An Upper Bound for the Average Rank of Elliptic Curves over Global Function Fields, via 2-Selmer Groups

Niven Achenjang MIT

January 4, 2024

Motivation
Elliptic
curves and
Selmer
groups
A smattering
of known
results
A bird's eye
view of
computing
the average
size of
2-Selmer

Hilbert's 10th Problem

Question (Hilbert's 10th Problem 1900, H10)

Does there exist an algorithm which, given a polynomial $f\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$, outputs whether or not $f=0$ admits a solution over \mathbb{Z} ?

Motivation
Elliptic
curves and Selmer
groups
A smattering of known results

A bird's eye view of
computing
the average
size of
2-Selmer

H10 over \mathbb{Q}

2-Selmer
Average in Char 2

Niven Achenjang

Question

Does there exist an algorithm which, given a polynomial $f\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$, outputs whether or not $f=0$ admits a solution over \mathbb{Q} ?

Remark

The answer is 'Yes' if one restricts to polynomials in $n=1$ variable. However, in general, the answer to this question is still unknown.

What about other small values of n ?

A Motivating Question

2-Selmer Average in Char 2

Niven

Elliptic Curves

2-Selmer
Average in Char 2

Niven Achenjang

Defining Average Rank of Elliptic Curves

Fix a global field K (e.g. $\mathbb{Q}, \mathbb{F}_{q}(t)$, etc.) for the remainder of the talk.

Motivating Question

Let \mathcal{E} denote the class of all elliptic curves E / K. Can we determine the average value of $\operatorname{rank} E(K)$, for $E \in \mathcal{E}$?

2-Selmer Average in Char 2

Niven Achenjang

Defining Average Rank of Elliptic Curves

Fix a global field K (e.g. $\mathbb{Q}, \mathbb{F}_{q}(t)$, etc.) for the remainder of

This "average" is defined via a two-step limiting process.
(1) Define a notion of the 'height' $h t(E)$ of an elliptic curve E / K. This should be defined so that there are only finitely many curves of bounded height, up to isomorphism.

Example (somewhat imprecise)

Over $K=\mathbb{Q}$, every elliptic curve comes from an equation of the form $E: y^{2}=x^{3}+a x+b$, for some $a, b \in \mathbb{Z}$. In this case, we can take $h t(E):=\max \left\{27 b^{2}, 4|a|^{3}\right\}$.

Defining Average Rank of Elliptic Curves, continued

This "average" is defined via a two-step limiting process.
(1) Define an appropriate notion of the 'height' ht (E) of an elliptic curve E / K, designed so that there are only finitely many curves of bounded height, up to isomorphism.

Motivation

Elliptic
curves and
Selmer
groups

A smattering
of known
results

A bird's eye
view of
computing
the average
size of
2-Selmer

Defining Average Rank of Elliptic Curves, continued

This "average" is defined via a two-step limiting process.
(1) Define an appropriate notion of the 'height' ht (E) of an elliptic curve E / K, designed so that there are only finitely many curves of bounded height, up to isomorphism.
(2) Define the average rank $\operatorname{AR}(K)$ as a limit of averages for curves of bounded height:

$$
\mathrm{AR}_{X}(K):=\frac{\sum_{E: \mathrm{ht}(E) \leq X} \operatorname{rank} E(K)}{\sum_{E: \operatorname{ht}(E) \leq X} 1}
$$

$$
\operatorname{AR}(K):=\lim _{X \rightarrow \infty} \operatorname{AR}_{X}(K)
$$

Selmer Groups

Motivating Question

Can we compute $\operatorname{AR}(K)$, the average rank of elliptic curves E/K?

As a first step, can one bound $\overline{\mathrm{AR}}(K):=\lim \sup \mathrm{AR}_{X}(K)$? It is

$$
x \rightarrow \infty
$$ not a priori obvious that this is even finite.

The main new result presented in this talk will be a bound for this quantity when K is an arbitrary global function field.

Remark

2-Selmer
Average in Char 2

Niven Achenjang

Average Sizes of Selmer Groups

Given an elliptic curve E / K and an integer $n \geq 1$, one can define its n-Selmer group $\operatorname{Sel}_{n}(E)$. This is a finite $\mathbb{Z} / n \mathbb{Z}$-module whose main utility to us is that

$$
n^{\text {rank }_{\mathbb{Z}} E(K)} \leq \# \operatorname{Sel}_{n}(E)
$$

Average Sizes of Selmer Groups

Given an elliptic curve E / K and an integer $n \geq 1$, one can define its n-Selmer group $\operatorname{Sel}_{n}(E)$. This is a finite $\mathbb{Z} / n \mathbb{Z}$-module whose main utility to us is that

$$
n^{\text {rank }_{\mathbb{Z}} E(K)} \leq \# \operatorname{Sel}_{n}(E)
$$

We define the average sizes $\mathrm{AS}_{n}(K), \mathrm{AS}_{n, X}(K)$ in the same way as $\operatorname{AR}(K), \operatorname{AR}_{X}(K)$, respectively, but using $\# \operatorname{Sel}_{n}(E)$ in place of rank $E(K)$. We similarly define $\overline{\mathrm{AS}}_{n}(K):=\lim \sup \mathrm{AS}_{n, x}(K)$. $x \rightarrow \infty$

