
R = T for Artin characters

Grant T. Barkley

In previous talks we have discussed the statement of modularity lifting and introduced the
R = T formalism. The modularity theorem and Taylor–Wiles modularity lifting are both statements
about proving modularity of 2-dimensional representations. We discussed how modular forms
correspond to automorphic representations of GL2(AQ), and how the modularity theorem is a
special case of the Langlands correspondence for GL2, which in this case asserts that every Galois
representation Gal(Q | Q) → GL2(Qℓ) satisfying certain properties should have an associated
modular form. Today we will demonstrate the main points of the Taylor–Wiles proof in a simpler
setting: we will prove the modularity theorem for GL1, or, equivalently, the Kronecker–Weber
theorem.

Disclaimer: I am not an expert, and there are likely to be mistakes throughout this note. I have
tried to point out some subtleties that I found while learning the material presented here, but their
multitude suggests that I have likely missed some. Reader beware! My primary references for the
GL2 side of things are [FLT] and [DDT] from the seminar webpage. Those should be taken as the
more definitive source.

1 Between GL1 and GL2: a dictionary

1.1 Shimura varieties

1.1.1. Let us recall some setup and context for the GL2 theory we have discussed so far. We defined
the (open) modular variety Y(N) to a variety over Q whose complex points are a quotient space for
the action of a congruence subgroup Γ(N) on the upper half-planeH. The (compactified) modular
curve X(N) is formed by adding a finite set of cusps to Y(N). The curve Y(N) is a Shimura variety
for GL2. This means that its complex points can be realized adelically as the double coset space

Y(N)(C) = GL2(Q)\H± ×GL2(A f )/Γ̂(N).

Here A f denotes the finite adeles of Q, which are isomorphic to Ẑ⊗Q.

1.1.2. For GL1 we have an analogous story. The open modular variety Y(N) should have complex
points which are a nice quotient, and since we will see that Y(N) is already proper over Q, the
compactified modular variety X(N) is the same as Y(N). We can also view the complex points of
Y(N) as an adelic double coset space:

Y(N)(C) = GL1(Q)\{±1} ×GL1(A f )/Γ̂(N).
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Here Q× acts on {±1} via the sign representation and Γ̂(N) is the kernel of GL1(Ẑ) ↠ GL1(Z/N).
We can actually compute the right-hand side explicitly: each Q× coset of {±1} ×GL1(A f ) contains
a unique element of GL1(Ẑ), so the full double quotient is just GL1(Z/N) = (Z/N)×. This tells
us Y(N) is some variety over Q whose complex points are in bijection with (Z/N)×. We also want
Y(N) to be connected and 0-dimensional. There is a natural candidate: Spec Q(ζN). The complex
points of this variety are equivalently field embeddings Q(ζN) ↪→ C. The group Gal(Q(ζN) | Q)
acts simply transitively on these embeddings, so if we pick an embedding Q(ζN) ↪→ C then we get
an identification

(Spec Q(ζN))(C) ∼= Gal(Q(ζN) | Q) = (Z/N)×.

Hence we will take X(N) = Y(N) = Spec Q(ζN) as our modular variety. This is also the canonical
example of a 0-dimensional Shimura variety.

1.2 Coherent cohomology

1.2.1. For GL2 we have been interested in the vector space of modular forms of a given weight
and level. We saw that weight k forms of level N live in a tensor power of the Hodge bundle on
the universal elliptic curve over X(N). For the modularity of elliptic curves, we are especially
interested in the space S2(N; C) of weight 2 cusp forms of level N. (Really those of level Γ0(N),
or equivalently those with the correct conductor and nebuntypus, but these differences will be
invisible for GL1.) For a subring R of C, we let S2(N; R) denote the subset of S2(N; C) consisting of
modular forms whose q-expansion has its coefficients living in R. Then

S2(N; Q) = H0(X(N), ΩX(N)/Q) = H1(X(N),OX(N))
∗,

where ΩX(N) is the cotangent/canonical bundle of X(N) and OX(N) is its structure sheaf. The
q-expansion principle says that

S2(N; R) = S2(N; Z)⊗ R

when N is a unit in R or R is flat over Z. For an appropriate model of X(N), we also have
an identification of these groups with H0(X(N)R, ΩX(N)R

). This makes it reasonable to define
S2(N; R) := S2(N; Z)⊗ R for any ring R satisfying one of those conditions.

