
MULTILEVEL MONTE CARLO METHODS

ADITYA KARTHIK SARAVANAKUMAR

Abstract. Multilevel Monte Carlo methods are hierarchical variance reduction models widely
used to reduce the computational cost of the standard Monte Carlo. The fundamental idea here is to
borrow ideas from multigrid methods to accelerate the convergence of classic Monte Carlo methods
using a sequence of model discretizations. The computational load is reduced by taking more samples
from the cheaper model discretizations and fewer samples from the expensive accurate models. Here
a diffusion equation problem with a stochastic diffusion coefficient as input is solved and used to
study the variance reduction properties and computational savings of this method. An HDG finite
element method scheme is used to generate solutions to the PDE and this allows us to generate
model discretizations using both grid refinement and solution order as criteria.
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1. Introduction. Monte Carlo (MC) methods are algorithms which use
repeated random sampling to obtain numerical approximations of various problems
in physics. Over the last few decades, these methods have received a lot of attention
which has led to the development of various modifications and specializations of the
standard MC. Some applications of MC include optimization, fluid problems and
uncertainty quantification (UQ).

One of the major challenges with MC is the fact that the probability space for
many problems typically tends to be high-dimensional and the MC cost increases
rapidly with dimension. Therefore, a key area of research in Monte Carlo is variance
reduction methods that aim to provide more precise estimates (smaller confidence
intervals) for a given computational cost. Importance sampling, control variate
estimates and multi-fidelity MC (MFMC) are examples of extensively studied variance
reduction techniques. The control variate method is a classic variance reduction
method that takes advantage of the correlation between the RV to be estimated and
a dummy random variable to produce savings. MFMC methods apply the control
variate principle to a hierarchy of model discretizations to yield computational savings.
The multilevel MC method is a popular example of MFMC and it can be used to
demonstrate the fundamental ideas of this class of algorithms.

The Multilevel Monte Carlo (MLMC) method was introduced in 2008 [4] and
has since gained a lot of traction due to its asymptotic complexity improvement in
comparison to the standard MC. The main idea of MLMC involves borrowing ideas
from multigrid methods to accelerate the convergence of classic Monte Carlo methods
using a sequence of model discretizations. A thorough introduction to MLMC theory
and applications can be found in [5]. Later, in [1] the MLMC theory was extended
to a PDE with random coefficients. More recently, MLMC has been looked at in the
context of estimating the trace of a matrix [3] and in tandem with high-order FEM
methods [10].

This work reviews multilevel monte carlo methods and discusses results from an
elementary 1D implementation in an HDG finite element solver framework. Section 2
first introduces the MLMC algorithm and the associated theory. Then, the stochastic
problem in consideration is described along with a brief overview of the finite element
method employed here. A two-level MC algorithm is implemented in Section 3 along
with a discussion don’t the computational cost analysis. This section also contains
results from two-level MC implementations based on grid refinement and solution
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order, with comparisons against the standard MC. Finally, Section 4 summarizes the
findings of this work and points to active directions of research on this topic.

2. Formulation. In this section, we provide a brief overview of the MLMC
theory, the test problem and the finite element method used to solve the PDE.

2.1. MLMC Theory. The Multilevel Monte Carlo method can be thought of
as a recursive control variate method. Therefore, let’s first recall control variate.
Suppose we have a random variable of interest X and are required to estimate its
expected value E[X]. Let Y be another random variable and µY = E[Y ] be the
known expected value. We can estimate the expectation of interest indirectly by
estimating the expectation of the new random variable Z defined as

(2.1) Z = X + β(Y − µY )

We can see that the expectation and variance of this new RV are

(2.2) E[Z] = E[X] and V[Z] = V[X] + β2V[Y ] + 2βCov[X,Y ]

Solving a quadratic minimization problem to minimize variance yields an optimal
value for the parameter β and the corresponding variance as

(2.3) β∗ = −Cov[X,Y ]

V[Y ]
and V∗[Z] = V[X]

(
1− ρ2

)
where ρ =

Cov[X,Y ]√
V[X]V[Y ]

Notice how the control variate approach leverages the correlation between X and Y
to reduce the variance of the estimator.

In the MLMC algorithm, the expectation of X is evaluated as

(2.4) E[X]M0,...,ML
= E[X −XN1

]M0
+

L−1∑
l=1

E[XNl
−XNl+1

]Ml
+ E[XNL

]ML

where {XN1 , XN2 , . . . , XNL
} are decreasingly accurate multigrid approximations of

X and each term on the RHS evaluated using a standard MC approach. Also, the
subscripts Ml shown next to each represent the number of samples used to evaluate
each expectation and M0 ≪ M1 ≪ · · · ≪ ML. This way, we use fewer samples from
the accurate but expensive model discretizations and more samples from the less
accurate but cheaper approximations. Since each term of the form E[XNl

−XNl+1
]Ml

is computed for the same set of stochastic realizations, the associated variance is
small. Furthermore, since each model discretization is an approximation of the same
random variable X, each pair is highly correlated and the corresponding control
variate parameter β would be close to unity.

