MODULARITY SEMINAR: TAYLOR-WILES DEFORMATIONS

KENTA SUZUKI

Abstract

We will closely follow [Gee22, §3], and go through some explicit computations of local deformation rings, in the setting $\ell \neq p$ (i.e., p-adic representations of ℓ-adic Galois groups).

Let $p \neq \ell$, let K / \mathbb{Q}_{ℓ} be a finite extension, and let L / \mathbb{Q}_{p} be an algebraic extension. Suppose $\bar{\rho}: G_{K} \rightarrow \mathrm{GL}_{n}\left(k_{L}\right)$ is a representation, and let χ be a character $G_{K} \rightarrow \mathcal{O}_{L}^{\times}$, i.e., a character $G_{K}^{\text {ab }} \simeq \widehat{K^{\times}}$. Recall that our goal is to characterize $R_{\bar{\rho}, \chi}^{\square}$, which we recall is the representing object of the functor

$$
\begin{aligned}
\mathcal{R}_{\bar{\rho}, \chi}: \mathcal{C}_{\mathcal{O}_{L}} & \rightarrow \text { Sets } \\
\left(A, \mathfrak{m}_{A}\right) & \mapsto\left\{\begin{array}{c}
\text { continuous representations } \rho: G_{K} \rightarrow \mathrm{GL}_{2}(A) \\
\text { such that } \bar{\rho}=\rho \text { mod } \mathfrak{m}_{A} \text { and } \operatorname{det}(\rho)=\chi
\end{array}\right\} .
\end{aligned}
$$

The full deformation ring has several irreducible components, and to extract each component, we control what the p-adic representation $G_{K} \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{Q}}_{p}\right)$ looks like, for each homomorphism $A \rightarrow \overline{\mathbb{Q}}_{p}$. Each Galois representation $G_{K} \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{Q}}_{p}\right)$ can be described in a more combinatorial way, a Weil-Deligne representation, by Grothendieck's monodromy theorem.

More precisely, Grothendieck's monodromy theorem defines a map

$$
\left\{\text { continuous representations } G_{K} \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{Q}}_{p}\right)\right\} \rightarrow\{\text { inertial WD-type }\},
$$

and for each inertial WD-type τ we consider the deformation problem

$$
\begin{aligned}
\mathcal{R}_{\bar{\rho}, \chi, \tau}: \mathcal{C}_{\mathcal{O}_{L}} & \rightarrow \text { Sets } \\
\left(A, \mathfrak{m}_{A}\right) & \mapsto\left\{\begin{array}{l}
\text { continuous representations } \rho: G_{K} \rightarrow \mathrm{GL}_{2}(A) \text { such that } \bar{\rho}=\rho \bmod \mathfrak{m}_{A} \\
\text { and } \operatorname{det}(\rho)=\chi, \text { and for all } \psi: A \rightarrow \overline{\mathbb{Q}}_{p}, \psi \circ \rho \text { has inertial WD-type } \tau
\end{array}\right\} .
\end{aligned}
$$

These functors turn out to be representable closed sub-functors, and give rise to all components of $\mathcal{R}_{\bar{\rho}, \chi}^{\square}$.

1. Grothendieck's monodromy theorem

Let $\ell \neq p$ be two primes. Let K / \mathbb{Q}_{p} be a finite extension, with residue field of size q_{K}. We will consider ℓ-adic representations of G_{K}, i.e., a representation into a finite-dimensional L-vector space, where L / \mathbb{Q}_{ℓ} is algebraic.

