An upper bound for the average rank of elliptic curves over arbitrary (global) function fields

Niven Achenjang MIT

April 5, 2025

 $\mathbb{E}[\operatorname{rank} E(K)] < \infty$

Niven Achenjang

Background & Setup

Parameterizing 2-Selmer Elements

Counting

Defining average ranks

Notation throughout talk:

- $B = \text{nice } \mathbb{F}_q$ -curve of genus g.
- $K = \mathbb{F}_q(B)$ its function field.
- ∆_{min}(E) ∈ Div(B) is the minimal discriminant of an elliptic curve (EC) E/K.

Definition

The height of E/K is

$$\operatorname{nt}(E)\coloneqq rac{1}{12}\deg\Delta_{\min}(E),$$

essentially the degree of its minimal discriminant.

Definition

$$\mathbb{E}[\mathsf{rank}\, E(\mathcal{K})] \stackrel{*}{:=} \limsup_{X \to \infty} \frac{\sum\limits_{E: \ \mathsf{ht}(E) < X} \mathsf{rank}\, E(\mathcal{K})}{\#\{E: \ \mathsf{ht}(E) < X\}}.$$

Niven Achenjang (MIT)

 $\mathbb{E}[\operatorname{rank} E(K)] < \infty$

Niven Achenjang

Background & Setup

Parameterizing 2-Selmer Elements

Counting

Conjectural distribution & Selmer groups

Conjecture (Minimalist conjecture, Goldfeld++) 50% of elliptic curves have rank 0 and 50% have rank 1. Thus, $\mathbb{E}[\operatorname{rank} E(K)] = \frac{1}{2}.$

General plan of attack: first study Selmer group statistics.

Definition

Given
$$E/K$$
 and $n \ge 1$, the *n*-Selmer group is

$$\operatorname{Sel}_n(E) \coloneqq \operatorname{ker}\left(\operatorname{H}^1(K, E[n]) \longrightarrow \prod_{v} \operatorname{H}^1(K_v, E)\right).$$

<u>Think</u>: **locally solvable** genus 1 curve *C* equipped with degree $n \text{ map } C \to \mathbb{P}^{n-1}$ (More on this later in the talk).

Niven Achenjang

Background & Setup

Parameterizing 2-Selmer Elements

Counting

Selmer group statistics

Fact

$$\operatorname{Sel}_n(E)$$
 is finite and $E(K)/n \hookrightarrow \operatorname{Sel}_n(E)$, so
 $n^{\operatorname{rank} E(K)} \leq \# \operatorname{Sel}_n(E).$

Definition

$$\mathbb{E}[\#\operatorname{Sel}_n(E/K)] \stackrel{*}{:=} \limsup_{X \to \infty} \frac{\sum\limits_{E: \ \operatorname{ht}(E) < X} \#\operatorname{Sel}_n(E)}{\#\{E: \ \operatorname{ht}(E) < X\}}.$$

Conjecture (Bhargava–Shankar '13, Poonen–Rains '12, ...) For every $n \ge 1$: $\mathbb{E}[\# \operatorname{Sel}_n(E/K)] = \sum_{d|n} d$.

<u>Fact</u>: This conjecture $\implies \mathbb{P}[\operatorname{rank} E(K) \le 1] = 100\%$. Combined with equidistribution of rank parities, this implies the minimalist conjecture.

Niven Achenjang (MIT)

 $\mathbb{E}[\operatorname{rank} E(K)] < \infty$

Niven Achenjang

Background & Setup

Parameterizing 2-Selmer Elements

Counting

Results for 2-Selmer Over Function Fields

Theorem (Hồ–Lê Hùng–Ngô '14)

Assume that char $\mathbb{F}_q \neq 2,3$ and that q > 64. Then,

$$3\zeta_B(10)^{-1} \leq \mathbb{E}[\#\operatorname{Sel}_2(E/K)] \leq 3 + O_g\left(rac{1}{q}
ight),$$

as $q \to \infty$, where ζ_B is the usual zeta function of B.