Stating our Main Question

Motivating Question (Recall)

2-Selmer
Average in Char 2

Niven Achenjang
Can we compute $\operatorname{AR}(K)$, the average rank of elliptic curves E/K?

We suggested bounding $\overline{\mathrm{AR}}(K)$ as a first step, and introduced the Selmer groups as a tool to do so.
Question (Main question for this talk)
Can we compute $\mathrm{AS}_{n}(K)$ for some n ?

Motivation
Elliptic
curves and Selmer
groups

A smattering
of known
results

A bird's eye
view of
computing
the average
size of
2-Selmer

Stating our Main Question

Motivating Question (Recall)

2-Selmer
Average in Char 2

Niven Achenjang
Can we compute $\operatorname{AR}(K)$, the average rank of elliptic curves E/K?

We suggested bounding $\overline{\mathrm{AR}}(K)$ as a first step, and introduced the Selmer groups as a tool to do so.
Question (Main question for this talk)
Can we compute $\mathrm{AS}_{n}(K)$ for some n ?
Remark/Example ($n=2$)
If $r=\operatorname{rank} E(K)$, then

$$
2 r \leq 2^{r} \leq \# \operatorname{Sel}_{2}(E)
$$

Hence, $2 \cdot \overline{\mathrm{AR}}(K) \leq \overline{\mathrm{AS}}_{2}(K)$.

The Conjectures

2-Selmer
Average in
Char 2
Niven
Achenjang
Conjecture (Goldfeld 1979, folklore)
$\operatorname{AR}(K)=\frac{1}{2}$.
Conjecture (Bhargava-Shankar, Poonen-Rains)
For all $n \geq 1, \mathrm{AS}_{n}(K)=\sum_{d \mid n} d$. For example, $\mathrm{AS}_{2}(K)=1+2=3$.

Motivation
Elliptic
curves and
Selmer
groups
A smattering of known
results

A bird's eye
view of
computing
the average
size of
2-Selmer

The Conjectures

Conjecture (Goldfeld 1979, folklore)
$\operatorname{AR}(K)=\frac{1}{2}$.
Conjecture (Bhargava-Shankar, Poonen-Rains)
For all $n \geq 1, \mathrm{AS}_{n}(K)=\sum_{d \mid n} d$. For example, $\mathrm{AS}_{2}(K)=1+2=3$.

Remark

The latter conjecture implies that 100% of elliptic curves have rank 0 or 1.

Some Earlier Results

Theorem (Brumer, 1992)
If $K=\mathbb{F}_{q}(t)$ and char $\mathbb{F}_{q} \neq 2,3$, then $\operatorname{AR}(K) \leq 2.3$.

2-Selmer Average in Char 2

Niven Achenjang

Motivation
Elliptic
curves and
Selmer
groups
A smattering of known
results
A bird's eye
view of
computing
the average
size of
2-Selmer

Some Earlier Results

Theorem (de Jong, 2002)
As q ranges over prime powers, $\lim \sup \overline{\mathrm{AS}}_{3}\left(\mathbb{F}_{q}(t)\right) \leq 4$.

$$
q \rightarrow \infty
$$

Elliptic
curves and
Selmer
groups
A smattering
Consequently, lim sup $\overline{\mathrm{AR}}\left(\mathbb{F}_{q}(t)\right) \leq 7 / 6 .{ }^{a}$

$$
q \rightarrow \infty
$$

${ }^{\text {a }}$ de Jong proves an upper bound of $3 / 2$ in his paper, but Bhargava-Shankar show how to deduce $7 / 6$ instead.

A bird's eye

Some Earlier Results

2-Selmer Average in Char 2

Theorem (Brumer, 1992)
Niven Achenjang
If $K=\mathbb{F}_{q}(t)$ and char $\mathbb{F}_{q} \neq 2,3$, then $\operatorname{AR}(K) \leq 2.3$.