Definition 1.0.1. Let W_{K} be the Weil group of K. A Weil-Deligne representation of W_{K} on a finite-dimensional L-vector space V is a pair (r, N) where
$r: W_{K} \rightarrow \mathrm{GL}(V)$ is a continuous semisimple representation, and $N: V \rightarrow V$ is an endomorphism, such that for all $\sigma \in W_{K}$,

$$
r(\sigma) N r(\sigma)^{-1}=q_{K}^{-v_{K}(\sigma)} N .
$$

A Weil-Deligne representation is bounded if for all $\sigma \in W_{K}$ the operator $r(\sigma)$ is bounded, i.e., the determinant is in \mathcal{O}_{L}^{\times}and the characteristic polynomial is in $\mathcal{O}_{L}[X]$ (equivalently, all of the eigenvalues are in $\mathcal{O}_{\bar{L}}^{\times}$).

Now recall Grothendieck's monodromy theorem ([Gee22, Prop 2.18], [BH06, Thm 32.5], [ST68]):
Proposition 1.0.2. Suppose $\ell \neq p$, let K / \mathbb{Q}_{ℓ} be a finite extension, let L / \mathbb{Q}_{p} be an algebraic extension, and let V be a finite-dimensional L-vector space. Fix:

- φ, a lift of Fr_{K}; and
- a compatible system $\left(\zeta_{m}\right)_{(m, \ell)=1}$ of primitive roots of unity.

Then for any continuous representation $\rho: G_{K} \rightarrow \mathrm{GL}(V)$ there is a finite extension K^{\prime} / K and a uniquely determined nilpotent endomorphism $N: V \rightarrow V$ such that for all $\sigma \in I_{K^{\prime}}$,

$$
\rho(\sigma)=\exp \left(N t_{\zeta, p}(\sigma)\right),
$$

where for all $\sigma \in W_{K}$, we have $\rho(\sigma) N \rho(\sigma)^{-1}=q_{K}^{-v_{K}(\sigma)} N$, where t_{ζ} is an isomorphism $I_{K} / P_{K} \simeq \prod_{p \neq \ell} \mathbb{Z}_{p}$.

Moreover, there is an equivalence of categories:
$\left\{\begin{array}{c}\text { continuous representations of } G_{K} \text { on } \\ \text { finite-dimensional L-vector spaces }\end{array}\right\} \simeq\left\{\begin{array}{c}\text { bounded Weil-Deligne representations } \\ \text { on finite dimensional L-vector spaces }\end{array}\right\}$ $\rho \mapsto(V, r, N)$,
where $r(\tau):=\rho(\tau) \exp \left(-t_{\zeta, p}\left(\varphi^{-v_{K}(\tau)} \tau\right) N\right)$.
Grothendieck's theorem allows us to define the inertial WD-type of a representation $\rho: G_{K} \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{Q}}_{p}\right)$:

Definition 1.0.3. Let $\rho: G_{K} \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{Q}}_{p}\right)$ be a continuous representation, and let (r, N) be the associated Weil-Deligne representation. The inertial WD-type of ρ is $\left(\left.r\right|_{I_{F}}, N\right)$.

Now, fix a $\bar{\rho}: G_{K} \rightarrow \mathrm{GL}_{2}\left(k_{L}\right)$. Then we have the following general result on $R_{\bar{\rho}, \chi}^{\square}$ [Gee22, Thm 3.31]:
Theorem 1.0.4. $R_{\bar{\rho}, \chi}^{\square}$ is equidimensional of Krull dimension 4, and the generic fiber $R_{\bar{\rho}, \chi}^{\square}$ has Krull dimension 3. Furthermore:
(a) The function which takes a \mathbb{Q}_{p}-points $x: R_{\bar{\rho}, \chi}^{\square}[1 / p] \rightarrow \overline{\mathbb{Q}}_{p}$ to $\left.W D\left(x \circ \rho^{\square}\right)\right|_{I_{K}}$ (forgetting N) is constant on the irreducible components of $R_{\bar{\rho}, \chi}^{\square}[1 / p]$
(b) The irreducible components of $R_{\bar{\rho}, \chi}^{\square}[1 / p]$ are all regular, and there are only finitely many of them.

