
MODULARITY SEMINAR: PROOF OF THE LANGLANDS–TUNNELL

THEOREM

DANIEL HU

Abstract. In these notes, we give the proof of the Langlands–Tunnell theorem.

These notes have been plagiarized to the highest order from Gelbart’s article [Gel97].

1. Introduction

Today we will prove the following theorem:

Theorem 1.1. Suppose F is a number field and the irreducible representation

σ :WF → GL2(C)

has solvable image in PGL2(C). Then there exists a (unique) irreducible automorphic cuspidal
representation π(σ) =

⊗
v πv of GL2(AF ) such that trace(σ(Frobv)) = trace(tπv) for almost

all v.

Here, WF is the Weil group of F and tπv is the Satake parameter of πv, defined to be the
element

tπv =

(
µ1(ϖv) 0

0 µ2(ϖv)

)
∈ GL2(C)

where µ1, µ2 are the unramified characters of F×
v inducing πv as a principal series.

Now, Theorem 1.1 lends easily to the following formulation of the Langlands–Tunnell the-
orem:

Theorem 1.2 (Langlands–Tunnell, automorphic version). Suppose σ : GQ → GL2(C) is a
continuous, irreducible, two-dimensional representation whose image in PGL2(C) is solvable.
Suppose also that σ is odd in the sense that

det(σ(τ)) = −1 (1.1)

(where τ ∈ GQ is the automorphism defined by complex conjugation). Then there exists an
irreducible automorphic cuspidal representation π(σ) =

⊗
p πp of GL2(AQ) which is of weight

1, central character detσ, and such that for almost all p, πp = π(µ1, µ2) is unramified with
trace(σ(Frobp)) = µ1(p) + µ2(p).

Proof. Applying Theorem 1.1 to the case where F = Q and σ factors through GQ, there is
procured an irreducible representation π = π(σ) with the correct local properties at almost
all primes. It remains to verify that π∞ has the correct weight 1 and central character.
Namely, we want π∞ = π(1, sgn). Equivalently, we want σ∞ = 1⊕ sgn. But when viewed as
a representation of WR, σ∞ is trivial on C×. Thus σ∞ cannot be induced from a nontrivial
character of C×. Thus σ∞ cannot be a two-dimensional representation, so it is the sum
of two characters µi, with µi ∼ (ti, εi). Since σ∞ is trivial on C×, it follows that ti = 0.
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On the other hand, the assumption detσ(τ) = −1 implies that σ(τ) is not a scalar, hence
σ(τ) ∼ diag(−1, 1), so π∞ = Ind 1 · sgn, as desired. □

Moreover, recall that there is a way to convert between normalized new forms and irre-
ducible cuspidal automorphic representations of GL2(AQ). So these theorems can be phrased
in terms of modular forms over Q whose Fourier coefficients satisfy certain congruence condi-
tions at the primes.

Corollary 1.3 (Langlands–Tunnell, classical version). Suppose σ : GQ → GL2(C) is a con-
tinuous, irreducible, two-dimensional representation whose image in PGL2(C) is solvable.
Suppose also that σ is odd in the sense of (1.1). Then there exists a normalized

f(z) =
∞∑
n=1

bne
2πinz ∈ S1(Γ0(N), ψ)

(for some N and ψ), such that f is an eigenform for all the Hecke operators, and bq =
trace(σ(Frobq)) for almost all primes q.

At the end of the notes, we will use the Langlands–Tunnell theorem to complete the proof
that if p = 3, and if the mod p Galois representation ρE,3 of the elliptic curve E over Q is
irreducible, then it is modular.

2. About the proof of Theorem 1.1

Because any continuous representation σ : GF → GL2(C) factors through some finite
extension, it must be semisimple, its image in GL2(C) is finite, and its image in PGL2(C) is
one of the symmetry groups of a regular polyhedron in R3. The image of any such σ is one
of the following:

• A cyclic group Cn (iff σ is reducible);
• A dihedral group Dn of order 2n (iff σ is induced from the nontrivial quadratic char-
acter on some GK , for K/F a quadratic extension);

• The tetrahedral group A4;
• The octahedral group S4;
• The isocahedral group A5.

In Theorem 1.1, we only consider those representations which are both irreducible and solv-
able. So we are precisely interested in the dihedral, tetrahedral, and octahedral cases.

The proof will use several basic instances of Langlands functoriality for the global case.
Here, we recall the ones we need.

2.1. Automorphic induction for quadratic and cyclic extensions. LetK/F be a cyclic
extension of number fields of degree n. For all applications, we will only need the cases n = 2
or 3.

