$\mathbf{R} = \mathbf{T}$ for Artin characters

Grant T. Barkley

In previous talks we have discussed the statement of modularity lifting and introduced the $\mathbf{R} = \mathbf{T}$ formalism. The modularity theorem and Taylor–Wiles modularity lifting are both statements about proving modularity of 2-dimensional representations. We discussed how modular forms correspond to automorphic representations of $GL_2(\mathbb{A}_Q)$, and how the modularity theorem is a special case of the Langlands correspondence for GL_2 , which in this case asserts that every Galois representation $Gal(\overline{\mathbb{Q}} \mid \mathbb{Q}) \rightarrow GL_2(\mathbb{Q}_\ell)$ satisfying certain properties should have an associated modular form. Today we will demonstrate the main points of the Taylor–Wiles proof in a simpler setting: we will prove the modularity theorem for GL_1 , or, equivalently, the Kronecker–Weber theorem.

Disclaimer: I am not an expert, and there are likely to be mistakes throughout this note. I have tried to point out some subtleties that I found while learning the material presented here, but their multitude suggests that I have likely missed some. Reader beware! My primary references for the GL₂ side of things are [FLT] and [DDT] from the seminar webpage. Those should be taken as the more definitive source.

1 Between GL₁ and GL₂: a dictionary

1.1 Shimura varieties

1.1.1. Let us recall some setup and context for the GL_2 theory we have discussed so far. We defined the (open) modular variety Y(N) to a variety over Q whose complex points are a quotient space for the action of a congruence subgroup $\Gamma(N)$ on the upper half-plane \mathcal{H} . The (compactified) modular curve X(N) is formed by adding a finite set of cusps to Y(N). The curve Y(N) is a **Shimura variety** for GL₂. This means that its complex points can be realized adelically as the double coset space

$$\Upsilon(N)(\mathbb{C}) = \mathrm{GL}_2(\mathbb{Q}) \setminus \mathcal{H}^{\pm} \times \mathrm{GL}_2(\mathbb{A}_f) / \widehat{\Gamma}(N).$$

Here \mathbb{A}_f denotes the finite adeles of \mathbb{Q} , which are isomorphic to $\widehat{\mathbb{Z}} \otimes \mathbb{Q}$.

1.1.2. For GL₁ we have an analogous story. The open modular variety Y(N) should have complex points which are a nice quotient, and since we will see that Y(N) is already proper over \mathbb{Q} , the compactified modular variety X(N) is the same as Y(N). We can also view the complex points of Y(N) as an adelic double coset space:

$$Y(N)(\mathbb{C}) = \operatorname{GL}_1(\mathbb{Q}) \setminus \{\pm 1\} \times \operatorname{GL}_1(\mathbb{A}_f) / \widetilde{\Gamma}(N).$$

Here \mathbb{Q}^{\times} acts on $\{\pm 1\}$ via the sign representation and $\widehat{\Gamma}(N)$ is the kernel of $\operatorname{GL}_1(\widehat{\mathbb{Z}}) \twoheadrightarrow \operatorname{GL}_1(\mathbb{Z}/N)$. We can actually compute the right-hand side explicitly: each \mathbb{Q}^{\times} coset of $\{\pm 1\} \times \operatorname{GL}_1(\mathbb{A}_f)$ contains a unique element of $\operatorname{GL}_1(\widehat{\mathbb{Z}})$, so the full double quotient is just $\operatorname{GL}_1(\mathbb{Z}/N) = (\mathbb{Z}/N)^{\times}$. This tells us Y(N) is some variety over \mathbb{Q} whose complex points are in bijection with $(\mathbb{Z}/N)^{\times}$. We also want Y(N) to be connected and 0-dimensional. There is a natural candidate: $\operatorname{Spec} \mathbb{Q}(\zeta_N)$. The complex points of this variety are equivalently field embeddings $\mathbb{Q}(\zeta_N) \hookrightarrow \mathbb{C}$. The group $\operatorname{Gal}(\mathbb{Q}(\zeta_N) \mid \mathbb{Q})$ acts simply transitively on these embeddings, so if we pick an embedding $\mathbb{Q}(\zeta_N) \hookrightarrow \mathbb{C}$ then we get an identification

$$(\operatorname{Spec} \mathbb{Q}(\zeta_N))(\mathbb{C}) \cong \operatorname{Gal}(\mathbb{Q}(\zeta_N) \mid \mathbb{Q}) = (\mathbb{Z}/N)^{\times}.$$

Hence we will take $X(N) = Y(N) = \text{Spec } \mathbb{Q}(\zeta_N)$ as our modular variety. This is also the canonical example of a **0-dimensional Shimura variety**.

