
SERRE’S CONJECTURE

First, I want to set some notation regardingGal(Q/Q). We fix throughout an embedding
Q ↪→ Qℓ for each prime ℓ, yielding a restriction map

Gℓ = Gal(Qℓ/Qℓ) ↪→ Gal(Q/Q).

This is an injection, so we may regard this as a subgroup. By acting on the residue field of
OQℓ

, we may produce a map

Gℓ → Gal(Fℓ/Fℓ).

Define Iℓ, the inertia subgroup, to be the kernel of this map. Inside of Iℓ, there is the wild
inertia Iw : this is the maximal pro-ℓ subgroup. The quotient by Iw is the tame inertia It.
By the initial observation, we can regard these all as sitting inside of Gal(Q/Q).

To motivate Serre’s conjecture, I want to first recall a bit about how modular forms have
Galois representations attached to them. Take k ≥ 2 and N ≥ 1, and let f =

∑
n anq

n

be a weight k normalized cuspidal eigenform in Sk(Γ1(N)) (Γ1(N) consists of matrices
which are unipotent moduloN ). I’ll usually break this up as

Sk(Γ1(N)) =
⊕

ε:(Z/NZ)×→C×

Sk(N, ε)

according to the character ε of (Z/NZ)×.

Letting E = Q(. . . , an, . . .), Deligne constructs a Galois representation

ρf,λ : Gal(Q/Q)→ GL2(Eλ)

for each non-Archimedean prime λ of E. For all primes p not dividing ℓN where ℓ is the
residue characteristic of Eλ, the trace tr(Frobp) recovers ap.

You can pick a model of this Galois representation (via conjugation) such that we have

ρ̃f,λ : Gal(Q/Q)→ GL2(Oλ)

where Oλ is the ring of integers of Eλ. Then, this induces a map to GL2(Oλ/λOλ) ↪→
GL2(Fℓ).

Thus, we see that we have a construction of Galois representations ρ : Gal(Q/Q) →
GL2(Fℓ) arising from modular forms. Note that it doesn’t particularly matter if we do
this in a canonical way.

Let us state precisely the sort of result we get from this. There is a space Sk(N, ε,Z) of
cuspidal modular forms of weight k, level N , nebentype ε with coefficients in Z. Upon
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reduction, we obtain Sk(N, ε,Fℓ). The previous construction associates a mod ℓ Galois
representation ρf to eigenforms f in Sk(N, ε,Fℓ), with the following properties:

• It is semi-simple.

• ρ is unramified outside ofNℓ.

• We have tr(ρ(Frobp)) = ap, p ∤ Nℓ. Here, f =
∑

n anq
n in Sk(N, ε,Fℓ).

• We have det(ρ(Frobp)) = pk−1ε(p).

Is it possible that we produce all irreducible mod ℓGalois representations ρ from as some
ρf ? We can immediately see this is not the case, because there is already a necessary con-
dition that holds for any Galois representations constructed this way: we need to have
det(ρ(c)) = −1, where c denotes complex conjugation.

Lemma 0.1. We have det(ρ(c)) = −1 when ρ arises from a modular form.

Proof. We can actually just figure out what det ρ is in general. Indeed, at Frobenius ele-
ments one compatibility of Deligne’s construction is

det(ρ(Frobp)) = pk−1ε(p)

where ε : (Z/NZ)× → C× is given by f |⟨d⟩ = ε(d)f for a diamond operator ⟨d⟩.

Now Chebatorev density tells us that det ρ : Gal(Q/Q)→ F
×
ℓ is given by χk−1ε where

χ is the mod ℓ cyclotomic character and ε is now interpreted as landing inF
×
ℓ (this makes

sense as before it landed in Oλ). We compose with the mod N cyclotomic character to
get ε : Gal(Q/Q)→ F

×
ℓ .

Then using ε(−1) = (−1)k (by applying the diamond operator ⟨−1⟩ to f ), we see on
this new incarnation of ε the value at c is ε(−1) = (−1)k . Since χ(c) = −1 (it has a
nontrivial value and squares to one), the result follows. □

Thus, we cannot expect to get all mod ℓ Galois representations from modular forms.
Serre’s conjecture says that this is the only real condition.