Theorem (A. '23)

a

$$\#\mathbb{E}[\operatorname{Sel}_2(E/\mathcal{K})] \leq 1 + 2\zeta_B(2)\zeta_B(10) = 3 + rac{2}{q} + O_g\left(rac{1}{q^2}
ight),$$

is $q o \infty.$

In either case, $\mathbb{E}[\operatorname{rank} E(K)] \leq 3/2 + O_g(1/q)$. Use $2x \leq 2^x$.

Corollary (A. '23 + Shankar's thesis) $\mathbb{E}[\operatorname{rank} E(F)] < \infty$ for any global field F. $\mathbb{E}[\operatorname{rank} E(K)] <$

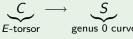
Background & Setup

2-Selmer elements as double covers of \mathbb{P}^1

Goal: Count 2-Selmer elements of ECs of bounded height.

Remark (geometric model of 2-Selmer elements)

If $T \in H^1(K, E[2])$ is an E[2]-torsor, can twist the diagram $E \xrightarrow{x} \mathbb{P}^1$ by T to obtain



If *C* is locally solvable, then $S \simeq \mathbb{P}^1_K$.

<u>Upshot</u>: $\alpha \in Sel_2(E) \subset H^1(K, E[2])$ represented by a locally solvable genus 1 double cover $C \to \mathbb{P}^1_K$ with $E \cong Jac(C)$. Such *C* given by equation

$$C: Y^{2} + (a_{0}X^{2} + a_{1}XZ + a_{2}Z^{2})Y = c_{0}X^{4} + c_{1}X^{3}Z + c_{2}X^{2}Z^{2} + c_{3}XZ^{3} + c_{4}Z^{4}$$

inside $\mathbb{P}(1,2,1)$. Above equation has 8 coefficients.

 $\mathbb{E}[\operatorname{rank} E(K)] < \infty$

Niven Achenjang

Background & Setup

Parameterizing 2-Selmer Elements

Counting

Nrapup

Setup to counting (i.e. relativizing everything), I

<u>Goal</u>: Count (locally solvable) *C*'s as below with Jacobians of bounded height.

C:
$$Y^2 + (a_0X^2 + a_1XZ + a_2Z^2)Y =$$

 $c_0X^4 + c_1X^3Z + c_2X^2Z^2 + c_3XZ^3 + c_4Z^4$

Recall **height** measured bad reduction of E = Jac(C), so easiest to read off an integral (i.e. relative over B) model.

Fact

There exists a rank 2 vector bundle $\mathscr{E} = \mathscr{E}(C)$ on B and an integral model

$$\mathcal{C} \to \mathbb{P}(\mathscr{E})$$
 of $\mathcal{C} \to \mathbb{P}^1$

such that $ht(\mathcal{C}) = ht(E)$. Furthermore, one can embed

$$\mathfrak{C} \hookrightarrow \mathbb{P}$$

for some $\mathbb{P}(1,2,1)$ -bundle \mathbb{P} over B.

 $\mathbb{E}[\operatorname{rank} E(K)] < \infty$

Niven Achenjang

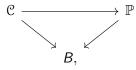
Background & Setup

Parameterizing 2-Selmer Elements

Counting

Setup to counting (i.e. relativizing everything), II

Goal: Count diagrams



where \mathbb{P}/B is a $\mathbb{P}(1,2,1)$ -bundle and \mathbb{C}/B is a relative curve whose generic fiber looks like *C* from before.

Fact

If one fixes \mathbb{P}/B , there is a rank 8 vector bundle $\mathscr{V} = \mathscr{V}(\mathbb{P})$ over B whose sections cut out C's as above (its sections parameterize continuous choices of the 8 coefficients $a_0, a_1, a_2, c_0, c_1, c_2, c_3, c_4$ from before).

Upshot: One ultimately wants to count \mathcal{C} 's by computing $h^0(\mathcal{V})$.

