On Gaps in the Closures of Images of Divisor Functions

Niven Achenjang

Stanford University

January 17, 2019

Niven Achenjang (Stanford)

Gaps in Divisor Functions

January 17, 2019

1 / 13

Divisor Functions

Definition

Fix some $c \in \mathbb{C}$. The **divisor function** $\sigma_c : \mathbb{N} \to \mathbb{C}$ associated to c is given by

$$\sigma_c(n) = \sum_{d|n} d^c.$$

<u>Remark</u>: For this talk $0 \notin \mathbb{N}$.

Divisor Functions

Definition

Fix some $c \in \mathbb{C}$. The **divisor function** $\sigma_c : \mathbb{N} \to \mathbb{C}$ associated to c is given by

$$\sigma_c(n) = \sum_{d|n} d^c.$$

<u>Remark</u>: For this talk $0 \notin \mathbb{N}$.

Example

Fix a prime p and pick some $\alpha \in \mathbb{N}$. Then,

$$\sigma_c(p) = 1 + p^c$$

 $\sigma_c(p^{\alpha}) = 1 + p^c + \dots + p^{\alpha c} = \frac{1 - p^{(\alpha + 1)c}}{1 - p^c}$

The Question

Theorem (Laatsch, 1986)

 $\sigma_{-1}(\mathbb{N})$ is a dense subset of $[1,\infty)$. That is,

 $\overline{\sigma_{-1}(\mathbb{N})} = [1,\infty).$

The Question

Theorem (Laatsch, 1986)

 $\sigma_{-1}(\mathbb{N})$ is a dense subset of $[1,\infty)$. That is,

$$\overline{\sigma_{-1}(\mathbb{N})} = [1,\infty).$$

Question

Is $\overline{\sigma_c(\mathbb{N})}$ always connected?

Niven Achenjang (Stanford)

The Answer (and a new Question)

Answer: No

Example

Consider c = -2. Then,

$$n \text{ even } \implies \sigma_{-2}(n) \ge 1 + \frac{1}{2^2} = \frac{5}{4}$$
$$n \text{ odd } \implies \sigma_{-2}(n) \le \sum_{d\ge 1} \frac{1}{(2d-1)^2} = \frac{\pi^2}{8}.$$
Hence, $\overline{\sigma_{-2}(\mathbb{N})}$ has a gap $\left(\frac{\pi^2}{8}, \frac{5}{4}\right)$.

Niven Achenjang (Stanford)

Gaps in Divisor Functions

The Answer (and a new Question)

Answer: No

Example

Consider c = -2. Then,

$$n \text{ even} \implies \sigma_{-2}(n) \ge 1 + \frac{1}{2^2} = \frac{5}{4}$$

 $n \text{ odd} \implies \sigma_{-2}(n) \le \sum_{d\ge 1} \frac{1}{(2d-1)^2} = \frac{\pi^2}{8}.$

Hence, $\overline{\sigma_{-2}(\mathbb{N})}$ has a gap $\left(\frac{\pi^2}{8}, \frac{5}{4}\right)$.

Question

Fix some r > 1 and let c = -r. What can we say about the number of connected components of $\overline{\sigma_{-r}(\mathbb{N})}$?

Previous Results

Notation

Let C_r denote the number of connected components of $\overline{\sigma_{-r}(\mathbb{N})}$.

Theorem (Defant, 2015)

There is a number $\eta \approx 1.88779$, now called the **Defantstant**, s.t.

 $C_r = 1 \iff r \in (0, \eta].$

Previous Results

Notation

Let C_r denote the number of connected components of $\overline{\sigma_{-r}(\mathbb{N})}$.

Theorem (Defant, 2015)

There is a number $\eta \approx 1.88779$, now called the **Defantstant**, s.t.

$$C_r = 1 \iff r \in (0, \eta].$$

Theorem (Defant, 2016)

 $C_r \to \infty \ as \ r \to \infty.$

Previous Results

Notation

Let C_r denote the number of connected components of $\overline{\sigma_{-r}(\mathbb{N})}$.

Theorem (Defant, 2015)

There is a number $\eta \approx 1.88779$, now called the **Defantstant**, s.t.

$$C_r = 1 \iff r \in (0, \eta].$$

Theorem (Defant, 2016)

 $C_r \to \infty \ as \ r \to \infty.$

Theorem (Sanna, 2017)

 $C_r < \infty$ for all r > 1.

<u>Remark</u>: We know that C_r is always finite and can be arbitrarily large. It seems reasonable to conjecture that it can take on all finite values.