Now, we can define the deformation ring with fixed inertial WD type:

Proposition-Definition 1. Let τ be an inertial WD-type. Then $R_{\bar{\rho}, \chi}^{\square}$ has a unique reduced p-torsion free quotient $R_{\bar{\rho}, \chi, \tau}^{\square}$ such that for a continuous homomorphism $\psi: R_{\bar{\rho}, \chi}^{\square} \rightarrow \overline{\mathbb{Q}}_{p}$, i.e., a Galois representation $\psi \circ \rho^{\square}: G_{K} \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{Q}}_{p}\right)$, the following are equivalent:

- $\psi \circ \rho^{\square}$ has inertial WD-type τ
- the homomorphism ψ factors through $R_{\bar{\rho}, \chi, \tau}{ }^{\text {. }}$

In other words,
$\mathcal{R}_{\bar{\rho}, \chi, \tau}^{\square}: \mathcal{C}_{\mathcal{O}_{L}} \rightarrow$ Sets
$\left(A, \mathfrak{m}_{A}\right) \mapsto\left\{\begin{array}{c}\text { continuous representations } \rho: G_{K} \rightarrow \mathrm{GL}_{2}(A) \text { such that } \bar{\rho}=\rho \bmod \mathfrak{m}_{A} \\ \text { and } \operatorname{det}(\rho)=\chi, \text { and for all } \psi: A \rightarrow \overline{\mathbb{Q}}_{p}, \psi \circ \rho \text { has inertial WD-type } \tau\end{array}\right\}$.
is a closed sub-functor of $\mathcal{R}_{\bar{\rho}, \chi}^{\square}$. When $R_{\bar{\rho}, \chi, \tau}^{\square}$ is nonzero it has Krull dimension 4.
Proof. We will prove that $\mathcal{R}_{\bar{\rho}, \chi, \tau}^{\square}$ is a closed sub-functor. It suffices to check the following: let $\left(A, \mathfrak{m}_{A}\right) \in \mathcal{C}_{\mathcal{O}_{L}}$ be geometrically irreducible, and let $\psi, \psi^{\prime}: A \rightarrow \overline{\mathbb{Q}}_{p}$ be two homomorphisms. Then, $\psi \circ \rho$ and $\psi^{\prime} \circ \rho$ have isomorphic restrictions to I_{F} (hence have the same inertial WD-type).

Now, the restriction of ρ to I_{F} factors through some finite group H, say of order m. Then let $E:=A[1 / p] \otimes_{L} L\left(\zeta_{m}\right)$, which is still an integral domain. Now we see that $\psi \circ \rho$ and $\psi^{\prime} \circ \rho$ have the same trace, hence are isomorphic as H-representations.

In the following sections, we will go through some particular examples of these deformation rings.

2. Taylor-Wiles deformations

Now, suppose $\bar{\rho}: G_{K} \rightarrow \mathrm{GL}_{n}\left(k_{L}\right)$ is unramified, that $\bar{\rho}\left(\operatorname{Fr}_{K}\right)$ has distinct eigenvalues in k_{L}, that $q_{K} \equiv 1(\bmod p)$, and let χ be an unramified character $G_{K} \rightarrow \mathcal{O}_{L}^{\times}$, i.e., a character of $G_{K}^{\mathrm{ab}} \simeq \widehat{K^{\times}}$. Our goal is to characterize $R_{\bar{\rho}, \chi}^{\square}$, which we recall is the representing object of the functor

$$
\begin{aligned}
\mathcal{R}_{\bar{\rho}, \chi}: \mathcal{C}_{\mathcal{O}_{L}} & \rightarrow \text { Sets } \\
\left(A, \mathfrak{m}_{A}\right) & \mapsto\left\{\begin{array}{c}
\text { continuous representations } \rho: G_{K} \rightarrow \mathrm{GL}_{2}(A) \\
\text { such that } \bar{\rho}=\rho \bmod \mathfrak{m}_{A} \text { and } \operatorname{det}(\rho)=\chi
\end{array}\right\} .
\end{aligned}
$$

The following is [Gee22, Lemma 3.33]:
Lemma 2.0.1. Let $q_{K}-1$ be exactly divisible by p^{m}, with $m>0$. Then

$$
R_{\bar{\rho}, \chi}^{\square} \simeq \mathcal{O}_{L}[[x, y, a, s]] /\left((1+s)^{p^{m}}-1\right) .
$$

Furthermore, if $\varphi \in G_{K}$ is a lift of Fr_{K}, then $\rho^{\square}(\varphi)$ is conjugate to a diagonal matrix.

