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We should remember that modularity of elliptic curves over Q was a major advance in
the global Langlands program for GL2 /Q. These brief notes are meant to tell us why the
Langlands program predicts e.g. that elliptic curves should be associated to holomorphic
weight 2 cuspforms and that odd Artin representations should be associated to holomorphic
weight 1 cuspforms. We’ll focus on GL1 and GL2 over R and Q.

1. Local Langlands for GLn /R

There is a compatible family of bijections{
irreducible admissible complex
representations of GLn(R)

}
←→

{
n-dimensional complex
representations of WR

}
Basic features of this theory:

• As usual, the LHS is to be understood up to infinitesimal equivalence.
• The Weil group WR of R fits into an exact sequence

0 −→ C× −→ WR −→ ΓR −→ 0.

Concretely, WR = C× ⊔ jC× where j2 = −1 and jα = αj for all α ∈ C×.
• The case n = 1 is trivial since both sides are continuous characters of R×.
• The central character on the LHS corresponds to the determinant of the RHS, and
the correspondence is compatible with twisting by characters.
• Conjugating if necessary, we may assume that ρ(C×) lands inside T (C), where T is
the diagonal torus of GLn. Then ρ|C× can be written as z 7→ zazb where a, b ∈ X∗(T )C
and a− b ∈ X∗(T ). Then a should be the infinitesimal character of π.
• We call ρ algebraic if in fact a, b ∈ X∗(T ). We will also call π on the LHS algebraic
if its associated ρ is algebraic (i.e. if its infinitesimal character is integral).

2. Special case: Local Langlands for GL2 /R

For GL2(R) let’s go into more detail. Given characters χ1, χ2 of R× we use them to
construct a character χ of the split torus in the natural way. We can define the (normalized)
parabolic induction

π(χ1, χ2) := Ind
GL2(R)
B(R) (χ⊗ δ1/2B )

By abuse I’ll also write π(χ1, χ2) for the associated (g, K)-module of K-finite vectors (here
K = O(2)). We write χi(r) = sgn(r)εi |r|si , where εi ∈ Z/2Z and si ∈ C. We set s = s1−s2+1
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,

λ = s(1−s), µ = s1+s2, and ε = ε1+ε2 ∈ Z/2Z. There are two types of infinite dimensional
irreducible (g, K)-modules that can appear:

• If s ̸= k/2 for some k ≡ ε mod 2, then π(χ1, χ2) is irreducible and corresponds to
the representation χ1 ⊕ χ2 of WR.



• If s = k/2 for some k ≡ ε mod 2, then there is a unique infinite dimensional subquo-
tient Dµ(k) of π(χ1, χ2). In this case we have χ1χ

−1
2 = sgn(r)ε|r|k−1 = sgn(r)rk−1. In

this case the representation of WR is

IndWR
C× (z 7→ zk−1(zz̄)s2).

Algebraic corresponds to s1, s2 ∈ Z. For example the discrete series representations D0(k)
are all algebraic.

3. Global Langlands for GLn /Q

The global situation is significantly more mysterious. We have the following family of
conjectural bijections as n ≥ 1 varies: cuspidal automorphic

representations of GLn(A),
algebraic at ∞

←→


irreducible motives
over Q of rank n with

coefficients in Q


It is probably worth mentioning that Clozel, in addition to Langlands, is heavily respon-

sible for this formulation of reciprocity.

• I don’t think the “correct” formulation of motive is finalized yet, so we’re being
deliberately vague. The correct category of motives, whatever it is, should be Tan-
nakian and every Weil cohomology theory should factor through it. The standard
conjectures imply the existence of this category.
• Let MQ denote the (conjectural) pro-algebraic group whose irreducible representa-
tions are the RHS; this is the motivic Galois group of Q.
• Pure motives of weight 0 (Artin motives) form a Tannakian subcategory of the RHS,
and there is a resulting short exact sequence

0 −→M0
Q −→MQ −→ ΓQ −→ 0

whereM0
Q should be a pro-reductive linear algebraic group.

