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Abstract. We will cover the statement of the Local Langlands Correspondence and solvable base
change. These will be used in the proof of the Langlands-Tunnell theorem, which produces a
automorphic cuspidal representation from a solvable Galois representation.

1. Introduction

For a number field F , let ΓF denote the absolute Galois group. The goal for the next two talks
will be to prove the following:

Theorem 1.0.1 ([CSS97, pg 192]). Suppose F is a number field and suppose σ : ΓF → GL2(C) is an
irreducible representation with solvable image. Then there exists a unique irreducible automorphic
cuspidal representation π(σ) =

⊗
πv of GL2(AF ) such that

tr(σ(Frv)) = tr(tπv)

for almost every place v of F .

Here, tπv is the Satake parameter of the unramified representation πv, to be defined in §2. Our
goal is to review Local Langlands, and state solvable base change, which is a key ingredient in the
proof.

2. Local Langlands conjectures

2.1. For GLn. Let Fv be a non-archimedean local field of characteristic zero, i.e., a finite extension
of Qp. Let WFv be the Weil group of Fv, i.e., the pre-image of Z under the surjection ΓFv →
Gal(F unr/F ) ≃ Ẑ. Let the Weil-Deligne group of Fv be WFv ⋉ C, where a Frobenius lift in WFv

acts on C by multiplication by qv, the size of the residue field of Fv. It has a homomorphism
valFv : WFv → Z sending a Frobenius lift to 1.

Remark 2.1.1. Some people define the Weil-Deligne group to be WFv ×C or WFv ×SL2(C). These
definitions are all equivalent by the Jacobson-Morosov theorem.

Then the Local Langlands Correspondence for GLn, proved by [HT01], [Hen00], and [Sch13] is a
bijection:1

(2.1.2)

IrrGLn(Fv) :=

{
irreducible smooth represen-
tations of GLn(Fv) over C

}
≃ Φn(WFv) :=


n-dimensional representations ρ of
WDFv such that ρ|WFv

is semisim-
ple and ρ|C is algebraic


satisfying compatibility with parabolic induction, central characters, etc. Denote the correspon-
dence as π 7→ ρπ.

Example 2.1.3. Consider the vector space V of smooth functions on P1
Fv
. Then since GL2(Fv)

acts on P1
Fv
, it becomes a smooth representation of GL2(Fv). It has a subspace 1 consisting of

1For a proof when n = 2, see [BH06].
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constant functions, and the quotient V/1 is irreducible, called the Steinberg representation. The
L-parameter is given by:

WF ⋊C → GL2(C)

(w, 0) 7→
(
∥w∥1/2

∥w∥−1/2

)
(1, x) 7→

(
1 x

1

)
.

The Local Langlands Correspondence translates properties of representations of GLn(Fv) to
properties of representations of WDFv in the following way [Bor79]:

Proposition 2.1.4. Let π be a smooth irreducible representation of GLn(Fv), and let ρπ : WDFv →
GLn(C) be its Langlands parameter. Then the following hold:

(1) π is tempered if and only if the image of ρπ|WF
is bounded

(2) π is square-integrable modulo center if and only if ρπ is irreducible
(3) π is supercuspidal if and only if ρπ|WF

is irreducible.

For unramified representations of GLn(Fv), the correspondence is particularly simple:

Definition 2.1.5. An irreducible smooth representation π of GLn(Fv) is unramified if π has a
GLn(ov)-invariant vector.

The Satake correspondence is a bijection between subsets of IrrGLn(Fv) and Φn(WFv), compat-
ible with the Local Langlands Correspondence (and much easier!):

(2.1.6)

{
unramified representations of
GLn(Fv) over C

}
≃ Sn\(C×)n.

Here, (z1, . . . , zn) ∈ Sn\(C×)n is viewed as a n-dimensional representations of WDFv by

WDFv → GLn(C)

(w, x) 7→ diag(z
valFv (w)
1 , . . . , z

valFv (w)
n ).

Thus, (2.1.6) can be re-written to resemble the general Local Langlands Correspondence:

(2.1.7)

{
unramified representations of
GLn(Fv) over C

}
≃

{
representations of WDFv triv-
ial on C and the inertia IFv

}
.