Different criteria can be used to generate the model discretizations
{XN1 , XN2 , . . . , XNL

} including grid refinement h, solution order p and the number
of basis functions in a K-L expansion of X. The finite element method used in this
work allows us to work with both grid refinement and solution order as criteria.

2.2. Test Problem. In order to investigate the convergence properties and
computational savings of MLMC methods, we consider the problem of a Poisson
equation with a stochastic diffusion coefficient.

(2.5) −∇ · (κ(ω)∇u) = f 0 < x < 1
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Fig. 1: Exact solution to the deterministic problem corresponding to the test problem
- κ(ω) = 1

For simplicity, we will assume homogeneous boundary conditions and a log-normally
distributed diffusion coefficient that’s defined as

(2.6) κ(ω) = exp(Y (ω)) Y ∼ N (0, 1) such that E[κ(ω)] = 1

We construct a right-hand side forcing f using a linear combination of functions
that lies outside the polynomial space such that the numerical method cannot generate
an exact solution.

(2.7) f(x) = 25π2(sin(5πx) + 9 sin(15πx)) 0 < x < 1, u(0) = u(1) = 0

and the exact solution to the corresponding deterministic problem is

(2.8) u(x) = sin(5πx) + sin(15πx)

Figure 1 depicts the solution to the corresponding deterministic problem (κ = 1) and
Fig.2 shows multiple realizations of the solution to the stochastic PDE.

Various numerical methods can be used to discretize the PDE, including finite
difference methods and finite volume methods, but in this work, we employ a
hybridizable discontinuous Galerkin (HDG) finite element method that allows for
easy hp-refinement.

2.3. Finite element methods. Finite element methods are robust numerical
methods that have gained a lot of traction in the computational science society. These
methods allow for hp-adaptivity over unstructured meshes that can handle complex
geometries, making them useful for a variety of problems. In finite element methods,
the domain is discretized into a finite set of elements, and the solution on each element
is approximated using a locally defined basis function. The classic FEM schemes are
the Galerkin methods, of which the continuous Galerkin (CG) and discontinuous
Galerkin (DG) methods are two types. A detailed introduction to these methods can
be found in [6]. The HDG methods for convection-diffusion problems were introduced
in [8], and they offer computational savings over the DG method by reducing the size
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Fig. 2: Multiple realizations of the solution to the stochastic test problem and the
corresponding distribution of the solution at x = 0.25

of the global linear that needs to be solved. The discretization and flux choices in
HDG methods are set up such that the solution across the domain can be computed by
solving a global system for the unknowns along the skeleton of the grid (Λ) (referred
to as the numerical traces),

(2.9) K
g
Λ = F g

Following this, these numerical traces are used to reconstruct the local solution on
each element.

3. Results. We conduct a few numerical experiments to illustrate the usefulness
of MLMC methods. We implement two-level Monte Carlo simulations to estimate the
solution to the problem described earlier at the location x = 0.25 (without loss of
generality) and compare the results to standard MC simulations. The corresponding
model discretizations are generated using grid refinement h and solution order p.

For simplicity, we look at the most trivial of MLMC algorithms, the two-level MC
algorithm. Here, we estimate the expected value of the solution at our chosen point
u(x = 0.25) as
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(3.1) E[X]M1,M2 = E[X1 −X2]M1 + E[X2]M2

where X1 and X2 correspond to the accurate and expensive estimate, and less-accurate
and cheaper estimate, respectively. Note that for the first term on the right-hand side,
both X1 and X2 are evaluated using the same stochastic realization and we expect the
variance associated with this term to be small. The remaining term on the right-hand
side should be relatively cheap to compute. More explicitly,

(3.2) E[X1 −X2]M1
=

1

M1

M1∑
m=1

(
X1(ω

1
m)−X2(ω

1
m)

)
; E[X2]M2

=
1

M2

M2∑
m=1

X2(ω
2
m)

We can extend this analysis to show that the variance of the two-level MC estimate
is given by

(3.3) VM1,M2
[X] =

V[X1 −X2]

M1
+

V[X2]

M2
= E[ξ1 − ξ2]M1

+ E[ξ2]M2

where ξ1 = (X1 − E[X]M1,M2)
2 and ξ2 = (X2 − E[X]M1,M2)

2. The expectations are
computed according to the previous equation.

In order to make a fair comparison between the two-level and standard MC
estimators, we need to understand the associated computational costs. Let C1 and
C2 represent the cost associated with computing a single realization of X1 and X2,
respectively. Note that the first term on the right-hand side of Eq.3.1 requires the
computation of both X1 and X2. Therefore, the total cost Λ of associated with a
standard N -sample MC estimate and a two-level {M1,M2}-sample estimate would be