• Fix an embedding ι∞ : Q ↪→ C. We obtain a compatible diagram of exact sequences

0 C× WR ΓR 0

0 M0
Q MQ ΓQ 0

and the global correspondence is required to be compatible with the local correspon-
dence at ∞.
• After fixing an embedding ιp : Q ↪→ Qp, we also require compatibility with local
Langlands for Qp, but since we haven’t discussed that, let’s omit the details.

We are probably used to thinking of Langlands as having Galois representations on one
side, so let’s mention that. To a pure motive over Q is associated a continuous ℓ-adic Galois
representation on its étale cohomology. What are the restrictions on this representation? It
must be unramified almost everywhere and de Rham at ℓ. The Fontaine–Mazur conjecture
predicts conversely that any such ℓ-adic Galois representation comes from a motive, so
combining the reciprocity conjecture above with that of Fontaine and Mazur leads to the
following Galois-theoretic version of Langlands reciprocity:
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 cuspidal automorphic
representations of GLn(A),

algebraic at ∞

←→
 irreducible ℓ-adic ΓQ-representations

of dimension n, unramified a.e.
and de Rham at ℓ


4. Special case: Global Langlands for GL1 /Q

I think we should discuss further the relationship between the two objects that appeared
on the RHS of global Langlands above, namely:

• Representations of the complex pro-algebraic groupMQ
• Continuous ℓ-adic representations of ΓQ

I think that going from one to the other purely group-theoretically, that is, without actually
thinking about motives, is a pretty subtle matter, and I don’t really understand it.

To illustrate the subtlety, let’s just do class field theory. Let’s let CK = K×\A×
K and as

usual let ΓK denote the Galois group. The original formulation of class field theory amounts
to something like:

{finite order characters of CK} ←→ {finite order characters of ΓK}
This proceeds via the Artin map

rec : CK −→ Γab
K

Importantly, even without knowing anything about the map, we notice that the target is
profinite and thus the Artin map must be trivial on the connected component of the identity;
if C0

K denotes this connected component and we set π0(CK) := CK/C
0
K , then we obtain a

map
rec : π0(CK)

∼−→ Γab
K

and the fact that this map is an isomorphism is the content of class field theory.
This is not quite the same thing as global Langlands for GL1, because not every au-

tomorphic character of GL1 /K is finite order. For example we have the norm character
∥·∥ : CK → R>0. So, for example, every s ∈ C yields an automorphic character ∥·∥s.

Let’s now specialize to K = Q. The idele class group is just

{±1}\(R× × Ẑ×) ∼= R>0 × Ẑ×

and from an idele class character χ we obtain a character χ∞ of R× via the embedding
R× ↪→ CK , and likewise a character χp for each p < ∞. We will say χ is algebraic if
χ∞(r) = rn for some n ∈ Z and all r > 0.
To obtain an ℓ-adic Galois character from an algebraic Hecke character, fix an isomorphism

ι : Qℓ → C. We consider the new character χ′ : A×
Q → Q×

ℓ given by x = (x∞, (xp)p<∞) by

χ′(x) = ι−1(χ(x)x−n
∞ ) · xnℓ

This is continuous, still makes sense as an idele class character, and is trivial at ∞. Thus
the Artin map yields a corresponding Galois character. This highlights the importance
of algebraicity ; we could not have performed this maneuver if χ∞ involved raising to an
arbitrary complex power.

The motivic picture is clearer. We are looking for rank 1 motives over Q, with coefficients
in Q. Motives of weight 0 correspond to Artin representations, so rank 1 motives of weight
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0 correspond to characters ΓQ → Q×
. But there is also the Lefschetz motive L, and its ℓ-

adic realization is precisely the inverse of the ℓ-adic cyclotomic character. The automorphic
character of CQ corresponding to L is precisely the norm character.