1.2 Coherent cohomology

1.2.1. For GL₂ we have been interested in the vector space of modular forms of a given weight and level. We saw that weight *k* forms of level *N* live in a tensor power of the Hodge bundle on the universal elliptic curve over X(N). For the modularity of elliptic curves, we are especially interested in the space $S_2(N;\mathbb{C})$ of weight 2 cusp forms of level *N*. (Really those of level $\Gamma_0(N)$, or equivalently those with the correct conductor and nebuntypus, but these differences will be invisible for GL₁.) For a subring *R* of \mathbb{C} , we let $S_2(N;R)$ denote the subset of $S_2(N;\mathbb{C})$ consisting of modular forms whose *q*-expansion has its coefficients living in *R*. Then

$$S_2(N; \mathbb{Q}) = \mathsf{H}^0(X(N), \Omega_{X(N)/\mathbb{Q}}) = \mathsf{H}^1(X(N), \mathcal{O}_{X(N)})^*,$$

where $\Omega_{X(N)}$ is the cotangent/canonical bundle of X(N) and $\mathcal{O}_{X(N)}$ is its structure sheaf. The *q*-expansion principle says that

$$S_2(N;R) = S_2(N;\mathbb{Z}) \otimes R$$

when *N* is a unit in *R* or *R* is flat over \mathbb{Z} . For an appropriate model of *X*(*N*), we also have an identification of these groups with $H^0(X(N)_R, \Omega_{X(N)_R})$. This makes it reasonable to define $S_2(N; R) := S_2(N; \mathbb{Z}) \otimes R$ for any ring *R* satisfying one of those conditions.

1.2.2. For GL₁ we will be interested instead in the cohomology $H^0(X(N), \mathcal{O}_{X(N)})$. Since X(N) = Spec $\mathbb{Q}(\zeta_N)$ is affine, this group is just $\mathbb{Q}(\zeta_N)$ itself. The space of GL₁ cusp forms of level *N* should then be

$$\mathsf{H}^{0}(X(N), \mathcal{O}_{X(N)}) \otimes_{\mathbb{Q}} \mathbb{C} = \mathbb{Q}(\zeta_{N}) \otimes_{\mathbb{Q}} \mathbb{C}.$$

Remark 1.2.3. The group $H^0(X(N), \mathcal{O}_{X(N)})$ is the same as the algebraic de Rham cohomology group $H^0_{dR}(X(N))$. The de Rham comparison theorem tells us that

$$\mathbb{Q}(\zeta_N) \otimes_{\mathbb{Q}} \mathbb{C} = \mathsf{H}^0_{\mathrm{dR}}(X(N)) \otimes_{\mathbb{Q}} \mathbb{C} \cong \mathsf{H}^0_{\mathrm{sing}}(X(N)(\mathbb{C}), \mathbb{C}) = \bigoplus_{\mathbb{Q}(\zeta_N) \hookrightarrow \mathbb{C}} \mathbb{C}.$$

It's a useful exercise to work out what this isomorphism is doing! In the GL₂ setting, the identity is a bit more complicated, since $H^1_{dR}(X(N)) \otimes_{\mathbb{Q}} \mathbb{C}$ is a direct sum of the holomorphic cusp forms $S_2(N;\mathbb{C})$ and the antiholomorphic cusp forms $\overline{S}_2(N;\mathbb{C})$.

GL ₂	GL1
$X(N), Y(N), X_0(N), Y_0(N)$	$X(N) = Y(N) = \operatorname{Spec} \mathbb{Q}(\zeta_N)$
$\Upsilon(N)(\mathbb{C}) = \mathrm{GL}_2(\mathbb{Q}) \setminus \mathcal{H}^{\pm} \times \mathrm{GL}_2(\mathbb{A}_f) / \widehat{\Gamma}(N)$	$\Upsilon(N)(\mathbb{C}) = \mathbb{Q}^{\times} \setminus \{\pm 1\} \times \mathbb{A}_{f}^{\times} / \widehat{\Gamma}(N) = (\mathbb{Z}/N)^{\times}$
$H^0(X(N),\Omega_{X(N)})=S_2(N,\mathbb{Q})$	$S_0(N; \mathbb{C}) = H^0(X(N), \mathcal{O}_{X(N)}) = \mathbb{Q}(\zeta_N)$
$H_1^{\text{\'et}}(X_{N,\overline{\mathbb{Q}}};\mathbb{Q}_\ell)$	$H_{0}^{\text{\'et}}(X_{N,\overline{Q}};Q_{\ell}) = \bigoplus_{Q(\zeta_{N}) \hookrightarrow \overline{Q}} Q_{\ell}$
$T_{p}, \langle p \rangle$	$\langle p angle = \operatorname{Frob}_p$

Table 1: A dictionary between GL₂ objects and GL₁ objects.