Elliptic
Theorem (de Jong, 2002)
As q ranges over prime powers, $\lim \sup \overline{\mathrm{AS}}_{3}\left(\mathbb{F}_{q}(t)\right) \leq 4$.

$$
q \rightarrow \infty
$$

Consequently, limsup $\overline{\mathrm{AR}}\left(\mathbb{F}_{q}(t)\right) \leq 7 / 6 .{ }^{a}$

$$
q \rightarrow \infty
$$

${ }^{a}$ de Jong proves an upper bound of $3 / 2$ in his paper, but Bhargava-Shankar show how to deduce $7 / 6$ instead.

Theorem (Bhargava-Shankar, 2013)

Let $K=\mathbb{Q}$. Then, $\operatorname{AS}_{n}(\mathbb{Q})=\sum_{d \mid n} d$ if $n=1,2,3,4,5$.
Consequently, $\overline{\mathrm{AR}}(\mathbb{Q}) \leq 0.885$.

Some Variants in the function field setting

Working in the "large q limit," where one lets the size of the
2-Selmer
Average in Char 2

Niven Achenjang ground field go to infinity before letting the height go to infinity, Landesman has proven:

Theorem (Landesman, 2021)
For any $n \geq 1$ and any $X \geq 2$,

$$
\lim _{\substack{q \rightarrow \infty \\ \operatorname{gcd}(q, 2 n)=1}} \mathrm{AS}_{n, X}\left(\mathbb{F}_{q}(t)\right)=\sum_{d \mid n} d .
$$

Some Variants in the function field setting

Working in the "large q limit," where one lets the size of the ground field go to infinity before letting the height go to infinity, Landesman has proven:

Theorem (Landesman, 2021)
For any $n \geq 1$ and any $X \geq 2$,

$$
\lim _{\substack{q \rightarrow \infty \\ \operatorname{gcd}(q, 2 n)=1}} \mathrm{AS}_{n, X}\left(\mathbb{F}_{q}(t)\right)=\sum_{d \mid n} d .
$$

Other known statements deal with

- the "distribution" of $\operatorname{Sel}_{n}(E)$ instead of just its average size; or
- quadratic twist families instead of all elliptic curves over K.

2-Selmer Over Function Fields

Theorem (Hồ-Lê Hùng-Ngô, 2014)

2-Selmer
Average in Char 2

Niven Achenjang
Let K be the function field of a nice curve B / \mathbb{F}_{q}. Assume that char $\mathbb{F}_{q} \neq 2,3$ and that $q>64$. Then,

$$
3 \zeta_{B}(10)^{-1} \leq \overline{\mathrm{AS}}_{2}(K) \leq 3+O_{K}\left(\frac{1}{q}\right)
$$

as $q \rightarrow \infty$, where ζ_{B} is the usual zeta function of B.

2-Selmer Over Function Fields

Theorem (Hồ-Lê Hùng-Ngô, 2014)
2-Selmer
Average in Char 2

Niven
Achenjang
Let K be the function field of a nice curve B / \mathbb{F}_{q}. Assume that char $\mathbb{F}_{q} \neq 2,3$ and that $q>64$. Then,

$$
3 \zeta_{B}(10)^{-1} \leq \overline{\mathrm{AS}}_{2}(K) \leq 3+O_{K}\left(\frac{1}{q}\right),
$$

as $q \rightarrow \infty$, where ζ_{B} is the usual zeta function of B.
Theorem (A., 2023)
Let K be the function field of a nice curve B / \mathbb{F}_{q}. Then,

$$
\overline{\mathrm{AS}}_{2}(K) \leq 1+2 \zeta_{B}(2) \zeta_{B}(10)=3+\frac{2}{q}+O_{K}\left(\frac{1}{q^{2}}\right) .
$$

2-Selmer Over Function Fields

Theorem (Hồ-Lê Hùng-Ngô, 2014)
2-Selmer
Average in Char 2

Niven
Achenjang
Let K be the function field of a nice curve B / \mathbb{F}_{q}. Assume that char $\mathbb{F}_{q} \neq 2,3$ and that $q>64$. Then,

$$
3 \zeta_{B}(10)^{-1} \leq \overline{\mathrm{AS}}_{2}(K) \leq 3+O_{K}\left(\frac{1}{q}\right)
$$

as $q \rightarrow \infty$, where ζ_{B} is the usual zeta function of B.
Theorem (A., 2023)
Let K be the function field of a nice curve B / \mathbb{F}_{q}. Then,

$$
\overline{\mathrm{AS}}_{2}(K) \leq 1+2 \zeta_{B}(2) \zeta_{B}(10)=3+\frac{2}{q}+O_{K}\left(\frac{1}{q^{2}}\right) .
$$

Consequently, in either theorem, $\overline{\mathrm{AR}}(K) \leq 3 / 2+O_{K}(1 / q)$.

