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Defining average ranks
Notation throughout talk:

▶ B = nice Fq-curve of genus g .
▶ K = Fq(B) its function field.
▶ ∆min(E ) ∈ Div(B) is the minimal discriminant of an

elliptic curve (EC) E/K .

Definition
The height of E/K is

ht(E ) :=
1
12 deg∆min(E ),

essentially the degree of its minimal discriminant.

Definition

E[rankE (K )]
∗
:= lim sup

X!∞

∑
E : ht(E)<X

rankE (K )

#{E : ht(E ) < X}
.
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Conjectural distribution & Selmer groups

Conjecture (Minimalist conjecture, Goldfeld++)
50% of elliptic curves have rank 0 and 50% have rank 1. Thus,

E[rankE (K )] =
1
2 .

General plan of attack: first study Selmer group statistics.

Definition
Given E/K and n ≥ 1, the n-Selmer group is

Seln(E ) := ker

(
H1(K ,E [n]) −!

∏
v

H1(Kv ,E )

)
.

Think: locally solvable genus 1 curve C equipped with degree
n map C ! Pn−1 (More on this later in the talk).
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Selmer group statistics
Fact
Seln(E ) is finite and E (K )/n ↪! Seln(E ), so

nrankE(K) ≤ #Seln(E ).

Definition

E[#Seln(E/K )]
∗
:= lim sup

X!∞

∑
E : ht(E)<X

#Seln(E )

#{E : ht(E ) < X}
.

Conjecture (Bhargava–Shankar ’13, Poonen–Rains ’12, ...)
For every n ≥ 1: E[#Seln(E/K )] =

∑
d |n d.

Fact: This conjecture =⇒ P[rankE (K ) ≤ 1] = 100%.
Combined with equidistribution of rank parities, this implies the
minimalist conjecture.
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Results for 2-Selmer Over Function Fields
Theorem (Hồ–Lê Hùng–Ngô ’14)
Assume that charFq ̸= 2, 3 and that q > 64. Then,

3ζB(10)−1 ≤ E[#Sel2(E/K )] ≤ 3 + Og

(
1
q

)
,

as q ! ∞, where ζB is the usual zeta function of B.

Theorem (A. ’23)

#E[Sel2(E/K )] ≤ 1 + 2ζB(2)ζB(10) = 3 +
2
q + Og

(
1
q2

)
,

as q ! ∞.

In either case, E[rankE (K )] ≤ 3/2 + Og(1/q). Use 2x ≤ 2x .

Corollary (A. ’23 + Shankar’s thesis)
E[rankE (F )] < ∞ for any global field F .
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2-Selmer elements as double covers of P1

Goal: Count 2-Selmer elements of ECs of bounded height.

Remark (geometric model of 2-Selmer elements)
If T ∈ H1(K ,E [2]) is an E [2]-torsor, can twist the diagram
E x
−! P1 by T to obtain

C︸︷︷︸
E -torsor

−! S︸︷︷︸
genus 0 curve

.

If C is locally solvable, then S ≃ P1
K .

Upshot: α ∈ Sel2(E ) ⊂ H1(K ,E [2]) represented by a locally
solvable genus 1 double cover C ! P1

K with E ∼= Jac(C). Such
C given by equation

C : Y 2 + (a0X 2 + a1XZ + a2Z 2)Y =

c0X 4 + c1X 3Z + c2X 2Z 2 + c3XZ 3 + c4Z 4

inside P(1, 2, 1). Above equation has 8 coefficients.
Niven Achenjang (MIT) E[rank E(K)] < ∞ April 5, 2025 6 / 12



E[rank E(K)] <

∞

Niven
Achenjang

Background &
Setup

Parameterizing
2-Selmer
Elements

Counting

Wrapup

Setup to counting (i.e. relativizing everything), I
Goal: Count (locally solvable) C ’s as below with Jacobians of
bounded height.

C : Y 2 + (a0X 2 + a1XZ + a2Z 2)Y =

c0X 4 + c1X 3Z + c2X 2Z 2 + c3XZ 3 + c4Z 4

Recall height measured bad reduction of E = Jac(C), so
easiest to read off an integral (i.e. relative over B) model.

Fact
There exists a rank 2 vector bundle E = E (C) on B and an
integral model

C ! P(E ) of C ! P1

such that ht(C) = ht(E ). Furthermore, one can embed
C ↪! P

for some P(1, 2, 1)-bundle P over B.
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Setup to counting (i.e. relativizing everything), II
Goal: Count diagrams

C P

B,

where P/B is a P(1, 2, 1)-bundle and C/B is a relative curve
whose generic fiber looks like C from before.

Fact
If one fixes P/B, there is a rank 8 vector bundle V = V (P)
over B whose sections cut out C’s as above
(its sections parameterize continuous choices of the 8
coefficients a0, a1, a2, c0, c1, c2, c3, c4 from before).

Upshot: One ultimately wants to count C’s by computing
h0(V ).
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Computing h0(V ), I

Fix P/B, a P(1, 2, 1)-bundle. Goal: Compute h0(V ).

Fact
χ(V ) = degV + 8(1 − g) (Riemann-Roch) is easily
computable.

Note: If h1(V ) ≈ 0, then h0(V ) ≈ χ(V ).

Fact
Attached to P is a rank 2 vector bundle E such that V is
“basically built from”

Sym2(E ) and Sym4(E )

(corresponding to binary quadratic form and binary quartic
form in previous equation for C)
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Computing h0(V), II
Fix P/B, a P(1, 2, 1)-bundle. Goal: Show h1(V ) ≈ 0.

Fact (“doing enough AG let’s you better understand E ”)
Say C has ‘at worst rational singularities’ (= ‘is minimal’). One
can compute E using data on a desingularization X of C. Some
intersection theory on X allows one to show that E is “almost
semistable,” unless C corresponds to a trivial/identity Selmer
element.

Output: One uses that V is “built from Sym2(E ) and
Sym4(E )” to ultimately show that

h1(V ) ≤ 8g and so h0(V ) ≈ χ(V ),

at least for P’s (so also V ’s) attached to non-trivial Selmer
elements. This let’s one count (“non-trivial”) C’s, so counts
C ’s, and so count 2-Selmer elements.
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Some hiccups to watch out for

▶ One also needs to compute the denominator, i.e. count
elliptic curves /K .

Theorem (A. ’23)
For any ε > 0,∑

E : ht(E)=d

1
#Aut(E )

∼ #Pic0(B)
q10d+2(1−g)

(q − 1)ζB(10) as d ! ∞

(one also gets an explicit second order term).

▶ Elliptic curves with non-trivial 2-torsion turn out to appear
differently in the Selmer count, so one wants to show they
don’t contribute to the average anyways.

▶ This is not too bad if charK ≥ 3, but turns out to be
more subtle if charK = 2.
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Summary
▶ We bounded the average rank of elliptic curves over

arbitrary global function fields (including small
characteristic).

▶ This completed the proof that this average rank is finite
for any global field.

▶ The proof involved first bounding the average size of
2-Selmer, primarily by relating 2-Selmer elements to
certain integral models of double covers of P1.

▶ Such integral models can be counted by using tools from
algebraic geometry, e.g. facts about vector bundles on
curves and the theory of rational singularities.

Thank you!
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