Theorem 2.1. For each Hecke character χ of K there is an automorphic representation
π(χ) of GLn(AF ) whose L-function L

S(s, π) equals the Hecke L-function LS(s, χ). Moreover,
LS(s, π(χ)) is entire (and hence π(χ) is cuspidal automorphic) if χ does not factor through
the norm map NK/F (equivalently χ is not fixed by the action of Gal(K/F )).

For n = 2 and F = Q, this follows from classical work of Hecke and Maass; for n = 2 or 3
and F arbitrary, this is proved in [JL70] and [JPSS79]
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2.2. Symmetric square lifting from GL(2) to GL(3). Let A be the three-dimensional
representation of PGL2(C) determined by the adjoint action of PGL2(C) on the Lie algebra
of SL2(C), and denote the resulting three-dimensional representation

GL2(C) → PGL2(C)
A−→ GL3(C)

of GL2(C) by Ad.

Theorem 2.2. We have the following.

(a) To each cuspidal automorphic representation π of GL2(AF ), there exists an automor-
phic representation Π of GL3(AF ) such that for almost all v,

Πv = Πv(Ad(σv)),

whenever πv = πv ◦ σv; equivalently, tΠv = Ad(tπv).
(b) The lift of π to GL(3) is cuspidal automorphic unless π is monomial, i.e. of the form

π(σ), with σ induced from a Hecke character of some quadratic extension K.

See [GJ78].

2.3. Rankin–Selberg convolution for GL(3)×GL(3). We have the following.

Theorem 2.3. Given cuspidal representations π and π′ on GL(3), let LS(s, π × π′) denote
the partial L-function ∏

v ̸∈S
det(I − (tπv ⊗ tπ′

v
)q−s)−1.

(a) LS(s, π×π′) extends to a meromorphic function in C, satisfying a functional equation
as s 7→ 1− s.

(b) LS(s, π × π′) may be completed to an Euler product

L(s, πv × π′v) =
∏
v

L(s, πv × π′v)

which is holomorphic on Re(s) ≥ 1 except for a pole at s with Re(s) = 1 if and only
if |det()|s−1 ⊗ π ≃ π̃′, the contragredient of π′.

See [JPSS81], [JPSS79], and [MgW89]. This gives us a way of relating π and π̃ from
knowing the behavior of the L-functions.

2.4. Base change for GL(2). Arguably the most important incarnation of Langlands func-
toriality to the Langlands–Tunnell setting is the theory of base change lifting for GL(2)-
representations. We discussed this theory in last week’s lecture, and we restate the main
ideas here. First, fix E a cyclic extension of the number field F , of prime degree.

Proposition–Definition 2.4. Suppose π = ⊗vπv is an automorphic cuspidal representation
of GL2(AF ), and Π = ⊗wΠw is an automorphic representation of GL2(AE). Then Π is a
base change lift of π, denoted BCE/F (π), if for each place v of F , and w | v, the Langlands
parameter attached to Πw equals the restriction to WEw of the Langlands parameter σv :
WFv → GL2(C) of πv.

(a) Every cuspidal representation π of GL2(AF ) has a unique base change lift to GL2(AE);
the lift is itself cuspidal, except in the case where E/F is quadratic and π is monomial

of the form π(σ), with σ = IndWF
WE

θE/F .

(b) If two cuspidal representations π and π′ have the same base change lift to E, then
π′ ≃ π ⊗ ω for some character ω of F×NE/F (A×

E)\A
×
F .
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(c) A cuspidal representation Π of GL2(AE) equals BCE/F (π) for some cuspidal π on
GL2(AF ) if and only if Π is invariant under the natural action of Gal(E/F ).

See [Lan80]. In the course of the proof, we will also need a version of base change for cubic,
but not necessarily Galois extensions. See below.

3. The dihedral case

In the case where σ :WF → GL2(C) has dihedral image in PGL2(C), it must be a monomial

representation; that is, a representation IndWF
WE

θE/F induced from the nontrivial quadratic

Hecke character θE/F over E associated to some quadratic extension E/F . (It is pretty much
a group-theoretic fact that these conditions are equivalent, but I neither have a proof nor will
try).

Thus, this case reduces precisely to the statement of automorphic induction, Theorem 2.1.

4. The tetrahedral case

We are given an irreducible representation σ : WF → GL2(C), and wish to construct a
cuspidal representation π(σ) of GL2(AF ) such that trace(σ(Frobv)) = trace(tπv) for almost
every v. Suppose that there is such a representation. For a cyclic extension E/F of number
fields, the base change lifting is defined by

BCE/F (π(σ)) = π(ResWF
WE

σ).