1.2.4. Since we will be working with ℓ -adic Galois representations, we will be more interested in the ℓ -adic comparison theorem than the Betti one: picking $\overline{\mathbb{Q}} \hookrightarrow \overline{\mathbb{Q}}_{\ell}$, we have

$$\mathbb{Q}(\zeta_N) \otimes_{\mathbb{Q}} \overline{\mathbb{Q}}_{\ell} = \mathsf{H}^0_{\mathrm{dR}}(X(N)) \otimes_{\mathbb{Q}} \overline{\mathbb{Q}}_{\ell} \cong \mathsf{H}^0_{\mathrm{\acute{e}t}}(X(N)_{\overline{\mathbb{Q}}}, \overline{\mathbb{Q}}_{\ell}) = \bigoplus_{\mathbb{Q}(\zeta_N) \hookrightarrow \overline{\mathbb{Q}}} \overline{\mathbb{Q}}_{\ell}.$$

In the GL₂ case the correct statement requires period rings. We do have as a corollary of it that $S_2(N; \mathbb{C}_\ell)$ is a subspace of $H^1_{\text{ét}}(X(N)_{\overline{\mathbb{Q}}}, \mathbb{C}_\ell)$, which is one entry point into proving the Eichler-Shimura correspondence – namely, it puts cusp forms into a vector space with a Galois action. To describe this more precisely, we will need Hecke operators.

1.3 Hecke operators and automorphic representations

1.3.1. We have previously discussed how to turn a modular form into an automorphic representation. Formally this is accomplished in the following way: consider the Betti cohomology groups $H^1_{sing}(X(N)(\mathbb{C}), \mathbb{C})$ as N varies. Each space comes with an alternating bilinear form from Poincare duality which identifies $S_2(N; \mathbb{C})$ with the dual of $\overline{S}_2(N; \mathbb{C})$. We can rearrange this to give an inner product on $S_2(N;\mathbb{C})$ and $H^1_{sing}(X(N), \mathbb{C})$, the **Petersson inner product**. If N divides N' then pullback along $X(N') \to X(N)$ realizes $H^1(X(N))$ as a subspace of $H^1(X(N'))$. Consider the colimit of Hilbert spaces

$$\mathsf{H}^{1}(X, \mathbb{C}) \coloneqq \operatorname{colim}_{\overrightarrow{N}} \mathsf{H}^{1}_{\operatorname{sing}}(X(N)(\mathbb{C}), \mathbb{C}).$$

Because $GL_2(\mathbb{A})$ acts on the "full Shimura variety" $\varprojlim_N X(N)$, it also acts on the Hilbert space. Each newform generates an irreducible automorphic representation of $GL_2(\mathbb{A})$ in this space.

1.3.2. For each prime *p* there is an object called the called the **spherical Hecke algebra** at *p*, which is the set of compactly supported functions on $GL_n(\mathbb{Z}_p) \setminus GL_n(\mathbb{Q}_p) / GL_n(\mathbb{Z}_p)$, equipped with the convolution product. For GL_2 this algebra is generated by elements T_p and $\langle p \rangle$. For GL_1 the spherical Hecke algebra is generated just by $\langle p \rangle$.

The action of $GL_2(\mathbb{A})$ on $H^1(X, \mathbb{C})$ in particular gives an action of $GL_2(\mathbb{Q}_p)$ for each prime p. Elements of the spherical Hecke algebra at p are, in particular, compactly supported functions on $GL_2(\mathbb{Q}_p)$, so it makes sense to act with them on $H^1(X, \mathbb{C})$ (say, by integration). If $GL_2(\mathbb{Z}_p)$ acts trivially on some vector f (for instance if f is in $S_2(N; \mathbb{C})$ for N coprime to p), then the action is particularly easy to describe, since it can be written as a finite sum of action by coset representatives. Generally, T_p won't preserve $S_2(N; \mathbb{C})$, but it will if p is coprime to N or if we use $\Gamma_1(N)$ level structure instead of $\Gamma(N)$. When it does preserve $S_2(N; \mathbb{C})$, the element T_p viewed as an endomorphism of $S_2(N; \mathbb{C})$ is called a **Hecke operator**.