Conjecture 0.2 (Serre’s conjecture, weak form). Assume that ρ : Gal(Q/Q) →
GL2(Fℓ) is irreducible and odd (ρ(c) = −1). Then ρ is modular.

Here, modular means that we can produce it from the previous construction. We have
already seen enough to produce some small amount of evidence for this: the Langlands-
Tunnell result is enough to prove this for ℓ = 2, 3.
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In fact, Serre made a stronger conjecture which is that you can read off from the Galois
representation an exact minimal level and weight.

Conjecture 0.3 (Serre’s conjecture, strong form). Let ρ be an irreducible and odd
mod ℓ Galois representation. Then ρ is modular, and the associated modular form f
can be chosen to have weight k(ρ) and levelN(ρ).

Remark 0.4. There is a reason I didn’t say anything about the character. If you do
it in the obvious way, there is a counterexample when ℓ = 2 for example.

It was known earlier that these conjectures are in fact equivalent (which is most of what
I will be saying today). Both are now theorems.

What are the optimal level and weight? The recipe for k(ρ) is a bit more complicated,
so we’ll delay this for the moment. The weight N(ρ) is a bit easier to motivate. In the
construction of Galois representations from modular forms, we see already that the rep-
resentation is unramified for all p ∤ Nℓ.

In particular, we expect the optimal level to be of the form of the conductor

N(ρ) =
∏
p ̸=ℓ

pnp(ρ),

where np(ρ) = 0 if ρ is unramified at p and is > 0 otherwise.

The basic idea is that we should then consider what happens locally at p, that is consider
the representation

Gp = Gal(Qp/Qp)→ GL2(Fℓ).

Now letG be the quotient ofGp by the kernel of this representation, which is some finite
Galois group. Then we have a ramification filtration on the finite group G: we have

G = Gp,−1 ⊃ Ip = Gp,0 ⊃ . . . .

Here, the bar denotes that we take the image in GL2(Fℓ). Note that we can’t do this for
all of Gp = Gal(Qp/Qp), since the filtration only makes sense for a finite extension.

It’s natural to then guess that having higher ramification corresponds to np(ρ) being
larger.

Definition 0.5. Set

np(ρ) :=
∑
i≥0

1

[Gp,0 : Gp,i]
dim(V/VGp,i).
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This defines the levelN(ρ), in a way which is fairly natural: the deeper into the ramifica-
tion filtration ker ρ goes, the higher the multiplicity of p inN needs to be. However, it is
non-trivial that we actually get an integer out of this!

The story for k(ρ) is a bit more complicated. We’ll first explicitly study the situations that
can arise for the restriction to inertia when we look at the Galois representation attached
to f =

∑
n anq

n where 2 ≤ k(ρ) ≤ ℓ+ 1.

Theorem 0.6. Assume 2 ≤ k ≤ ℓ + 1 and let f be a cuspidal eigenform of some
levelN .

Assuming aℓ ̸= 0 in f , called the ordinary case, we have

ρf,ℓ|Iℓ =
(
χk−1
ℓ ∗
0 1

)
by a result of Deligne.

If aℓ = 0, or the supersingular case, Fontaine gives a different description. Namely,
we have

ρf,ℓ|Iℓ =
(
ψk−1 0
0 ϕk−1

)
where ψ and ϕ are two fundamental characters of level two.

The tame inertia can be identified with lim←−F×
ℓn , since it is generated by the extensions

Qnr
ℓ ( n
√
ℓ) for n not divisible by ℓ. These each have Galois group µn over Qnr

ℓ ; we can
therefore identify tame inertia with lim←−F×

ℓn , where the maps in the inverse limit are the
norm maps.

A fundamental character of level n is a representation on the tame inertia

It = lim←−F×
ℓn → Fℓ

of Gℓ given by projecting down to F×
ℓn ⊆ Fℓn and using one of the n field embeddings

into Fℓ. We can of course trivially extend to Gℓ ⊇ It and then to GQ = Gal(Q/Q).