Proof. First of all, ρ^{\square} is tamely ramified, i.e., $\rho^{\square}\left(P_{K}\right)=\{1\}$, since $\rho^{\square}\left(P_{K}\right)$ is a pro-ℓ-subgroup of the pro- p-group $\operatorname{ker}\left(\mathrm{GL}_{2}\left(R_{\bar{\rho}, \chi}\right) \rightarrow \mathrm{GL}_{2}\left(k_{L}\right)\right)$. Now let $\varphi \in G_{K} / P_{K}$
be a fixed lift of Fr_{K}, and let σ be a topological generator of I_{K} / P_{K}, which can be chosen so

$$
\varphi^{-1} \sigma \varphi=\sigma^{q_{K}}
$$

Remark 2.0.2. The importance of φ and ρ come from the following: G_{K} / P_{K} is topologically generated by φ and ρ, with the only relation $\varphi^{-1} \sigma \varphi=\sigma^{q_{K}}$.

Write

$$
\bar{\rho}(\varphi)=\left(\begin{array}{cc}
\bar{\alpha} & \\
& \bar{\beta}
\end{array}\right)
$$

for $\alpha, \beta \in k_{K}$.
Now, let $\left(A, \mathfrak{m}_{A}\right) \in \mathcal{C}_{\mathcal{O}_{L}}$ and let $\rho: G_{K} \rightarrow \mathrm{GL}_{2}(A)$ be a lift of $\bar{\rho}$. Then by Hensel's lemma, there are $a, b \in \mathfrak{m}_{A}$ such that $\rho(\varphi)$ has characteristic polynomial $(X-(\alpha+a))(X-(\beta+b))$, i.e., $\rho(\varphi)$ has eigenvalues $\alpha+a$ and $\beta+b$. Since the determinant is $\chi(\varphi)$, we have $\beta+b=\chi(\varphi) /(\alpha+a)$. Moreover, the eigenvectors $\binom{1}{0}$ and $\binom{0}{1}$ of $\bar{\rho}(\varphi)$ lift to eigenvectors:

$$
\begin{aligned}
& \rho(\varphi)\binom{1}{x}=(\alpha+a)\binom{1}{x} \\
& \rho(\varphi)\binom{y}{1}=(\beta+b)\binom{y}{1},
\end{aligned}
$$

where $x, y \in \mathfrak{m}_{A}$.
Let ρ^{\prime} be ρ but with a change of basis, i.e., by the conjugation of ρ by $\left(\begin{array}{ll}1 & y \\ x & 1\end{array}\right)$. Thus $\rho^{\prime}(\varphi)=\left(\begin{array}{cc}\alpha+a & \\ & \beta+b\end{array}\right)$. Now, since $\bar{\rho}(\varphi)=1$ since $\bar{\rho}$ is unramified, so there are $s, t, u, v \in \mathfrak{m}_{A}$ such that

$$
\rho^{\prime}(\sigma)=\left(\begin{array}{cc}
1+s & t \\
u & 1+v
\end{array}\right) .
$$

Since

$$
\rho^{\prime}(\varphi)^{-1} \rho^{\prime}(\sigma) \rho^{\prime}(\varphi)=\rho^{\prime}(\sigma)^{q_{K}}
$$

is a diagonal matrix, we see $t=u=0$. Moreover, since the determinant of $\rho^{\prime}(\sigma)$, which is $\chi(\sigma)$, is 1 , we have $(1+s)(1+v)=1$.