1.3.3. Let's return to the GL₁ case and compute the Hilbert space and the action of \mathbb{A}^{\times} , using the building blocks

$$S_0(N; \mathbb{C}) \coloneqq \mathsf{H}^0_{\operatorname{sing}}(X(N)(\mathbb{C}), \mathbb{C}) = \bigoplus_{\mathbb{Q}(\zeta_N) \hookrightarrow \mathbb{C}} \mathbb{C}.$$

The direct sum here is orthogonal with respect to the inner product. The full Shimura variety in this case is

$$\lim \operatorname{Spec} \mathbb{Q}(\zeta_N) = \operatorname{Spec} \mathbb{Q}(\zeta_\infty),$$

the maximal cyclotomic extension of \mathbb{Q} . We view this as a profinite scheme over \mathbb{Q} , so in particular (if we pick an embedding $\mathbb{Q}(\zeta_{\infty}) \hookrightarrow \mathbb{C}$) we have that

$$X(\mathbb{C}) \cong \operatorname{Gal}(\mathbb{Q}(\zeta_{\infty}) \mid \mathbb{Q}) = \widehat{\mathbb{Z}}^{\times}$$

with the profinite topology. The corresponding colimit of cohomology groups is the Hilbert space

$$\mathsf{H}^{0}(X, \mathbb{C}) = \underset{N}{\operatorname{colim}} \bigoplus_{\mathbb{Q}(\zeta_{N}) \hookrightarrow \mathbb{C}} \mathbb{C} = \mathsf{L}^{2}(X(\mathbb{C}), \mathbb{C}) \cong \mathsf{L}^{2}(\widehat{\mathbb{Z}}^{\times}, \mathbb{C}),$$

using the Haar measure on $\widehat{\mathbb{Z}}^{\times}$. In this identification, the function $\mathbb{1}_{i:\mathbb{Q}(\zeta_N)\hookrightarrow\mathbb{C}}$ in $S_0(N;\mathbb{C})$ is sent to

$$\mathbb{I}_{\sigma} \operatorname{Gal}(\mathbb{Q}(\zeta_{\infty})|\mathbb{Q}(\zeta_{N}))$$

in $L^2(\widehat{\mathbb{Z}}^{\times})$ if ι is the σ -twist of the restriction of the "base embedding" by which we are identifying $X(\mathbb{C})$ and $\widehat{\mathbb{Z}}^{\times}$.

Finally, the ideles \mathbb{A}^{\times} act on $L^2(\widehat{\mathbb{Z}}^{\times}, \mathbb{C})$ via the identification

$$\widehat{\mathbb{Z}}^{ imes} = \mathbb{Q}^{ imes} \setminus \{\pm 1\} imes \mathbb{A}_{f}^{ imes}$$

(where the action of \mathbb{R}^{\times} on $\{\pm 1\}$ is via the sign character).

1.3.4. In terms of the spherical Hecke algebra for $GL_1(\mathbb{Q}_p)$, the element $\langle p \rangle$ is just the function

$$\mathbb{1}_{p\mathbb{Z}_p^{\times}}:\mathbb{Q}_p^{\times}\to\mathbb{C}$$

The action of $\langle p \rangle$ on a form $f \in S_0(N; \mathbb{C})$, where p is coprime to N, is easy to compute, since \mathbb{Z}_p^{\times} fixes these forms. In this case the action is just the action of $p \in \mathbb{Q}_p^{\times}$ on f, which sends f to the function $x \mapsto f(xp)$ in $L^2(\mathbb{Q}^{\times} \setminus (\widehat{\mathbb{Z}} \otimes \mathbb{Q})^{\times})$, or equivalently the function $x \mapsto f(xp^{-1})$ in

 $L^2((\mathbb{Z}/N)^{\times})$. Hence its action on $S_0(N;\mathbb{C})$ sends $\mathbb{1}_{\sigma}$ to $\mathbb{1}_{\sigma p}$. In other words, the action is via the Frobenius element Frob_p of $\operatorname{Gal}(\mathbb{Q}(\zeta_N) | \mathbb{Q})$. More generally, we would need to average the action across $p\mathbb{Z}_p^{\times}$. On oldforms which are in the image of $S_0(Np^{-v_p(N)};\mathbb{C}) \hookrightarrow S_0(N;\mathbb{C})$, this averaging is such that the net effect is to lower the level of f to $Np^{-v_p(N)}$, then apply Frobenius at p, then raise the level back to N. The diamond operator annihilates forms not in this image.

We can define

$$S_0(N; \mathbb{Z}) \coloneqq \bigoplus_{\mathbb{Q}(\zeta_N) \hookrightarrow \mathbb{C}} \mathbb{Z} \subseteq S_0(N; \mathbb{C}).$$

Then $S_0(N;\mathbb{Z})$ is preserved by the diamond operators $\langle p \rangle$. The subalgebra of $\text{End}_{\mathbb{Z}}(S_0(N;\mathbb{Z}))$ generated by $\langle p \rangle$ for p not dividing N is called the (level N) **Hecke algebra**, denoted **T**_N.