Remark 0.7. From a modern viewpoint, these results are coming from the fact that
ρf is crystalline when ℓ is prime to the level: when we’re in the ordinary case, we can
read off from p-adic Hodge theory that the Hodge-Tate weights are {0, k− 1}. If ρf
is reducible mod ℓ, results of Berger for two-dimensional crystalline representations
tell us that we get exactly the form Deligne says.
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Precisely, Berger’s result tells us that for a two dimensional crystalline representation
which is reducible modulo ℓ, we have

V ≃ χrξ1 ⊕ ξ2
for unramified characters χ1, χ2 and the Hodge-Tate weights are {0, r}.

The main strategy will be to try to reduce to these cases with twists by a cyclotomic char-
acter. When we are already in this case, we can see the following definition is then well-
motivated:

Definition 0.8. If ρ already lands in one of these cases, then define k(ρ) = k.

Now, we’ll want to see how to do the reduction so we can get a general formula. This
begins by studying how Katz’s Θ operator interacts with the Galois representation.

Theorem 0.9. Let Θ = q d
dq
, so we get a map

Θ : Sk(N, ε,Fℓ)→ Sk+ℓ+1(N, ε,Fℓ).

If f ∈ Sk(N, ε,Fℓ) is a normalized eigenform, the Galois representation associated
to Θ(f) is given by

ρΘ(f) = χℓ ⊗ ρf .

In particular, we can produce modular forms realizing all higher twists usingΘ. One can
check this by verifying the Frobenius traces and determinants are the same, and then using
that this determines the representation if it is semisimple.

Edixhoven proved the following result:

Theorem 0.10 (Edixhoven). Let f ∈ Sk(N, ε,Fℓ) be an eigenform. Then there
exists another eigenform g ∈ Sk′(N, ε,Fℓ) where 2 ≤ k′ ≤ ℓ + 1 such that f
and Θig have the same eigenvalues for all Hecke operators Tp (away from ℓ) and
0 ≤ i ≤ ℓ− 1.

The game is now as follows: we’ll start with some Galois representation ρ, and to guess
k(ρ) we’ll start to look at ρ|Iℓ . Then, we’ll want to figure out how to pull out a twist of a
cyclotomic character to use Edixhoven’s result. Once we do this, we can use the previous
theorem to safely extend k(ρ) from the case where we already mostly understood it.

Let ρℓ := ρ|Gℓ
.
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Lemma 0.11. The wild inertia Iw acts trivially on ρssℓ .

Proof. Because we are semisimplifying, without loss of generality assume we are in the
irreducible case. Let the vector space for the representation be V, which we can assume
is some Fℓi vector space. Because Iw is a pro-ℓ subgroup, when we look at the Iw action
the Fℓi vector space must break into orbits whose sizes are powers of ℓ. Due to the size of
the entire vector space as a finite set, there cannot be just 0 as a fixed point: the number
of orbits of size one must be divisible by ℓ. This means that VIw is nontrivial, hence all of
V by irreducibility. □

Hence, there is only a nontrivial component coming from the tame inertia. As this is
abelian, it splits into characters. We have

ρssℓ |It = ψ ⊕ ϕ

where ψ and ϕ are characters of some level.

Proposition 0.12. Taking the pth power of ρssℓ |It yields a conjugate representation.
We then have

{ψ, ϕ} = {ψp, ϕp}.

It follows there are two cases:

• (1) We have ψ = ϕp and vice versa. Both are of level 2.

• (2) We have ψ = ψp and ϕ = ϕp. Then both characters are of level 1.

Case 1. Let η, η′ be the fundamental characters of level 2. These generate level two char-
acters of It, and so we write

ψ = ηaη′b, ϕ = η′aηb.

Here, 0 ≤ a, b ≤ ℓ− 1.

One can show in this case that ρ is necessarily irreducible, and therefore agrees with the
semisimplification. It follows

ρℓ|Iℓ =
(
ηaη′b 0
0 η′aηb

)
= χa

ℓ ⊗
(
η′b−a 0
0 ηb−a

)
.