1.2.2. For GL1 we will be interested instead in the cohomology H0(X(N),OX(N)). Since X(N) =

Spec Q(ζN) is affine, this group is just Q(ζN) itself. The space of GL1 cusp forms of level N should
then be

H0(X(N), OX(N))⊗Q C = Q(ζN)⊗Q C.

Remark 1.2.3. The group H0(X(N), OX(N)) is the same as the algebraic de Rham cohomology
group H0

dR(X(N)). The de Rham comparison theorem tells us that

Q(ζN)⊗Q C = H0
dR(X(N))⊗Q C ∼= H0

sing(X(N)(C), C) =
⊕

Q(ζN)↪→C

C.

It’s a useful exercise to work out what this isomorphism is doing! In the GL2 setting, the identity
is a bit more complicated, since H1

dR(X(N))⊗Q C is a direct sum of the holomorphic cusp forms
S2(N; C) and the antiholomorphic cusp forms S2(N; C).
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GL2 GL1

X(N), Y(N), X0(N), Y0(N) X(N) = Y(N) = Spec Q(ζN)

Y(N)(C) = GL2(Q)\H± ×GL2(A f )/Γ̂(N) Y(N)(C) = Q×\{±1} ×A×f /Γ̂(N) = (Z/N)×

H0(X(N), ΩX(N)) = S2(N, Q) S0(N; C) = H0(X(N), OX(N)) = Q(ζN)

Hét
1 (XN,Q; Qℓ) Hét

0 (XN,Q; Qℓ) =
⊕

Q(ζN)↪→Q

Qℓ

Tp, ⟨p⟩ ⟨p⟩ = Frobp

Table 1: A dictionary between GL2 objects and GL1 objects.

1.2.4. Since we will be working with ℓ-adic Galois representations, we will be more interested in
the ℓ-adic comparison theorem than the Betti one: picking Q ↪→ Qℓ, we have

Q(ζN)⊗Q Qℓ = H0
dR(X(N))⊗Q Qℓ

∼= H0
ét(X(N)

Q
, Qℓ) =

⊕
Q(ζN)↪→Q

Qℓ.

In the GL2 case the correct statement requires period rings. We do have as a corollary of it
that S2(N; Cℓ) is a subspace of H1

ét(X(N)
Q

, Cℓ), which is one entry point into proving the Eichler–
Shimura correspondence – namely, it puts cusp forms into a vector space with a Galois action. To
describe this more precisely, we will need Hecke operators.

1.3 Hecke operators and automorphic representations

1.3.1. We have previously discussed how to turn a modular form into an automorphic representa-
tion. Formally this is accomplished in the following way: consider the Betti cohomology groups
H1

sing(X(N)(C), C) as N varies. Each space comes with an alternating bilinear form from Poincare

duality which identifies S2(N; C) with the dual of S2(N; C). We can rearrange this to give an
inner product on S2(N; C) and H1

sing(X(N), C), the Petersson inner product. If N divides N′

then pullback along X(N′)→ X(N) realizes H1(X(N)) as a subspace of H1(X(N′)). Consider the
colimit of Hilbert spaces

H1(X, C) := colim−→
N

H1
sing(X(N)(C), C).

Because GL2(A) acts on the “full Shimura variety” lim←−
N

X(N), it also acts on the Hilbert space. Each

newform generates an irreducible automorphic representation of GL2(A) in this space.