1.3.5. The diamond operators $\langle p \rangle$ and $\langle p' \rangle$ give the same element of the Hecke algebra whenever $p \equiv p' \mod N$. These elements act by permuting the basis of $S_0(N;\mathbb{Z})$ via an element of $\text{Gal}(\mathbb{Q}(\zeta_N) \mid \mathbb{Q})$. Furthermore, by, say, Dirichlet's theorem, every element of the Galois group arises as some diamond operator. These elements give a \mathbb{Z} -basis for \mathbf{T}_N , so we conclude

$$\mathbf{T}_N = \mathbb{Z}[\operatorname{Gal}(\mathbb{Q}(\zeta_N) \mid \mathbb{Q})] = \mathbb{Z}[(\mathbb{Z}/N)^{\times}],$$

the group ring of $(\mathbb{Z}/N)^{\times}$.

2 The statement of $\mathbf{R} = \mathbf{T}$

2.1 Properties of the Hecke algebra

2.1.1. The action of \mathbf{T}_N on $S_0(N; \mathbb{C})$ decomposes it into a sum of one dimensional subspaces. We call a generator of one of these subspaces an **eigenform**. Pick an embedding $\mathbb{Q}(\zeta_{\infty}) \hookrightarrow \mathbb{C}$ so that we can identify $S_0(N;\mathbb{C})$ with $L^2((\mathbb{Z}/N)^{\times})$. Then we normalize our eigenforms so that their value at the identity is 1. Recall that $\langle p \rangle$ for p not dividing N will act via Frob_p on this space. By Dirichlet's theorem, these Frobenius elements generate $(\mathbb{Z}/N)^{\times}$, so the decomposition into Hecke eigenforms is exactly the decomposition into characters of $(\mathbb{Z}/N)^{\times}$. Since we only need diamond operators at all but finitely many primes to distinguish different eigenforms, this is a version of **strong multiplicity one**.

If N divides N', then pullback along the map $X(N') \to X(N)$ gives an inclusion $S_0(N; \mathbb{C}) \hookrightarrow S_0(N'; \mathbb{C})$ which is also compatible with the Hecke action away from N'. Eigenforms of $S_0(N'; \mathbb{C})$ which are not in the image of any of these maps for N strictly dividing N' are called **newforms**. The eigenforms which are not newforms are called **oldforms**.

For GL₂, strong multiplicity one only applies to newforms. To further distinguish newforms and oldforms, one needs to work with Hecke operators at primes that divide *N*.

2.1.2. Given an eigenform *f*, the Hecke eigenvalues of *f* generate a finite field extension $K_f | \mathbb{Q}$. The decomposition

$$S_0(N; \mathbb{C}) = \bigoplus_f \mathbb{C}f$$

induces an algebra decomposition

$$\mathbf{T}_N \otimes \mathbb{C} = \prod_f \mathbb{C}.$$

In other words, $S_0(N; \mathbb{C})$ is a rank 1 free module over $\mathbf{T}_N \otimes \mathbb{C}$. We can refine this further: in fact, $S_0(N; \mathbb{Z})$ is a rank 1 free module over \mathbf{T}_N . (The analogous statement over \mathbb{C} is still true for GL₂, but $S_2(N; \mathbb{Z})$ is not generally free over \mathbf{T}_N .)

2.1.3. The ring \mathbf{T}_N has Krull dimension 1; its prime ideals are either maximal or minimal. The minimal primes are in bijection with G_Q -orbits of normalized eigenforms in $S_0(N; \mathbb{C})$. Minimal primes also biject to $G_{\mathbb{Q}_\ell}$ -orbits of normalized eigenforms in $S_0(N; \overline{\mathbb{Q}}_\ell)$ for any ℓ . In either case the prime associated to an eigenform f contains exactly the elements of the Hecke algebra which annihilate f.

Maximal primes of \mathbf{T}_N correspond to eigenforms over fields of finite characteristic. More precisely, primes of \mathbf{T}_N which lie over the prime $(\ell) \subset \mathbb{Z}$ biject to $G_{\mathbb{F}_\ell}$ -orbits of eigenforms in $S_0(N; \overline{\mathbb{F}}_\ell)$. If a minimal prime corresponds to (the orbit of) an eigenform $f \in S_0(N; \overline{\mathbb{Q}}_\ell)$, then the maximal primes over it correspond to (the orbits of) the possible reductions of f in $S_0(N; \overline{\mathbb{F}}_\ell)$. For GL₁ such a reduction is unique: there is exactly one maximal prime over each minimal prime. For GL₂ this is not the case; minimal primes correspond to newforms, and a newform can have several associated oldforms that have different reductions. In either case, the characters of the localization of \mathbf{T}_N at a maximal ideal correspond to eigenforms with a given reduction.