Given a n-tuple (z1, . . . , zn) ∈ Sn\(C×)n, let

Bn = {(xij)ni,j=1 ∈ GLn(Fv) : xij = 0 for i > j}

be the Borel subgroup of GLn(Fv), the subgroup of upper triangular n×n-matrices. Then (z1, . . . , zn)
defines a character χ : Bn → C× by:

χ(xij)
n
i,j=1 := z

valFv (x11)
1 · · · zvalFv (xnn)

n ,

where valFv : F
×
v → Z is the valuation. Then the normalized parabolic induction of χ, denoted

iGBχ, is such that (iGBχ)
GLn(oF ) is 1-dimensional, hence has a unique unramified subquotient. The

subquotient is moreover independent of the order of the zi’s, hence realizes the map from the right
to left in (2.1.6). To go from the left to the right, we take eigenvalues of certain Hecke operators
on the representation, and we denote the correspondence by πv 7→ tπv .
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2.2. Compatibility with Global Langlands. We saw last week that the Global Langlands
Conjecture predicts a bijection between cuspidal automorphic representations of GLn(A) which
are algebraic at ∞ and n-dimensional representations of the motivic Galois group MQ. There
should be a map WDQp → MQ, making the following diagram commute:

cuspidal automorphic repre-
sentations π =

⊗
p πp ⊗ π∞ of

GLn(AQ) such that π∞ is al-
gebraic


{
n-dimensional representations of
MQ

}

{
irreducible smooth represen-
tations of GLn(Qp)

} 
n-dimensional representations ρ of
WDFv such that ρ|WFv

is semisim-
ple and ρ|C is algebraic

 .

Global Langlands

π 7→πp

restriction

Local Langlands

3. Base change

3.1. The local picture. Let Ev/Fv be a finite extension with ramification degree e and unramified
degree f . Then there is an embedding ι : WEv ↪→ WFv with a commutative diagram

WEv WFv

Z Z,

ι

valEv valFv

f

where f is the unramified degree of Ev/Fv, i.e., the degree of the extension of the residue field
kEv/kFv . The commuattive diagram induces an inclusion

WDEv ↪→ WDFv

(w, x) 7→ (ι(w), x),

since (ad ι(w))x = q
valFv (ι(w))
Fv

x = q
fvalEv (w)
Fv

x = (ad w)x for all x ∈ C. This gives a map Φn(WFv) →
Φn(WEv). Under the local Langlands correspondence, we have a map

IrrGLn(Fv) Φn(WFv)

IrrGLn(Ev) Φn(WEv).

∼

BCEv/Fv res
WFv
WEv

∼

Remark 3.1.1. In fact, we can be more precise about the image of BCEv/Fv
. The Galois group

Gal(Ev/Fv) acts on IrrGLn(Ev) in the obvious way, by pre-composition, denoted by Π 7→ Πσ,2

and on Φn(WEv) by conjugation on WEv . Since the Local Langlands correspondence is equivariant
under this action, we expect the representation BCEv/Fv

(π) ∈ IrrGLn(Ev) to satisfy BCEv/Fv
(π)σ ≃

BCEv/Fv
(π) for any σ ∈ Gal(Ev/Fv).

Example 3.1.2. When π is an unramified representation of GLn(Fv), with Satake parameter
tπ ∈ Sn\(C×)n, the base-change lift Π is an unramified representation of GLn(Ev), with Satake

parameter tfπ.

Thus, we may ask whether there exists a purely representation-theoretic characterization/construction
of the map IrrGLn(Fv) → IrrGLn(Ev). When Ev/Fv, such a characterization was given by [AC89]
for cyclic extensions, and was boot-strapped in [CR21] to deal with all solvable extensions Ev/Fv.

2Given Π: GLn(Ev) → GL(V ), let Πσ(g) := Π(gσ)
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We will describe the characterization explicitly, when Ev/Fv is a cyclic extension of local fields.
Throughout the rest of the section, let Ev/Fv be cyclic of degree d and let σ be a generator of the
Galois group Gal(Ev/Fv).