1.3.2. For each prime p there is an object called the called the spherical Hecke algebra at p, which
is the set of compactly supported functions on GLn(Zp)\GLn(Qp)/ GLn(Zp), equipped with the
convolution product. For GL2 this algebra is generated by elements Tp and ⟨p⟩. For GL1 the
spherical Hecke algebra is generated just by ⟨p⟩.
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The action of GL2(A) on H1(X, C) in particular gives an action of GL2(Qp) for each prime p.
Elements of the spherical Hecke algebra at p are, in particular, compactly supported functions
on GL2(Qp), so it makes sense to act with them on H1(X, C) (say, by integration). If GL2(Zp)
acts trivially on some vector f (for instance if f is in S2(N; C) for N coprime to p), then the
action is particularly easy to describe, since it can be written as a finite sum of action by coset
representatives. Generally, Tp won’t preserve S2(N; C), but it will if p is coprime to N or if we use
Γ1(N) level structure instead of Γ(N). When it does preserve S2(N; C), the element Tp viewed as
an endomorphism of S2(N; C) is called a Hecke operator.

1.3.3. Let’s return to the GL1 case and compute the Hilbert space and the action of A×, using the
building blocks

S0(N; C) := H0
sing(X(N)(C), C) =

⊕
Q(ζN)↪→C

C.

The direct sum here is orthogonal with respect to the inner product. The full Shimura variety in
this case is

lim
←−

Spec Q(ζN) = Spec Q(ζ∞),

the maximal cyclotomic extension of Q. We view this as a profinite scheme over Q, so in particular
(if we pick an embedding Q(ζ∞) ↪→ C) we have that

X(C) ∼= Gal(Q(ζ∞) | Q) = Ẑ×

with the profinite topology. The corresponding colimit of cohomology groups is the Hilbert space

H0(X, C) = colim−→
N

⊕
Q(ζN)↪→C

C = L2(X(C), C) ∼= L2(Ẑ×, C),

using the Haar measure on Ẑ×. In this identification, the function 1ι:Q(ζN)↪→C in S0(N; C) is sent to

1σ Gal(Q(ζ∞)|Q(ζN))

in L2(Ẑ×) if ι is the σ-twist of the restriction of the “base embedding” by which we are identifying
X(C) and Ẑ×.

Finally, the ideles A× act on L2(Ẑ×, C) via the identification

Ẑ× = Q×\{±1} ×A×f

(where the action of R× on {±1} is via the sign character).

1.3.4. In terms of the spherical Hecke algebra for GL1(Qp), the element ⟨p⟩ is just the function

1pZ×p
: Q×p → C.

The action of ⟨p⟩ on a form f ∈ S0(N; C), where p is coprime to N, is easy to compute, since
Z×p fixes these forms. In this case the action is just the action of p ∈ Q×p on f , which sends f
to the function x 7→ f (xp) in L2(Q×\(Ẑ⊗Q)×), or equivalently the function x 7→ f (xp−1) in
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L2((Z/N)×). Hence its action on S0(N; C) sends 1σ to 1σp. In other words, the action is via the
Frobenius element Frobp of Gal(Q(ζN) | Q). More generally, we would need to average the action
across pZ×p . On oldforms which are in the image of S0(Np−vp(N); C) ↪→ S0(N; C), this averaging is

such that the net effect is to lower the level of f to Np−vp(N), then apply Frobenius at p, then raise
the level back to N. The diamond operator annihilates forms not in this image.

We can define
S0(N; Z) :=

⊕
Q(ζN)↪→C

Z ⊆ S0(N; C).

Then S0(N; Z) is preserved by the diamond operators ⟨p⟩. The subalgebra of EndZ(S0(N; Z))
generated by ⟨p⟩ for p not dividing N is called the (level N) Hecke algebra, denoted TN .

1.3.5. The diamond operators ⟨p⟩ and ⟨p′⟩ give the same element of the Hecke algebra when-
ever p ≡ p′ mod N. These elements act by permuting the basis of S0(N; Z) via an element of
Gal(Q(ζN) | Q). Furthermore, by, say, Dirichlet’s theorem, every element of the Galois group arises
as some diamond operator. These elements give a Z-basis for TN , so we conclude

TN = Z[Gal(Q(ζN) | Q)] = Z[(Z/N)×],

the group ring of (Z/N)×.