2.2 Eichler–Shimura

2.2.1. The analog of the Eichler–Shimura relation for GL₁ will feel somewhat tautological thanks to our explicit descriptions in Section 2.1.1. Given an eigenform $f \in S_0(N; \mathbb{C})$, we would like a Galois representation ρ_f such that the trace of Frobenius can be computed in terms of f.

There are a couple of ways to do this. One way is to use a comparison theorem to realize f as an element of $H^0_{\text{ét}}(X(N)_{\overline{\mathbb{Q}}}, \overline{\mathbb{Q}}_{\ell})$ and take the Galois representation it generates. (This is dual to the Galois representation usually constructed in a Tate module.) Instead, we will leverage the fact that $H^{\text{ét}}_0(X(N)_{\overline{\mathbb{Q}}}; \mathbb{Q}_{\ell})$ is free of rank 1 over $\mathbb{T}_N \otimes \mathbb{Q}_{\ell}$. Write K_f for the number field generated by the Hecke eigenvalues of f. Pick a place λ of K_f dividing ℓ and write K_{λ} for the associated local field. Then the eigenform f determines a map

$$\mathbf{T}_{N,\mathbb{O}_{\ell}} \coloneqq \mathbf{T}_N \otimes \mathbb{Q}_{\ell} \to K_{\lambda}.$$

The Galois representation associated to f is

$$\mathsf{H}_{0}^{\mathrm{\acute{e}t}}(X(N)_{\overline{\mathbf{O}}}; \mathbb{Q}_{\ell}) \otimes_{\mathbf{T}_{N,\mathbf{O}_{\ell}}} K_{\lambda}.$$

Since the original module was rank 1 over $\mathbf{T}_{N,Q_{\ell}}$, this is a one-dimensional Galois representation over K_{λ} . The Hecke algebra acts on étale homology in a manner dual to its action on S_0 . Hence the Eichler–Shimura relation is the following.

Proposition 2.2.2. *If p is coprime to N, then p is unramified in* ρ_f *and* $\rho_f(\operatorname{Frob}_p^{-1}) = \langle p \rangle$.

2.2.3. We can compute various things regarding ρ_f . Most importantly, the conductor of ρ_f is N when f is a newform in $S_0(N; \mathbb{C})$. Furthermore, ρ_f is always an **Artin character**, meaning it has finite image. Equivalently, it has Hodge–Tate weight 0. Our goal will be to prove the following version of the Modularity Theorem.

Theorem 2.2.4. The association $f \mapsto \rho_f$ gives a bijection between newforms of level N and Artin characters of conductor N.

2.2.5. The theorem of Wiles and Taylor–Wiles, combined with later work of Breuil, Conrad, and Diamond, is analogous. They show that $f \mapsto \rho_f$ gives a bijection between newforms of level $\Gamma_0(N)$ with rational Hecke eigenvalues, and the Galois representations of the form $\mathsf{H}_1^{\text{ét}}(E_{\overline{\mathbb{Q}}}; \mathbb{Q}_\ell)$ for an elliptic curve E/\mathbb{Q} of conductor N.

2.3 The Galois deformation ring R

2.3.1. We have seen that modular representations arising from level *N* newforms are Artin characters with conductor *N*. In order to prove Theorem 2.2.4, we will consider the category of all Artin characters using various coefficients. As in last week's talk, the functor sending a ring *A* to the Artin characters with coefficients in *A* is a pro-representable functor. It can be pro-represented by the topological ring $\mathbf{R}^{\Box} = \mathbb{Z}[G_{\mathbf{Q}}^{ab}]$, which is the group ring of the profinite group $G_{\mathbf{Q}}^{ab} = \text{Gal}(\mathbb{Q}^{ab} | \mathbf{Q})$. Because we are working with characters, there is no difference between framed deformations and unframed deformations, so $\mathbf{R}^{\Box} = \mathbf{R}$.

2.3.2. The condition of an Artin character having conductor dividing N is a deformation condition. We let \mathbf{R}_N denote the corresponding pro-representing ring. A map

$$\mathbf{R} = \mathbb{Z}[G_{\mathbf{O}}^{ab}] \to A$$

gives a G_Q representation in A of conductor dividing N if and only if each ramification group $G_p^{v_p(N)}$ acts trivially. So we can explicitly describe \mathbf{R}_N as $\mathbb{Z}[G_{Q,N}^{ab}]$, where $G_{Q,N}^{ab}$ is the quotient of G_Q^{ab} by all these ramification groups that should act trivially. This is the same as the Galois group of $\mathbf{Q}_N \mid \mathbf{Q}$, where \mathbf{Q}_N is the maximal abelian extension of conductor N. We remark that \mathbf{R}_N is Noetherian, whereas \mathbf{R} is not.