The commutator relation further implies that $(1+s)^{q_{K}}=1+s$. Since $1+s$ is invertible, we see that $(1+s)^{q_{K}-1}=1$. Now recall that $q_{K}-1=p^{m} j$ where j is coprime to p. Since $1+s \in 1+\mathfrak{m}_{A}$ where $1+\mathfrak{m}_{A}$ is a pro- p group, the j-th power map is invertible, and hence $(1+s)^{p^{m}}=1$.

All the above arguments have produced a bijection:

$$
\begin{aligned}
\mathcal{R}_{\bar{\rho}, \chi}^{\square}\left(A, \mathfrak{m}_{A}\right):=\left\{\begin{array}{c}
\text { continuous representations } \rho: G_{K} \rightarrow \mathrm{GL}_{2}(A) \\
\text { such that } \bar{\rho}=\rho \bmod \mathfrak{m}_{A} \text { and } \operatorname{det}(\rho)=\chi
\end{array}\right\} & \simeq\left\{(x, y, a, s) \in \mathfrak{m}_{A}^{4}:(1+s)^{p^{m}}=1\right\} \\
\rho_{(x, y, a, s)} & \leftarrow(x, y, a, s),
\end{aligned}
$$

where

$$
\begin{aligned}
\rho(\varphi) & =\left(\begin{array}{ll}
1 & y \\
x & 1
\end{array}\right)^{-1}\left(\begin{array}{cc}
\alpha+a & \\
& \chi(\varphi) /(\alpha+a)
\end{array}\right)\left(\begin{array}{ll}
1 & y \\
x & 1
\end{array}\right) \\
\rho(\sigma) & =\left(\begin{array}{ll}
1 & y \\
x & 1
\end{array}\right)^{-1}\left(\begin{array}{ll}
1+s & \\
& (1+s)^{-1}
\end{array}\right)\left(\begin{array}{ll}
1 & y \\
x & 1
\end{array}\right) .
\end{aligned}
$$

3. Taylor's Ihara avoidance DEFORMATIONS

Now, a natural question is:
Question 3.0.1. What happens when $\bar{\rho}\left(\mathrm{Fr}_{K}\right)$ has an eigenvalue with multiplicity?
Of course, it suffices to treat the case when $\bar{\rho}$ is trivial (since one can twist by a central character). Thus, to recap, our assumptions now are:

- K / \mathbb{Q}_{ℓ} is a finite extension
- $\bar{\rho}: G_{K} \rightarrow \mathrm{GL}_{2}\left(k_{L}\right)$ is the trivial representation
- $q_{L} \equiv 1(\bmod p)$
- χ is unramified, and $\bar{\chi}=1$.

Now, again ρ^{\square} is tamely ramified, so ρ^{\square} is determined by $\rho^{\square}(\sigma)$ and $\rho^{\square}(\varphi)$, by Remark 2.0.2.