Niven Achenjang (MIT)

 $\mathbb{E}[\operatorname{rank} E(K)] < \infty$

Niven Achenjang

Background & Setup

Parameterizing 2-Selmer Elements

Counting

Computing $h^0(\mathscr{V})$, I

Fix \mathbb{P}/B , a $\mathbb{P}(1,2,1)$ -bundle. <u>Goal</u>: Compute $h^0(\mathcal{V})$.

Fact

 $\chi(\mathscr{V}) = \deg \mathscr{V} + 8(1 - g)$ (Riemann-Roch) is easily computable.

Note: If
$$h^1(\mathscr{V}) \approx 0$$
, then $h^0(\mathscr{V}) \approx \chi(\mathscr{V})$.

Fact

Attached to \mathbb{P} is a rank 2 vector bundle \mathscr{E} such that \mathscr{V} is "basically built from"

 $\operatorname{Sym}^2(\mathscr{E})$ and $\operatorname{Sym}^4(\mathscr{E})$

(corresponding to binary quadratic form and binary quartic form in previous equation for C)

$\mathbb{E}[\operatorname{rank} E(K)] < \infty$

Niven Achenjang

Background & Setup

Parameterizing 2-Selmer Elements

Counting

Nrapup

Computing $h^0(\mathcal{V})$, II

Fix \mathbb{P}/B , a $\mathbb{P}(1,2,1)$ -bundle. <u>Goal</u>: Show $h^1(\mathscr{V}) \approx 0$.

Fact ("doing enough AG let's you better understand \mathscr{E} ") Say C has 'at worst rational singularities' (= 'is minimal'). One can compute \mathscr{E} using data on a desingularization \mathfrak{X} of C. Some intersection theory on \mathfrak{X} allows one to show that \mathscr{E} is "almost semistable," unless C corresponds to a trivial/identity Selmer element.

Output: One uses that \mathscr{V} is "built from $Sym^2(\mathscr{E})$ and $\overline{Sym^4}(\mathscr{E})$ " to ultimately show that

 $h^1(\mathscr{V}) \leq 8g$ and so $h^0(\mathscr{V}) \approx \chi(\mathscr{V}),$

at least for \mathbb{P} 's (so also \mathscr{V} 's) attached to non-trivial Selmer elements. This let's one count ("non-trivial") \mathcal{C} 's, so counts C's, and so count 2-Selmer elements.

 $\mathbb{E}[\mathsf{rank}\, E(K)] < \infty$

Niven Achenjang

Background & Setup

Parameterizing 2-Selmer Elements

Counting

Some hiccups to watch out for

One also needs to compute the denominator, i.e. count elliptic curves /K.

Theorem (A. '23) For any $\varepsilon > 0$, $\sum_{E: ht(E)=d} \frac{1}{\#\operatorname{Aut}(E)} \sim \#\operatorname{Pic}^0(B) \frac{q^{10d+2(1-g)}}{(q-1)\zeta_B(10)} \text{ as } d \to \infty$ Wrapup (one also gets an explicit second order term).

- Elliptic curves with non-trivial 2-torsion turn out to appear differently in the Selmer count, so one wants to show they don't contribute to the average anyways.
 - This is not too bad if char $K \ge 3$, but turns out to be more subtle if char K = 2.

 $\mathbb{E}[\operatorname{rank} E(K)] <$

Summary

- We bounded the average rank of elliptic curves over arbitrary global function fields (including small characteristic).
- This completed the proof that this average rank is finite for any global field.
- ► The proof involved first bounding the average size of 2-Selmer, primarily by relating 2-Selmer elements to certain integral models of double covers of P¹.
- Such integral models can be counted by using tools from algebraic geometry, e.g. facts about vector bundles on curves and the theory of rational singularities.

Thank you!

 $\mathbb{E}[\operatorname{rank} E(K)] < \infty$

Niven Achenjang

Background & Setup

Parameterizing 2-Selmer Elements

Counting