2 The statement of R = T

2.1 Properties of the Hecke algebra

2.1.1. The action of TN on S0(N; C) decomposes it into a sum of one dimensional subspaces. We
call a generator of one of these subspaces an eigenform. Pick an embedding Q(ζ∞) ↪→ C so
that we can identify S0(N; C) with L2((Z/N)×). Then we normalize our eigenforms so that their
value at the identity is 1. Recall that ⟨p⟩ for p not dividing N will act via Frobp on this space. By
Dirichlet’s theorem, these Frobenius elements generate (Z/N)×, so the decomposition into Hecke
eigenforms is exactly the decomposition into characters of (Z/N)×. Since we only need diamond
operators at all but finitely many primes to distinguish different eigenforms, this is a version of
strong multiplicity one.

If N divides N′, then pullback along the map X(N′)→ X(N) gives an inclusion S0(N; C) ↪→
S0(N′; C) which is also compatible with the Hecke action away from N′. Eigenforms of S0(N′; C)
which are not in the image of any of these maps for N strictly dividing N′ are called newforms.
The eigenforms which are not newforms are called oldforms.

For GL2, strong multiplicity one only applies to newforms. To further distinguish newforms
and oldforms, one needs to work with Hecke operators at primes that divide N.

2.1.2. Given an eigenform f , the Hecke eigenvalues of f generate a finite field extension K f | Q.
The decomposition

S0(N; C) =
⊕

f

C f
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induces an algebra decomposition
TN ⊗C = ∏

f
C.

In other words, S0(N; C) is a rank 1 free module over TN ⊗C. We can refine this further: in fact,
S0(N; Z) is a rank 1 free module over TN . (The analogous statement over C is still true for GL2, but
S2(N; Z) is not generally free over TN .)

2.1.3. The ring TN has Krull dimension 1; its prime ideals are either maximal or minimal. The
minimal primes are in bijection with GQ-orbits of normalized eigenforms in S0(N; C). Minimal
primes also biject to GQℓ

-orbits of normalized eigenforms in S0(N; Qℓ) for any ℓ. In either case
the prime associated to an eigenform f contains exactly the elements of the Hecke algebra which
annihilate f .

Maximal primes of TN correspond to eigenforms over fields of finite characteristic. More
precisely, primes of TN which lie over the prime (ℓ) ⊂ Z biject to GFℓ

-orbits of eigenforms in
S0(N; Fℓ). If a minimal prime corresponds to (the orbit of) an eigenform f ∈ S0(N; Qℓ), then the
maximal primes over it correspond to (the orbits of) the possible reductions of f in S0(N; Fℓ). For
GL1 such a reduction is unique: there is exactly one maximal prime over each minimal prime. For
GL2 this is not the case; minimal primes correspond to newforms, and a newform can have several
associated oldforms that have different reductions. In either case, the characters of the localization
of TN at a maximal ideal correspond to eigenforms with a given reduction.

2.2 Eichler–Shimura

2.2.1. The analog of the Eichler–Shimura relation for GL1 will feel somewhat tautological thanks to
our explicit descriptions in Section 2.1.1. Given an eigenform f ∈ S0(N; C), we would like a Galois
representation ρ f such that the trace of Frobenius can be computed in terms of f .

There are a couple of ways to do this. One way is to use a comparison theorem to realize f as
an element of H0

ét(X(N)
Q

, Qℓ) and take the Galois representation it generates. (This is dual to the
Galois representation usually constructed in a Tate module.) Instead, we will leverage the fact that
Hét

0 (X(N)
Q

; Qℓ) is free of rank 1 over TN ⊗Qℓ. Write K f for the number field generated by the
Hecke eigenvalues of f . Pick a place λ of K f dividing ℓ and write Kλ for the associated local field.
Then the eigenform f determines a map

TN,Qℓ
:= TN ⊗Qℓ → Kλ.

The Galois representation associated to f is

Hét
0 (X(N)

Q
; Qℓ)⊗TN,Qℓ

Kλ.