<u>Remark</u>: We know that C_r is always finite and can be arbitrarily large. It seems reasonable to conjecture that it can take on all finite values.

Theorem (Zubrilina, 2017)

<u>Remark</u>: We know that C_r is always finite and can be arbitrarily large. It seems reasonable to conjecture that it can take on all finite values.

Theorem (Zubrilina, 2017) For all r > 1, $C_r \neq 4$.

<u>Remark</u>: We know that C_r is always finite and can be arbitrarily large. It seems reasonable to conjecture that it can take on all finite values.

Theorem (Zubrilina, 2017) For all r > 1, $C_r \neq 4$.

Definition

We say $m \in \mathbb{N}$ is a **Zubrilina number** if $C_r \neq m$ for all r > 1.

<u>Remark</u>: We know that C_r is always finite and can be arbitrarily large. It seems reasonable to conjecture that it can take on all finite values.

Theorem (Zubrilina, 2017) For all r > 1, $C_r \neq 4$.

Definition

We say $m \in \mathbb{N}$ is a **Zubrilina number** if $C_r \neq m$ for all r > 1.

Theorem (A., Berger) 6 is a Zubrilina number.

A Simplification

Definition (Steinitz, 1910)

A Steinitz (or supernatural) number is a formal product

$$n = \prod_{p \text{ prime}} p^{\alpha_p} \qquad \alpha_p \in \mathbb{Z}_{\geq 0} \cup \{\infty\}.$$

We write $v_p(n) = \alpha_p$, and we let S denote the set of all Steinitz numbers.

A Simplification

Definition (Steinitz, 1910)

A Steinitz (or supernatural) number is a formal product

$$n = \prod_{p \text{ prime}} p^{\alpha_p} \qquad \alpha_p \in \mathbb{Z}_{\geq 0} \cup \{\infty\}.$$

We write $v_p(n) = \alpha_p$, and we let S denote the set of all Steinitz numbers.

Theorem (A., Berger)

Given $c \in \mathbb{C}$ with $\Re(c) < -1$, we can extend σ_c to a function $\mathbb{S} \to \mathbb{C}$ by preserving multiplicativity and setting

$$\sigma_c(p^{\infty}) = \lim_{n \to \infty} \sigma_c(p^n) = \frac{1}{1 - p^c}$$

When we do so, we get that $\overline{\sigma_c(\mathbb{N})} = \sigma_c(\mathbb{S})$.

Definition (Zubrilina, 2017)

Given r > 1, we say that a prime p is r-mighty if

$$\sigma_{-r}(p) = 1 + \frac{1}{p^r} > \prod_{\text{prime } q > p} \frac{1}{1 - q^{-r}} = \prod_{\text{prime } q > p} \sigma_{-r}(q^{\infty}).$$

Definition (Zubrilina, 2017)

Given r > 1, we say that a prime p is r-mighty if

$$\sigma_{-r}(p) = 1 + \frac{1}{p^r} > \prod_{\text{prime } q > p} \frac{1}{1 - q^{-r}} = \prod_{\text{prime } q > p} \sigma_{-r}(q^{\infty}).$$

Example (2 is 2-mighty)

For r = 2, we have that

$$\sigma_{-2}(2) = \frac{5}{4} > \frac{\pi^2}{8} = \prod_{\text{prime } q > 2} \frac{1}{1 - q^{-2}}.$$

Definition (Zubrilina, 2017)

Given r > 1, we say that a prime p is r-mighty if

$$\sigma_{-r}(p) = 1 + \frac{1}{p^r} > \prod_{\text{prime } q > p} \frac{1}{1 - q^{-r}} = \prod_{\text{prime } q > p} \sigma_{-r}(q^{\infty}).$$

Example (2 is 2-mighty)

For r = 2, we have that

$$\sigma_{-2}(2) = \frac{5}{4} > \frac{\pi^2}{8} = \prod_{\text{prime } q > 2} \frac{1}{1 - q^{-2}}$$

Notation

• Let p_k denote the kth prime.