In particular, we reduce to the form in the supersingular case up to a Frobenius twist.
Edixhoven’s result tells us to define

k(ρ) = (b− a+ 1) + a(ℓ+ 1).
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Case 2. This is a bitmore subtle. First, assume that Iw acts trivially. Thenwe have {ψ, ϕ} =
{χa

ℓ , χ
b
ℓ} for 0 ≤ a, b ≤ ℓ− 2. Then

ρℓ|Iℓ =
(
χb
ℓ 0
0 χa

ℓ

)
= χa

ℓ ⊗
(
χb−a
ℓ 0
0 1

)
when we assume without loss of generality that a ≤ b. Then we’ve produced a Galois
representation matching Deligne’s result in the ordinary case up to a twist. We again
define k(ρ) = (b − a + 1) + a(ℓ − 1), except now if a = b = 0 we assign ℓ: we didn’t
attach Galois representations when the weight is 1. We’re allowed to modify by multiples
of ℓ− 1 by looking at the determinant, so the correct thing is ℓ.

If Iw does not act trivially, we are in a bit of trouble. It is now possible for k = ℓ + 1, so
we’ll need to tell apart weight 2 and weight ℓ+ 1 modular forms. We’ll get in general

ρℓ|Iℓ =
(
χβ
ℓ ∗
0 χα

ℓ

)
where 1 ≤ β ≤ ℓ − 1 and 0 ≤ α ≤ ℓ − 2. When β ̸= α + 1, we can proceed
as in the previous subcase to get for a = min(α, β) and b = max(α, β) the weight
k(ρ) = (b− a+1)+ a(ℓ− 1) by pulling out a power of the mod ℓ cyclotomic character.
Otherwise, we need to tell apart weight 2 and ℓ+1. These can be told apart by looking at
the difference in wild ramification, and then we proceed as before: we get 2 if it is finite
flat, and ℓ+ 1 otherwise. The difference is that in weight two we can produce the Galois
representationA[λ] from an abelian variety arising from the Jacobian J1(N). This abelian
variety has a good model, which lets us see the representation is finite flat for p ∤ N .

With this, modulo Edixhoven’s result we have explained how to show a modular mod ℓ
Galois representation arises from a modular form of the minimal weight k(ρ).

Theorem 0.13 (Edixhoven). Assume ρ is a modular mod ℓ Galois representation.
Then it can be chosen to have weight k(ρ).

To finish, I’ll talk a bit about how to get the optimal level once we know this result. Doing
this would show that the strong and weak conjectures are the same.

Proposition 0.14 (Serre). Given some modular mod ℓ representation ρ coming
from a level N and weight k form f , we can produce ρ from a modular form of
level prime toN and the same weight.

With this, we can then reduce to weight 2 ≤ k ≤ ℓ + 1 using Edixhoven’s result: the Θ
operator does not change the level, so it suffices to find the optimal level in only this case.
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We can then further reduce to the weight two case: there is a correspondence for mod ℓ
Galois representations associated to eigenforms

{2 < k ≤ ℓ+ 1, levelN} ↔ {k = 2, level ℓN}.
Note that we have allowed only a single power of ℓ back into the level, and also on the left
side two can be excluded as we are already in weight two in that case. The advantage of
this technique is that the weight two case gives simpler geometry to work with: the Galois
representations in this case can be produced byA[λ], for an abelian varietyA arising from
J1(N). This makes optimizing the level easier.

Carayol showed thatN(ρ)|N . In particular, Carayol reduced it to the following key case:

Theorem 0.15. Let ρ : Gal(Q/Q) → GL2(Fℓ) be a Galois representation that
arises from a weight 2 newform f of level pN , with p ∤ ℓN , and character ε :
(Z/pNZ)× → C×.

Assume that ρ is unramified at p, and that ε factors through the naturalmap (Z/pNZ)× →
(Z/NZ)×. Then ρ arises from a form of levelN .

This is what is called the epsilon conjecture, and was proven by Ribet. If we know all
elliptic curves overQ are modular, this suffices to prove FLT.

References

[Bes15] Alex J Best, Serre’s conjecture.
[Edi97] Bas Edixhoven, Serre’s conjecture, Modular forms and Fermat’s last theorem, Springer, 1997, pp. 209–

242.
[RS99] Kenneth A Ribet and William A Stein, Lectures on serre’s conjectures, Arithmetic algebraic geometry

(Park City, UT, 1999) 9 (1999), 143–232.


	References