Since the original module was rank 1 over TN,Qℓ
, this is a one-dimensional Galois representation

over Kλ. The Hecke algebra acts on étale homology in a manner dual to its action on S0. Hence the
Eichler–Shimura relation is the following.

Proposition 2.2.2. If p is coprime to N, then p is unramified in ρ f and ρ f (Frob−1
p ) = ⟨p⟩.
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2.2.3. We can compute various things regarding ρ f . Most importantly, the conductor of ρ f is N
when f is a newform in S0(N; C). Furthermore, ρ f is always an Artin character, meaning it has
finite image. Equivalently, it has Hodge–Tate weight 0. Our goal will be to prove the following
version of the Modularity Theorem.

Theorem 2.2.4. The association f 7→ ρ f gives a bijection between newforms of level N and Artin characters
of conductor N.

2.2.5. The theorem of Wiles and Taylor–Wiles, combined with later work of Breuil, Conrad, and
Diamond, is analogous. They show that f 7→ ρ f gives a bijection between newforms of level Γ0(N)

with rational Hecke eigenvalues, and the Galois representations of the form Hét
1 (E

Q
; Qℓ) for an

elliptic curve E/Q of conductor N.

2.3 The Galois deformation ring R

2.3.1. We have seen that modular representations arising from level N newforms are Artin charac-
ters with conductor N. In order to prove Theorem 2.2.4, we will consider the category of all Artin
characters using various coefficients. As in last week’s talk, the functor sending a ring A to the Artin
characters with coefficients in A is a pro-representable functor. It can be pro-represented by the
topological ring R□ = Z[Gab

Q ], which is the group ring of the profinite group Gab
Q = Gal(Qab | Q).

Because we are working with characters, there is no difference between framed deformations and
unframed deformations, so R□ = R.

2.3.2. The condition of an Artin character having conductor dividing N is a deformation condition.
We let RN denote the corresponding pro-representing ring. A map

R = Z[Gab
Q ]→ A

gives a GQ representation in A of conductor dividing N if and only if each ramification group

G
vp(N)
p acts trivially. So we can explicitly describe RN as Z[Gab

Q,N ], where Gab
Q,N is the quotient of

Gab
Q by all these ramification groups that should act trivially. This is the same as the Galois group

of QN | Q, where QN is the maximal abelian extension of conductor N. We remark that RN is
Noetherian, whereas R is not.

2.3.3. Recall that the maximal ideals of the Hecke algebra TN over (ℓ) ⊂ Z corresponded to
reductions of the associated Qℓ-newform. The Qℓ-newforms themselves correspond to minimal
primes of T. A similar story is true on the Galois side.

The ring RN has Krull dimension 1, and its minimal primes and its maximal primes over (ℓ)
correspond to Galois orbits of Artin characters GQ → Q

×
ℓ and GQ → F

×
ℓ , respectively. A minimal

prime is contained in a maximal prime if the associated Qℓ representation reduces to the associated
Fℓ representation.

Remark 2.3.4. It would be more accurate to call RN a universal representation ring rather than a
deformation ring, since we have not yet fixed a residual representation which we would like to
deform. Such a choice corresponds to a maximal ideal of RN , and the associated deformation ring
is the completion of RN at that ideal.
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2.4 The map from R to T

2.4.1. Given an eigenform f in S0(N; C), we discussed how to associate a Galois representation ρ f
with coefficients in an ℓ-adic field Kλ. We will want to construct a map from R to T, so we will need
to understand the association f 7→ ρ f for eigenforms with coefficients in more general rings.

We can think of a map from the Hecke algebra TN to a ring A as a compatible assignment of
Hecke eigenvalues in A to each diamond operator ⟨p⟩ for p ∤ N. If the ring A is a domain, then this
uniquely determines an eigenform in S0(N; A), but we will also allow for non-domains. To repeat
the construction of ρ f in this context, we restrict to rings which are Zℓ-algebras. In this case, a map
TN → A extends to

TN,Zℓ
:= TN ⊗Zℓ → A.