Thus, to look for candidates for π(σ), we look among cuspidal π for which BCE/F (π) =

π(ResWF
WE

σ).
First, we need our extension E. Consider the solvable group A4 exhibiting the composition

series A4 ▷ D2 ▷ 1. Since A4/D2 ≃ Z/3Z, the inverse image of D2 in WF under the map
WF → A4 ⊂ PGL2(C) is a normal subgroup of index 3, hence the Weil group of a cubic
extension E of F . We have the following diagram:

1 WE WF Gal(E/F ) 1

1 D2 A4 Z/3Z 1

Thus, the resulting representation σE : WE → GL2(C) is dihedral, i.e. monomial. Let
π(σE) be the automorphic cuspidal representation of GL2(AE) attached to this monomial
representation. This is invariant under the action of Gal(E/F ); indeed π(σE)

τ = π(στE) =
π(σE). So by Proposition–Definition 2.4, π(σE) will be BCE/F (πi) for exactly three classes
of cuspidal representations πi of GL2(AF ), each related to each other by a twist ω ◦det where
ω is a character of F×NE/F (A×

E)\A
×
F ≃ Gal(E/F ), i.e. πj ≃ πi ⊗ ω ◦ det.

Recall that the central character of π(σ) is to be detσ. On the other hand, the central
character ωi of each πi above ”base change lifts” to the central character of π(σE), which is
detσE = (detσ) ◦ NE/F . Since each ωi = ωjω

2 if πi = πj ⊗ ω ◦ det, exactly one of these πi
has central character detσ; we call this πps(σ). We claim that this is the desired π(σ).

Write πps(σ) = ⊗vπv. Then for each v, πv = πv(σ
′
v) for some σ′v : WFv → GL2(C). We

wish to prove that σ′v = σv for almost every v. By construction,

(σE)w = Res
WFv
WEw

σ′v = Res
WFv
WEw

σv. (4.1)
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There is nothing to prove when v splits completely in E, so we assume that Ew/Fv is cubic
and unramified.

If Frobv is a Frobenius element of Gal(Ew/Fv), we suppose (up to conjugacy) that

σv(Frobv) =

(
av 0
0 bv

)
and σ′v(Frobv) =

(
cv 0
0 dv

)
for some av, bb, cv, dv ∈ C×. Since σv is completely determined by where it maps the Frobenius
conjugacy class, it will suffice to prove that these are conjugate. But since σv and σ′v have the
same restriction toWEw , and Frob3v ∈WEw , we must have σv(Frobv)

3 conjugate to σ′v(Frobv)
3.

In particular, for some pair of cube roots of 1, say ξ and ξ′, either

cv = ξav and dv = ξ′bv

or else.

cv = ξbv and dv = ξ′av.

We claim now that ξ′ = ξ2. Indeed, πps(σ) was chosen so that ωπps(σ) = detσ. Since this

implies detσ′v = detσv, we must have ξξ′ = 1, i.e. ξ′ = ξ2.
To complete the proof, it will suffice to prove that ξ = 1. For now, let us assume the

following:

Claim 4.1. Ad ◦ σ′v = Ad ◦ σv.

Since the kernel of Ad : GL2(C) → GL3(C) is precisely the group of scalar matrices, it
follows that σv(Frobv) and σ

′
v(Frobv) must differ by some scalar λ ̸= 0. Thus(

ξav 0
0 ξ2bv

)
is conjugate to

(
λav 0
0 λbv

)
.

If (λav, λbv) = (ξav, ξ
2bv), then λ = ξ = ξ2 = 1 because ξ is a cube root of unity. On the

other hand, if (λav, λbv) = (ξ2bv, ξav), then λ
2 = 1. If λ = −1, then the image of

σv(Frobv) =

(
av 0
0 bv

)
=

(
av 0
0 av

)(
1 0
0 ξλ

)
in PGL2(C) is of order 6. But A4 has no elements of order 6, contradiction. Thus λ = 1, and
we are done!

4.1. Proof of Claim 4.1. Observe that Ad◦σ :WF → GL2(C) is a monomial representation;
that is, there is a character θ of WE not invariant under Gal(E/F ) such that

Ad ◦ σ = IndWF
WE

θ.

By Theorem 2.1 in the case n = 3, we have Ad◦ associated to a cuspidal automorphic
representation of GL3(AF ), call it Π1. On the other hand, πps(σ) has a symmetric square lift
to GL2(AF ), call it Π∗

1, which is almost everywhere associated to the Langlands parameter
Ad ◦ σ′v. Moreover, this Π∗

1 is also cuspidal.

Lemma 4.2. The Rankin–Selberg L-function L(s,Π∗
1 × Π̃1) on GL(3)×GL(3) has a pole at

s = 1.

By Theorem 2.3, we are completely done if we prove this.
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Proof. We claim that for almost all places v,

L(s, (Π∗
1)v × (Π̃1)v) = L(s, (Π1)v × (Π̃1)v).

This suffices, because then L(s,Π∗
1 × Π̃1) = L(s,Π1 × Π̃1) after ignoring nonzero terms.