2.3.3. Recall that the maximal ideals of the Hecke algebra \mathbf{T}_N over $(\ell) \subset \mathbb{Z}$ corresponded to reductions of the associated \mathbb{Q}_ℓ -newform. The \mathbb{Q}_ℓ -newforms themselves correspond to minimal primes of \mathbf{T} . A similar story is true on the Galois side.

The ring \mathbf{R}_N has Krull dimension 1, and its minimal primes and its maximal primes over (ℓ) correspond to Galois orbits of Artin characters $G_Q \to \overline{\mathbb{Q}}_{\ell}^{\times}$ and $G_Q \to \overline{\mathbb{F}}_{\ell}^{\times}$, respectively. A minimal prime is contained in a maximal prime if the associated $\overline{\mathbb{Q}}_{\ell}$ representation reduces to the associated $\overline{\mathbb{F}}_{\ell}$ representation.

Remark 2.3.4. It would be more accurate to call \mathbf{R}_N a universal representation ring rather than a deformation ring, since we have not yet fixed a residual representation which we would like to deform. Such a choice corresponds to a maximal ideal of \mathbf{R}_N , and the associated deformation ring is the completion of \mathbf{R}_N at that ideal.

2.4 The map from R to T

2.4.1. Given an eigenform f in $S_0(N; \mathbb{C})$, we discussed how to associate a Galois representation ρ_f with coefficients in an ℓ -adic field K_{λ} . We will want to construct a map from **R** to **T**, so we will need to understand the association $f \mapsto \rho_f$ for eigenforms with coefficients in more general rings.

We can think of a map from the Hecke algebra \mathbf{T}_N to a ring A as a compatible assignment of Hecke eigenvalues in A to each diamond operator $\langle p \rangle$ for $p \nmid N$. If the ring A is a domain, then this uniquely determines an eigenform in $S_0(N; A)$, but we will also allow for non-domains. To repeat the construction of ρ_f in this context, we restrict to rings which are \mathbb{Z}_{ℓ} -algebras. In this case, a map $\mathbf{T}_N \to A$ extends to

$$\mathbf{T}_{N,\mathbb{Z}_{\ell}} \coloneqq \mathbf{T}_N \otimes \mathbb{Z}_{\ell} \to A.$$

Then we get a Galois representation with coefficients in A via

$$\mathsf{H}_{0}^{\text{ét}}(X(N)_{\overline{\mathbf{0}}}; \mathbb{Z}_{\ell}) \otimes_{\mathbf{T}_{N,\mathbb{Z}_{\ell}}} A.$$

This is free of rank 1 over A, since $\mathsf{H}_0^{\text{ét}}(X(N)_{\overline{\mathbb{Q}}}; \mathbb{Z}_\ell)$ is free of rank 1 over $\mathbf{T}_{N,\mathbb{Z}_\ell}$. Specializing to the case $A = \mathbf{T}_{N,\mathbb{Z}_\ell}$, we get a map

$$G_{\mathbb{Q}} \to \operatorname{End}_{\mathbf{T}_{N,\mathbb{Z}_{\ell}}}(\mathsf{H}_{0}^{\operatorname{\acute{e}t}}(X(N)_{\overline{\mathbb{Q}}}; \mathbb{Z}_{\ell})) = \mathbf{T}_{N,\mathbb{Z}_{\ell}}$$

This is itself an Artin character of conductor N, so it is classified by a map $\mathbf{R}_{N,\mathbb{Z}_{\ell}} \to \mathbf{T}_{N,\mathbb{Z}_{\ell}}$.

Remark 2.4.2. This construction does not work as written for GL₂. There are two Hecke algebras at play in that case: the "full" Hecke algebra generated by all Hecke and diamond operators, and the "anemic" or "reduced" Hecke algebra generated by only the operators at primes not dividing *N*. The anemic Hecke algebra is the one appearing in the $\mathbf{R} = \mathbf{T}$ theorem, but the full Hecke algebra has nicer interaction with modular forms. For instance, $\mathsf{H}_1^{\text{ét}}(X(N)_{\overline{\mathbb{Q}}}; \mathbb{Q}_\ell)$ is free of rank 2 over the full Hecke algebra $\mathbf{T}_{N,\mathbb{Q}_\ell}$. Unlike for GL₁, however, $\mathsf{H}_1^{\text{ét}}(X(N)_{\overline{\mathbb{Q}}}; \mathbb{Z}_\ell)$ is not (generally) free over either ring. It turns out there are maximal ideals of \mathbf{T} such that, after localization, the anemic and full Hecke algebras are isomorphic and $\mathsf{H}_1^{\text{ét}}(X(N)_{\overline{\mathbb{Q}}}; \mathbb{Z}_\ell)$ is free. This takes some work to show. Instead, the map $\mathbf{R} \to \mathbf{T}$ is usually constructed explicitly, since the anemic Hecke algebra has an explicit description that we will see in a moment. The anemic and full Hecke algebras coincide for GL₁.