Then we get a Galois representation with coefficients in A via

Hét
0 (X(N)

Q
; Zℓ)⊗TN,Zℓ

A.

This is free of rank 1 over A, since Hét
0 (X(N)

Q
; Zℓ) is free of rank 1 over TN,Zℓ

. Specializing to the
case A = TN,Zℓ

, we get a map

GQ → EndTN,Zℓ
(Hét

0 (X(N)
Q

; Zℓ)) = TN,Zℓ
.

This is itself an Artin character of conductor N, so it is classified by a map RN,Zℓ
→ TN,Zℓ

.

Remark 2.4.2. This construction does not work as written for GL2. There are two Hecke algebras at
play in that case: the “full” Hecke algebra generated by all Hecke and diamond operators, and the
“anemic” or “reduced” Hecke algebra generated by only the operators at primes not dividing N.
The anemic Hecke algebra is the one appearing in the R = T theorem, but the full Hecke algebra
has nicer interaction with modular forms. For instance, Hét

1 (X(N)
Q

; Qℓ) is free of rank 2 over the
full Hecke algebra TN,Qℓ

. Unlike for GL1, however, Hét
1 (X(N)

Q
; Zℓ) is not (generally) free over

either ring. It turns out there are maximal ideals of T such that, after localization, the anemic and
full Hecke algebras are isomorphic and Hét

1 (X(N)
Q

; Zℓ) is free. This takes some work to show.
Instead, the map R→ T is usually constructed explicitly, since the anemic Hecke algebra has an
explicit description that we will see in a moment. The anemic and full Hecke algebras coincide for
GL1.

Remark 2.4.3. Using our descriptions of RN and TN as the group rings of Gab
Q,N and Gal(Q(ζN) | Q),

respectively, we can even write the map RN → TN integrally. Since Q(ζN) has conductor N, its
Galois group Gal(Q(ζN) | Q) is a quotient of the group Gab

Q,N . The induced map on group rings
gives a surjection RN ↠ TN .

2.4.4. Here we give a different description of TN , which has an analog for GL2. If f is an eigenform
in S0(N; C), then let O f be the subring of C generated by the Hecke eigenvalues of f . The ring O f
is an order in its fraction field K f . Then we write

T̃N = ∏
f
O f ,
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where the product is over newforms of level dividing N. Then the map

TN → T̃N ,

sending a diamond operator to its eigenvalue on each eigenform, is an injection. We can then
describe a map from RN to T̃N by compiling the maps RN → O f that are induced by ρ f , for each f .
The image of this map is TN .

2.4.5. We have constructed (in several ways) a map RN → TN . If this map were an isomorphism,
then any Artin character of level N, classified by a map RN → C, would also come with a Hecke
eigenform, classified by a map TN → C. In other words, if RN → TN is an isomorphism, then every
level N Artin character is ρ f for some eigenform f . Hence to prove Theorem 2.2.4, it is enough to
show

Theorem 2.4.6. The map RN → TN is an isomorphism.

2.4.7. To keep with the analogy to the GL2 story, what we will actually do is show that RN → TN
becomes an isomorphism after localization at certain maximal ideals of RN . Because a surjective
map of Noetherian local rings is an isomorphism after completion if and only if it is an isomorphism,
it is enough to check that the maps RN,m → TN,m of complete local rings are isomorphisms. If we
complete at a maximal ideal mρ which is in the preimage of a maximal ideal of TN , corresponding
to a modular Galois character ρ over Fℓ, then the statement that RN,mρ

→ TN,mρ
is an isomorphism

implies that all Qℓ-representations lifting ρ are modular. Whereas Theorem 2.4.6 directly implies the
Modularity Theorem, we will focus on an a priori weaker version, the Modularity Lifting Theorem.
In the language of R and T, this says

Theorem 2.4.8. Let m be a maximal ideal of RN which is the preimage of a maximal ideal of TN . Then
RN,m → TN,m is an isomorphism.
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