(3.4) Λstandard = NC1 and Λtwo−level = M1(C1 + C2) +M2C2

It has been shown that to obtain optimal variance reduction [5], the number of samples
for each term in the two-level algorithm (M1,M2) needs to be chosen according to

(3.5)
M1

M2
=

√
V1/(C1 + C2)√

V2/C2

where V1 and V2 represent the variance associated with first and second terms on the
right-hand side of Eq.3.1.
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Fig. 3: Computational cost per realization as a function of grid size for a fixed solution
order p = 3
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Fig. 4: Comparison of variance associated with the standard MC and two-level MC
estimators for different total costs N - Grid Refinement
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N M1 M2 Error
100 23 208 1.18%
200 45 420 1.55%
300 67 632 1.27%
400 89 844 2.12%
500 112 1052 1.66%

Table 1: Optimal values for M1 and M2 for different computational budgets N and
the corresponding errors - Grid Refinement

3.1. Two-level MC - Grid Refinement. To construct our two model
discretizations X1 and X2, we consider two grids with 32 and 16 elements (h = 0.03125
and h = 0.0625) and use a constant solution order of p = 3. We first estimate the
cost associated with generating one realization of the solution as a function of the
grid size h and the results are shown in Fig.3. We notice a nearly-linear trend in
the computational cost with respect to the grid size C1/C2 ≈ 2. We also execute
numerical experiments to empirically estimate the variance ratio to be V1/V2 ≈ 225.
The high value of this ratio is consistent with our prediction that the variance of
X1 − X2 would be small. Using these values, we can compute and use the optimal
ratio (M1/M2)

∗ for a given fixed computational budget N (Table 1). In Fig.4-a, we
compare the variance produced by the two-level MC estimate with that produced by
a standard MC estimator for different fixed computational budgets. We see that the
two-level estimator does indeed produce a significantly reduced variance for the same
cost when compared to the standard MC estimator. Furthermore, we also notice that
the errors made by the two estimators are similar in magnitude (Fig.4-b). We then
also run a few simulations with different values for M1/M2 = λ(M1/M2)

∗ (fixed cost
- N = 300) to verify the optimality of this choice and the results are shown in Fig.5
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Fig. 5: Comparison of variance produced by the two-level MC for different M1/M2 =
λ(M1/M2)

∗ ratios - Grid Refinement
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Fig. 6: Computational cost per realization as a function of solution order for a fixed
grid size Nelem = 16
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Fig. 7: Comparison of variance of standard MC and two-level MC for different total
costs N - Solution Order
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N M1 M2 Error
100 6 229 0.72%
200 12 458 0.65%
300 17 691 1.99%
400 23 920 1.37%
500 28 1152 1.72%

Table 2: Optimal values for M1 and M2 for different computational budgets N and
the corresponding errors - Solution Order

3.2. Two-level MC - Solution Order. We can also generate our model
discretizations using the solution order as the criterion. Here we generate solutions to
our stochastic PDE on a 16-element grid using solution orders p = 3 (X1) and p = 2
(X2). Once again for comparison purposes, we first estimate the cost associated with
generating one realization of the solution as a function of the grid size p and the results
are shown in Fig.6. In contrast to the grid refinement case, we notice a cost ratio of
approximately C1/C2 ≈ 1.5. Numerical experiments allow us to empirically estimate
the variance ratio to be V1/V2 ≈ 500. Once again, the variance of the difference term
X1 −X2 is low as we expect. The optimal values for M1 and M2 are then computed
and used for each given fixed computational budget N (Table 2). In Fig.7-a, we
compare the variance produced by the two-level MC estimate with that produced by
a standard MC estimator for different fixed computational budgets. We find that
the variance reduction produced by the solution order-based two-level MC is quite
similar to that produced by the grid-refinement-based two-level MC. We also check
to ensure that the errors associated with the two estimators are similar in magnitude
(Fig.7-b). Finally, we once again verify the optimality of the (M1/M2)

∗ choice with a
few simulations varying M1 and M2 as M1/M2 = λ(M1/M2)

∗ (fixed cost - N = 300)
and the results are shown in Fig.8.
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Fig. 8: Comparison of variance produced by the two-level MC for different M1/M2 =
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4. Conclusion. Multilevel Monte Carlo is a prototypical example of multi-
fidelity Monte Carlo methods and serves as a demonstrative tool to understand the
underlying ideas. The numerical experiments conducted in this work empirically verify
the variance reduction produced by MLMC and the optimality of the sample ratio
choice M1/M2 =

√
V1/(C1 + C2)/

√
V2/C2. We have only considered the two-level

MC algorithm here, but this can be easily extended to more sophisticated multi-
level MC implementations that could produce even more precise estimates. Another
exciting extension could be to look at how one can optimally combine both grid
refinement and solution order to form the model discretizations.
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