To describe the characterization, we make some preliminary definitions. First, let Π be a smooth
irreducible representation of GLn(Ev) such that Πσ ≃ Π (i.e., Π satisfies the conditions of Re-
mark 3.1.1.) We hope to use the intertwining operator Iσ : Π

σ ≃ Π to characterize base change,
but there is no obvious choice for such an isomorphism. One “obvious” requirement we can ask for
is that

Iσ ◦ Iσσ · · · ◦ Iσd−1

σ = 1Π,

where Iσ
i

σ is the isomorphism Πσi+1 ≃ Πσi
induced by Iσ. However, this still leaves an ambiguity of a

d-th root of unity. [AC89] cleverly solves this problem when Π is generic3 by requiring compatibility
with the unique Whittaker model (which can be chosen to be Gal(Ev/Fv)-invariant).

Definition 3.1.3 ([AC89, §1]). For x ∈ GLn(Ev), let Nx be the conjugacy class of GLn(Fv) which

is conjugate to xxσ · · ·xσd−1
in GLn(Ev). We will say that x ∈ GLn(Ev) is σ-semisimple if Nx is

semisimple.

The following definition is due to Shintani:

Definition 3.1.4 ([AC89, Definition 6.1]). Let Ev/Fv be a finite cyclic extension of local fields,
whose Galois group is generated by σ ∈ Gal(Ev/Fv). Let π be an irreducible smooth representation
of GLn(Fv) and let Π be a representation of GLn(Ev), such that Πσ ≃ Π. Then Π is the base change
lift of π if, for every σ-semisimple g ∈ GLn(Ev),

tr(Π(g)Iσ) = trπ(N g).

Now, [AC89, Theorem 6.2] states:

Theorem 3.1.5. Let π,Π denote irreducible tempered representations of GLn(Fv) and GLn(Ev),
respectively.

(a) Any tempered irreducible representation π of GLn(Fv) has a unique base-change lift Π of
GLn(Ev). The representation Π is tempered.

(b) Conversely, assume Πσ ≃ Π is an irreducible tempered representation of GLn(Ev). Then
there is at least one representation π of GLn(Fv) such that Π is the base-change of π. Here
π is tempered.

3.2. The global picture. Given a finite extension E/F of number fields, we can define base-change
in the following way:

Definition 3.2.1. Let π =
⊗

v πv be a cuspidal automorphic representation of GLn(AF ) and let
Π =

⊗
w Πw be a cuspidal automorphic representation of GLn(AE). Then Π is a base-change lift of

π, denoted BCE/F (π), if for any place v of F and any place w of E lying above it, ρΠw = ρπv |WEw
,

i.e., Πw is a base-change lift of πv.

Let E/F is a cyclic Galois extension with Galois group generated by σ ∈ Gal(E/F ). Again using
the uniqueness of Whittaker models, given a cuspidal automorphic representation Π of GLn(AE)
such that Πσ ≃ Π, we have a canonical choice of an intertwiner Iσ : Π

σ → Π. Now, we again have
a character-theoretic characterization of base-change, again due to Shintani:

Definition 3.2.2. Let π be an automorphic representation of GLn(AF ) and let Π be an automor-
phic representation of GLn(AE) such that Πσ ≃ Π. Then Π is the base-change lift of π if, for every
σ-semisimple g ∈ GLn(AE),

tr(Π(g)Iσ) = trπ(N g).

3i.e., has a non-degenerate Whittaker model.
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Now for global cyclic extensions, we have ([CSS97, §6.1]):

Theorem 3.2.3. (1) Every cuspidal automorphic representation π of GL2(AF ) has a unique
base change lift to GL2(AE). The lift is also cuspidal unless E/F is quadratic

(2) If two cuspidal representations π and π′ of GL2(AF ) have the same base-change lift to E,
then π′ ≃ π⊗ for some character ω of F×NE/F (A

×
E)\A

×
F .

(3) A cuspidal representation Π of GL2(AE) is the base-change lift of some representation π of
GL2(AF ) if and only if Πσ ≃ Π.

Moreover, similar to the local case, base-change lifting can be boot-strapped to solvable exten-
sions.
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