Geometric Interpretation of 2-Selmer elements

2-Selmer
Average in
Char 2
Niven Achenjang

As before, let K be the function field of a nice curve B / \mathbb{F}_{q}.

Motivation

Elliptic
curves and
Selmer
groups

A smattering
of known
results

A bird's eye
view of
computing
the average
size of
2-Selmer

Geometric Interpretation of 2-Selmer elements

As before, let K be the function field of a nice curve B / \mathbb{F}_{q}.
(1) Every $\alpha \in \operatorname{Sel}_{2}(E)$ can be represented by a pair (C, D), where C is a genus 1 curve with a simply transitive E-action and $D \subset C$ is an effective, degree 2 divisor.

Elliptic
curves and
Selmer
groups

A smattering
of known
results

A bird's eye
view of
computing
the average
size of
2-Selmer

Geometric Interpretation of 2-Selmer elements

As before, let K be the function field of a nice curve B / \mathbb{F}_{q}.
(1) Every $\alpha \in \operatorname{Sel}_{2}(E)$ can be represented by a pair (C, D), where C is a genus 1 curve with a simply transitive E-action and $D \subset C$ is an effective, degree 2 divisor.
(2) Such a pair (C, D) can always be written in the form

$$
\begin{aligned}
& C: Y^{2}+\left(a_{0} X^{2}+a_{1} X Z+a_{2} Z^{2}\right) Y= \\
& \quad c_{0} X^{4}+c_{1} X^{3} Z+c_{2} X^{2} Z^{2}+c_{3} X Z^{3}+c_{4} Z^{4}
\end{aligned}
$$

inside $\mathbb{P}(1,2,1)$ for some $a_{i}, c_{j} \in K$, with $D=\{Z=0\}$.

Geometric Interpretation of 2-Selmer elements,

 continued2-Selmer
Average in Char 2

Niven Achenjang
(3) Each (C, D) has an integral model (\mathcal{C}, \mathcal{D}), akin to the minimal Weierstrass model of an elliptic curve. The height of the elliptic curve attached to (C, D) can be extracted from (\mathcal{C}, \mathcal{D}). To count 2-Selmer elements, one counts integral models (\mathcal{C}, \mathcal{D}) instead.

Elliptic
curves and
view of
computing
the average
size of
2-Selmer

Geometric Interpretation of 2-Selmer elements,

 continued2-Selmer Average in Char 2

Niven Achenjang
(3) Each (C, D) has an integral model (\mathcal{C}, \mathcal{D}), akin to the minimal Weierstrass model of an elliptic curve. The height of the elliptic curve attached to (C, D) can be extracted from (\mathcal{C}, \mathcal{D}). To count 2-Selmer elements, one counts integral models (C, \mathcal{D}) instead.
(4) Each (\mathcal{C}, \mathcal{D}) can be embedded in some relative $\mathbb{P}(1,2,1)$-bundle over B, which I will call $\mathbb{P}=\mathbb{P}(\mathcal{C}, \mathcal{D})$. Given $\mathbb{P},(\mathcal{C}, \mathcal{D})$ is determined by a choice of section of a certain rank 8 vector bundle on B. This bundle controls the variation of the coefficients of the equation cutting out $\mathcal{C} \hookrightarrow \mathbb{P}$, i.e. the variation of the a_{i} 's and c_{j} 's from last slide.

Geometric Interpretation of 2-Selmer elements,

 continued2-Selmer Average in Char 2

Niven Achenjang

Motivation

Elliptic
curves and
Selmer
groups

A smattering
of known
results

A bird's eye
view of
computing
the average
size of
2-Selmer

Geometric Interpretation of 2-Selmer elements, continued

(5) To count integral models (\mathcal{C}, \mathcal{D}), one can determine which rank 8 vector bundles can arise and count their sections.
(6) In the end, one shows that the vector bundles which arise are "almost semistable" so that their number of sections is well-approximated by Riemann-Roch. Afterwards, the actual counting becomes more straightforward.

Summary

2-Selmer
Average in
Char 2
Niven
Achenjang

- One first constructs suitable integral models (C, D) of 2-Selmer elements.
- Then, one uses the algebraic geometry of vector bundles on curves to count the number of integral models (\mathcal{C}, \mathcal{D}).
- From this, one can obtain a general bound the average 2-Selmer group size for elliptic curves over any global function field K, removing restrictions on the underlying finite field previous authors had to impose.
- This then yields statistical information about the ranks of elliptic curves over K.

