
Mathematics.

[20] S. Muralikrishnan, M.-B. Tran, and T. Bui-Thanh, An improved iterative HDG
approach for partial differential equations, Journal of Computational Physics, 367 (2018),
pp. 295–321, https://doi.org/10.1016/j.jcp.2018.04.033, https://www.sciencedirect.com/
science/article/pii/S0021999118302584 (accessed 2022-05-03).

[21] C. R. Nastase and D. J. Mavriplis, High-order discontinuous Galerkin methods using
an hp-multigrid approach, Journal of Computational Physics, 213 (2006), pp. 330–
357, https://doi.org/10.1016/j.jcp.2005.08.022, https://www.sciencedirect.com/science/
article/pii/S0021999105003839 (accessed 2022-05-03).

9

https://doi.org/10.1016/j.camwa.2015.04.016
https://www.sciencedirect.com/science/article/pii/S0898122115001972
https://www.sciencedirect.com/science/article/pii/S0898122115001972
https://doi.org/10.1093/imanum/drt024
https://doi.org/10.1093/imanum/drt024
https://doi.org/10.1093/imanum/drt024
https://doi.org/10.1017/S0962492916000076
https://www.cambridge.org/core/journals/acta-numerica/article/survey-of-direct-methods-for-sparse-linear-systems/8AE7AC55909389F7EA1F027855AC4044
https://www.cambridge.org/core/journals/acta-numerica/article/survey-of-direct-methods-for-sparse-linear-systems/8AE7AC55909389F7EA1F027855AC4044
https://www.cambridge.org/core/journals/acta-numerica/article/survey-of-direct-methods-for-sparse-linear-systems/8AE7AC55909389F7EA1F027855AC4044
https://doi.org/10.1016/j.jcp.2020.109538
https://www.sciencedirect.com/science/article/pii/S0021999120303120
https://www.sciencedirect.com/science/article/pii/S0021999120303120
https://doi.org/10.1016/j.jcp.2020.109538
https://www.sciencedirect.com/science/article/pii/S0021999120303120
https://www.sciencedirect.com/science/article/pii/S0021999120303120
https://doi.org/10.1137/18M1206357
https://epubs.siam.org/doi/abs/10.1137/18M1206357
https://epubs.siam.org/doi/abs/10.1137/18M1206357
http://arxiv.org/abs/2104.13886
https://doi.org/10.1007/978-3-540-46375-7_5
https://doi.org/10.1007/978-3-540-46375-7_5
http://hplgit.github.io/INF5620/doc/pub/sphinx-fem/._main_fem003.html
http://hplgit.github.io/INF5620/doc/pub/sphinx-fem/._main_fem003.html
https://doi.org/10.1093/imanum/drab055
https://doi.org/10.1093/imanum/drab055
https://doi.org/10.1093/imanum/drab055
https://doi.org/10.1016/j.jcp.2020.109240
https://www.sciencedirect.com/science/article/pii/S0021999120300140
https://www.sciencedirect.com/science/article/pii/S0021999120300140
https://doi.org/10.1137/16M1074187
https://epubs.siam.org/doi/abs/10.1137/16M1074187
https://epubs.siam.org/doi/abs/10.1137/16M1074187
https://doi.org/10.1016/j.jcp.2018.04.033
https://www.sciencedirect.com/science/article/pii/S0021999118302584
https://www.sciencedirect.com/science/article/pii/S0021999118302584
https://doi.org/10.1016/j.jcp.2005.08.022
https://www.sciencedirect.com/science/article/pii/S0021999105003839
https://www.sciencedirect.com/science/article/pii/S0021999105003839


[22] N. C. Nguyen, J. Peraire, and B. Cockburn, An implicit high-order hybridizable
discontinuous Galerkin method for linear convectionâdiffusion equations, Journal of
Computational Physics, 228 (2009), pp. 3232–3254, https://doi.org/10.1016/j.jcp.2009.
01.030, https://www.sciencedirect.com/science/article/pii/S0021999109000308 (accessed
2022-05-11).

[23] P. J. Roache, The Method of Manufactured Solutions for Code Verification, in
Computer Simulation Validation: Fundamental Concepts, Methodological Frameworks,
and Philosophical Perspectives, C. Beisbart and N. J. Saam, eds., Simulation
Foundations, Methods and Applications, Springer International Publishing, Cham, 2019,
pp. 295–318, https://doi.org/10.1007/978-3-319-70766-2_12, https://doi.org/10.1007/
978-3-319-70766-2_12 (accessed 2022-05-11).

[24] T. Wildey, S. Muralikrishnan, and T. Bui-Thanh, Unified Geometric Multigrid
Algorithm for Hybridized High-Order Finite Element Methods, SIAM Journal on Scientific
Computing, 41 (2019), pp. S172–S195, https://doi.org/10.1137/18M1193505, https://
epubs.siam.org/doi/abs/10.1137/18M1193505 (accessed 2022-05-03). Publisher: Society
for Industrial and Applied Mathematics.

10

https://doi.org/10.1016/j.jcp.2009.01.030
https://doi.org/10.1016/j.jcp.2009.01.030
https://www.sciencedirect.com/science/article/pii/S0021999109000308
https://doi.org/10.1007/978-3-319-70766-2_12
https://doi.org/10.1007/978-3-319-70766-2_12
https://doi.org/10.1007/978-3-319-70766-2_12
https://doi.org/10.1137/18M1193505
https://epubs.siam.org/doi/abs/10.1137/18M1193505
https://epubs.siam.org/doi/abs/10.1137/18M1193505

	Introduction
	Multigrid Algorithm
	Implementation
	Finite element methods
	Test cases
	Restriction and prolongation

	Results and Comparisons
	Validation
	Comparison with classic iterative methods
	Comparison with the conjugate gradient method
	V-cycle algorithm

	Conclusion
	References