Niven Achenjang (Stanford)

Gaps in Divisor Functions

January 17, 2019

Definition (Zubrilina, 2017)

Given r > 1, we say that a prime p is r-mighty if

$$\sigma_{-r}(p) = 1 + \frac{1}{p^r} > \prod_{\text{prime } q > p} \frac{1}{1 - q^{-r}} = \prod_{\text{prime } q > p} \sigma_{-r}(q^{\infty}).$$

Example (2 is 2-mighty)

For r = 2, we have that

$$\sigma_{-2}(2) = \frac{5}{4} > \frac{\pi^2}{8} = \prod_{\text{prime } q > 2} \frac{1}{1 - q^{-2}}.$$

Notation

- Let p_k denote the kth prime.
- Let P_r denote the smallest prime larger than all r-mighty primes.

r-mighty Primes \implies Gaps

Theorem (Zubrilina, 2017)

If p_k is an r-mighty prime, then

$$\left(\prod_{t=k+1}^{\infty}\sigma_{-r}(p_t^{\infty}),\sigma_{-r}(p_k)\right)$$

is a gap of $\sigma_{-r}(\mathbb{S})$.

r-mighty Primes \implies Gaps

Theorem (Zubrilina, 2017)

If p_k is an r-mighty prime, then

$$\left(\prod_{t=k+1}^{\infty}\sigma_{-r}(p_t^{\infty}),\sigma_{-r}(p_k)\right)$$

is a gap of $\sigma_{-r}(\mathbb{S})$.

Theorem (A., Berger)

If q, p_k are r-mighty primes with $q^2 < p_k$, then

$$\left(\sigma_{-r}(q)\prod_{t=k+1}^{\infty}\sigma_{-r}(p_t^{\infty}),\sigma_{-r}(qp_k)\right)$$

is a gap of $\sigma_{-r}(\mathbb{S})$.

Gaps Coming From Other Places

Gaps Coming From Other Places

Theorem (A., Berger)

If n is (r-1)-smooth and square-free, then $\sigma_{-r}(n)$ is the right endpoint of a gap of $\sigma_{-r}(\mathbb{S})$.

Gaps Coming From Other Places

Lemma If $1 \le d \le r - 1$, then $\frac{1}{d^r} > \sum_{n=d+1}^{\infty} \frac{1}{n^r}$.

Theorem (A., Berger)

If n is (r-1)-smooth and square-free, then $\sigma_{-r}(n)$ is the right endpoint of a gap of $\sigma_{-r}(\mathbb{S})$.

Corollary

For r > 1, we have $C_r \ge 2^{\pi(r-1)}$.

Structure of General Gaps

Theorem (A., Berger)

Let $(\sigma_{-r}(a), \sigma_{-r}(b))$ with $a, b \in \mathbb{S}$ be a gap of $\sigma_{-r}(\mathbb{S})$. Then,

• If $p \ge P_r$, then

$$v_p(a) = \infty$$
 and $v_p(b) = 0$.

Structure of General Gaps

Theorem (A., Berger)

Let $(\sigma_{-r}(a), \sigma_{-r}(b))$ with $a, b \in \mathbb{S}$ be a gap of $\sigma_{-r}(\mathbb{S})$. Then, • If $p \ge P_r$, then $v_r(a) = \infty$ and $v_r(b) = 0$

$$v_p(a) = \infty$$
 and $v_p(b) = 0$.

• If
$$p < P_r$$
 and $v_p(a) < \infty$, then
 $v_p(a) < \frac{\log P_r}{\log p} - 1.$
• If $p < P_r$, then
 $v_p(b) < \frac{\log P_r}{\log p}.$

Structure of General Gaps

Theorem (A., Berger)

Let $(\sigma_{-r}(a), \sigma_{-r}(b))$ with $a, b \in \mathbb{S}$ be a gap of $\sigma_{-r}(\mathbb{S})$. Then, • If $p \ge P_r$, then $v_r(a) = \infty$ and $v_r(b) = 0$

$$v_p(a) = \infty$$
 and $v_p(b) = 0$.

• If
$$p < P_r$$
 and $v_p(a) < \infty$, then
 $v_p(a) < \frac{\log P_r}{\log p} - 1.$
• If $p < P_r$, then
 $v_p(b) < \frac{\log P_r}{\log p}.$

<u>Remark</u>: The above theorem implies that b must be a natural number.

11 / 13

Open Problems

Conjecture (Defant, 2018)

There are infinitely many Zubrilina numbers.

Open Problems

Conjecture (Defant, 2018)

There are infinitely many Zubrilina numbers.

Conjecture (A., Berger)

 C_r is monotone in r.

Acknowledgments

This work was completed while at the 2018 Duluth REU. I would like to extend my gratitude to Dr. Joe Gallian for running such an amazing program and to the program's advisers - Levent Alpoge, Aaron Berger, and Colin Defant - for helping make Duluth what it is.