Now, let us make the following definition:
Definition 3.0.2. (1) Let $\mathcal{P}_{\text {ur }}$ be the minimal ideal of $R_{\bar{\rho}, \chi}^{\square}$ such that $\rho^{\square}(\sigma)=I_{2}$ $\left(\bmod \mathcal{P}_{\text {ur }}\right)$. In other words, writing $\rho^{\square}(\sigma)=\left(\begin{array}{cc}1+x & y \\ z & 1+w\end{array}\right)$ for $x, y, z, w \in$ $\mathfrak{m}_{\bar{\rho}, \chi}$, we let $\mathcal{P}_{\mathrm{ur}}=(x, y, z, w) \subset \mathfrak{m}_{\bar{\rho}, \chi}^{\square}$.
(2) For any root of unity $\zeta \in \mathcal{O}_{K}^{\times}$, let \mathcal{P}_{ζ} be the minimal ideal of $R_{\bar{\rho}, \chi}^{\square}$ modulo which $\rho^{\square}(\sigma)$ has characteristic polynomial $(X-\zeta)\left(X-\zeta^{-1}\right)$. In other words, $\mathcal{P}_{\zeta}=\left(\operatorname{tr} \rho^{\square}(\sigma)-\zeta-\zeta^{-1}, \operatorname{det} \rho^{\square}(\sigma)-1\right)$.
(3) Let \mathcal{P}_{m} be the minimal ideal of $R_{\bar{\rho}, \chi}^{\square}$ modulo which $\rho^{\square}(\sigma)$ has characteristic polynomial $(X-1)^{2}$, and $q_{K}\left(\operatorname{tr} \rho^{\square}(\sigma)\right)^{2}=\left(1+q_{K}\right)^{2} \operatorname{det} \rho^{\square}(\varphi)$.
Write $R_{\bar{\rho}, \chi, \bullet}^{\square}$ for $R_{\bar{\rho}, \chi}^{\square} / \mathcal{P}_{\bullet}$.
Remark 3.0.3. The relation in (3) holds in particular when $\rho^{\square}(\sigma)=\left(\begin{array}{ll}1 & 1 \\ & 1\end{array}\right)$.
The ideals defined above have nice ring-theoretic properties:
Proposition 3.0.4. The minimal primes of $R_{\bar{\rho}, \chi}^{\square}$ are precisely $\sqrt{\mathcal{P}_{\mathrm{ur}}}, \sqrt{\mathcal{P}_{m}}$, and $\sqrt{\mathcal{P}_{\zeta}}$ for $\zeta \neq 1$. Moreover, $\sqrt{\mathcal{P}_{1}}=\sqrt{\mathcal{P}_{\text {ur }}} \cap \sqrt{\mathcal{P}_{m}}$.

Now, we have [Gee22, Theorem 3.38]:
Theorem 3.0.5. We have $R_{\bar{\rho}, \chi, 1}^{\square} / \lambda=R_{\bar{\rho}, \chi, \zeta}^{\square} / \lambda$. Furthermore,
(1) If $\zeta \neq 1$ the $R_{\bar{\rho}, \chi, \zeta}^{\square}[1 / p]$ is geometrically irreducible of dimension 3
(2) $R_{\bar{\rho}, \chi, \text { ur }}$ is formally smooth over \mathcal{O}_{L} (and thus geometrically irreducible) of relative dimension 3
(3) $R_{\bar{\rho}, \chi, m}^{\square}[1 / p]$ is geometrically irreducible of dimension 3 .
(4) $\operatorname{Spec} R_{\bar{\rho}, \chi, 1}^{\square}=\operatorname{Spec} R_{\bar{\rho}, \chi, \operatorname{ur}}^{\square} \cup \operatorname{Spec} R_{\bar{\rho}, \chi, m}^{\square}$ and $\operatorname{Spec} R_{\bar{\rho}, \chi, 1}^{\square} / \lambda=\operatorname{Spec} R_{\bar{\rho}, \chi, \operatorname{ur}}^{\square} / \lambda \cup$ $\operatorname{Spec} R_{\bar{\rho}, \chi, \mathrm{m}}^{\square} / \lambda$ are both a union of two irreducible components, and have relative dimension 3 .

References

[BH06] Colin J. Bushnell and Guy Henniart, The local Langlands conjecture for GL(2), Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 335, Springer-Verlag, Berlin, 2006. MR 2234120
[Gee22] Toby Gee, Modularity lifting theorems, Essent. Number Theory 1 (2022), no. 1, 73-126. MR 4573253
[ST68] Jean-Pierre Serre and John Tate, Good reduction of abelian varieties, Ann. of Math. (2) 88 (1968), 492-517. MR 236190
M.I.T., 77 Massachusetts Avenue, Cambridge, MA, USA

Email address: kjsuzuki@mit.edu