However, the RHS has a pole at s = 1 by Theorem 2.3, so the LHS does too, and thus
Π∗

1 ≃ Π1.
For almost every v we have

L(s, (Π∗)v × (Π̃)v) = L(s, (Ad ◦ σ′v)⊗ (Ad ◦ σv)).
Since Ad ◦ σ is induced from θ on E, we have

Ad(σ̃v) =
⊕
w|v

Ind
WFv
WEw

θ−1
w .

Hence, if Σw = Res
WFv
WEw

Ad(σv), Σ
′
w = Res

WFv
WEw

Ad(σ′v), we get

Ad(σv)⊗Ad(σ̃v) =
⊕
w|v

Ind
WFv
WEw

(θ−1
w ⊗ Σw)

and

Ad(σ′v)⊗Ad(σ̃v) =
⊕
w|v

Ind
WFv
WEw

(θ−1
w ⊗ Σ′

w)

(This comes from the reciprocity relation σ⊗IndGH Σ ≃ IndGH(ResGH σ⊗Σ).) So since Σw ≃ Σ′
w

(see (4.1)), we indeed have

L(s, (Π∗)v × (Π̃)v) = L(s, (Ad ◦ σ′v)⊗ (Ad ◦ σv))
= L(s, (Ad ◦ σv)⊗ (Ad ◦ σv))

= L(s, (Π)v × (Π̃)v),

and we are done. □

The proof of this case is due to Langlands [Lan80].

5. The octahedral case

Consider the group S4 which contains A4 as a normal subgroup of index 2. As before,
consider the diagram The resulting representation σE : WF → GL2(C) is tetrahedral. Since

1 WE WF Gal(E/F ) 1

1 A4 S4 Z/2Z 1

we have just proved 1.1 for that case, let π(σE) be the automorphic cuspidal representation
of GL2(AE) attached to this monomial representation. This is invariant under Gal(E/F ). So
π(σE) will be BCE/F (πi) for exactly two classes of cuspidal representations πi, each related

to each other by a twist ω ◦det where ω is a character of F×NE/F (A×
E)\A

×
F ≃ Gal(E/F ). We

will have ωi = ωjω
2, but the issue here is that now ω2 = 1, and thus ωi cannot be determined

by its central character!
Instead, we appeal to a version of base change for cubic, non-Galois extensions:
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Proposition 5.1. If L is a cubic not necessarily Galois extension of F , then each auto-
morphic cuspidal representation π of GL2(AF ) has a base change lift Π on GL2(AL), i.e.
Π = BCL/F (π) is automorphic, and for almost every place v of F , and a place w of L divid-
ing v, πv = πv(σv) implies Πw = πw(ResLw/Fv

σv).

Now, introduce L/F as the cubic, non-Galois subextension of K/F fixed by a 2-Sylow
subgroup (of order 8) of S4. More precisely, L is the fixed field of all elements of Gal(K/F )
that map to this chosen subgroup. Then if M is the composition in K of L and E (the
quadratic Galois extension chosen above), we have the tower of fields:

K

M

L E

F

D4

A4

S4

S3

3

2 3

2

Notice that σL is monomial, so π(σL) exists.

Lemma 5.2. There exists a unique index i = 1, 2 such that BCL/F (πi) = π(σL).

Proof. By Proposition 5.1, BCL/F (πi) exists for i = 1, 2. By transitivity of base change,

BCM/L(BCL/F (πi)) = π(σM ).

Since BCL/F (πi) have the same quadratic base change toM , it follows from Proposition–Definition 2.4
that

BCL/F (π2) ≃ BCL/F (π1)⊗ ωM/L.

The representations BCL/F (πi) are distinct for i = 1, 2, for if

BCL/F (π1) ≃ BCL/F (π1)⊗ ωM/L,

then by [Lan80, Lemma 11.7], π1 is a monomial representation. This would imply BCM/L(BCL/F (πi)) =
π(σM ) is not cuspidal. But the image of σM in PGL2(C) is S3 ≃ D3, which means that σM
is irreducible, i.e. π(σM ) is cuspidal. Thus, BCL/F (π1) and BCL/F (π2) are the two cuspidal
representations of GL2(AL) that yield π(σM ) upon base change to M . Since we also have
BCM/L(π(σL)) = π(σM ), it must be that π(σL) = BCL/F (πi) for exactly one i, as desired. □

The aforementioned πi will be our candidate πps(σ). Write πps(σ) = ⊗vπ(σ
′
v) as before.

One proves exactly as in the tetrahedral case (but without having to take a lift to GL3(C))
that the non-existence of an element of order 6 in S4 implies σv ≃ σ′v for almost all v.

The octahedral case is due to Tunnell [Tun81].
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