Remark 2.4.3. Using our descriptions of \mathbf{R}_N and \mathbf{T}_N as the group rings of $G_{\mathbf{Q},N}^{ab}$ and $\operatorname{Gal}(\mathbb{Q}(\zeta_N) | \mathbb{Q})$, respectively, we can even write the map $\mathbf{R}_N \to \mathbf{T}_N$ integrally. Since $\mathbb{Q}(\zeta_N)$ has conductor N, its Galois group $\operatorname{Gal}(\mathbb{Q}(\zeta_N) | \mathbb{Q})$ is a quotient of the group $G_{\mathbf{Q},N}^{ab}$. The induced map on group rings gives a surjection $\mathbf{R}_N \to \mathbf{T}_N$.

2.4.4. Here we give a different description of \mathbf{T}_N , which has an analog for GL_2 . If f is an eigenform in $S_0(N; \mathbb{C})$, then let \mathcal{O}_f be the subring of \mathbb{C} generated by the Hecke eigenvalues of f. The ring \mathcal{O}_f is an order in its fraction field K_f . Then we write

$$\widetilde{\mathbf{T}}_N = \prod_f \mathcal{O}_f,$$

where the product is over newforms of level dividing N. Then the map

$$\mathbf{T}_N \rightarrow \mathbf{T}_N$$
,

sending a diamond operator to its eigenvalue on each eigenform, is an injection. We can then describe a map from \mathbf{R}_N to $\widetilde{\mathbf{T}}_N$ by compiling the maps $\mathbf{R}_N \to \mathcal{O}_f$ that are induced by ρ_f , for each f. The image of this map is \mathbf{T}_N .

2.4.5. We have constructed (in several ways) a map $\mathbf{R}_N \to \mathbf{T}_N$. If this map were an isomorphism, then any Artin character of level *N*, classified by a map $\mathbf{R}_N \to \mathbb{C}$, would also come with a Hecke eigenform, classified by a map $\mathbf{T}_N \to \mathbb{C}$. In other words, if $\mathbf{R}_N \to \mathbf{T}_N$ is an isomorphism, then every level *N* Artin character is ρ_f for some eigenform *f*. Hence to prove Theorem 2.2.4, it is enough to show

Theorem 2.4.6. *The map* $\mathbf{R}_N \to \mathbf{T}_N$ *is an isomorphism.*

2.4.7. To keep with the analogy to the GL₂ story, what we will actually do is show that $\mathbf{R}_N \to \mathbf{T}_N$ becomes an isomorphism after localization at certain maximal ideals of \mathbf{R}_N . Because a surjective map of Noetherian local rings is an isomorphism after completion if and only if it is an isomorphism, it is enough to check that the maps $\mathbf{R}_{N,\mathfrak{m}} \to \mathbf{T}_{N,\mathfrak{m}}$ of complete local rings are isomorphisms. If we complete at a maximal ideal $\mathfrak{m}_{\overline{\rho}}$ which is in the preimage of a maximal ideal of \mathbf{T}_N , corresponding to a modular Galois character $\overline{\rho}$ over $\overline{\mathbb{F}}_{\ell}$, then the statement that $\mathbf{R}_{N,\mathfrak{m}_{\overline{\rho}}} \to \mathbf{T}_{N,\mathfrak{m}_{\overline{\rho}}}$ is an isomorphism implies that all $\overline{\mathbb{Q}}_{\ell}$ -representations lifting $\overline{\rho}$ are modular. Whereas Theorem 2.4.6 directly implies the Modularity Theorem, we will focus on an *a priori* weaker version, the **Modularity Lifting Theorem**. In the language of \mathbf{R} and \mathbf{T} , this says

Theorem 2.4.8. Let \mathfrak{m} be a maximal ideal of \mathbf{R}_N which is the preimage of a maximal ideal of \mathbf{T}_N . Then $\mathbf{R}_{N,\mathfrak{m}} \to \mathbf{T}_{N,\mathfrak{m}}$ is an isomorphism.