5. Special case: Global Langlands for GL2 /Q

Let’s look at n = 2. What if we have a complex Galois representation? This corresponds
to a representation of MQ which is trivial on M0

Q. In particular, ρ∞ must be trivial on
C×. There are two choices; either π∞ is D0(1) or it is π(1, 1). In the former case, we have
ρ∞(j) ∼ [ 1 −1 ] and in the latter case we have ρ∞(j) = [ 1 1 ]. Thus D0(1) corresponds to odd
Galois representations while π(1, 1) corresponds to even Galois representations. In classical
terms, a holomorphic cuspform of weight 1 corresponds to an odd Galois representation
while a Maass cuspform of weight 0 with Laplace eigenvalue 1

4
corresponds to an even Galois

representation.
What happens if we want to know about holomorphic cuspforms of weight ≥ 2? If f is

holomorphic of weight 2, then π∞ is D0(2). The resulting representation of WR is given by

IndWR
C× id ≃

(
ρ∞ : WR → GL2(C), ρ∞|C× =

[
z

z

]
, ρ∞(j) =

[
−1

1

])
In particular, the resulting Hodge structure is of type (0, 1)+(1, 0), and so should correspond
to a summand in the H1 of an abelian variety. If this motive in fact had coefficients in Q,
then for reasons of rank it would correspond to an elliptic curve. Conversely, we see that
an elliptic curve should correspond to a modular form of weight 2. A holomorphic form of
weight k ≥ 2 will in general just correspond to a Hodge structure of type (0, k−1)+(k−1, 0).
These motives are instead found as summands in Kuga–Sato varieties.

When we pass to ℓ-adic Galois representations, the conditions on the Hodge numbers at in-
finity are thus transferred to constraints on the Hodge–Tate weights of the ΓQℓ

-representation.
We see that holomorphic forms of weight k ≥ 2 have distinct HT weights 0 and k − 1 while
a holomorphic form of weight 1 has HT weight 0 with multiplicity 2.

20th century progress for GL2. Some parts of the global Langlands correspondence are
understood for GL2, but a complete understanding (even in the motivic setting to which
we have restricted ourselves) is still elusive. In particular, the Maass forms are very poorly
understood.

• holomorphic cusp form of weight 2 −→ abelian variety: Eichler–Shimura
• holomorphic cusp form of weight > 2 −→ ℓ-adic Galois representation: Deligne
• holomorphic cusp form of weight 1 −→ Galois representation: Deligne–Serre
• Galois representation with solvable image −→ automorphic form: Langlands–Tunnell
• holomorphic cusp form of weight > 2 −→ motive: Scholl
• elliptic curve/Q −→ holomorphic cusp form of weight 2: Wiles, Taylor–Wiles, ...

In the 21st century, things have happened, but I’m not entirely clear on what! Certainly
there has been progress on the Fontaine–Mazur conjecture as well as the Artin conjecture,
but I think the question of Maass forms in the icosahedral case is still pretty open. Also I
don’t think much is known about associating a Galois representation to a Maass form.
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Discussion: the map WR →MQ

We didn’t say before what the map WR → MQ was. To give such a map is equivalent
to functorially assigning to a motive over Q (with coefficients in Q) a representation of WR,
compatibly with tensor products etc. Given a motiveM/R with coefficients in Q, let HB(M)
denote its Betti realization, a Q-vector space. We have

HB(M)⊗ι∞ C ∼=
⊕

Hp,q

given by Hodge theory. The Q-vector spaceHB(M) admits an action by complex conjugation
σ ∈ ΓR (via the conjugation action on C-points of varieties over R). The Hodge structure
determines a representation ρ : C× → End(HB(M)C) in the usual way, and we extend this
to a representation of WR by setting

ρ(j)|Hp,q = (−1)q · σ
which is indeed a C-linear automorphism of HB(M)C commuting with the action of C× in
the correct way and which squares to ρ(−1) (to see this, observe that σ interchanges Hp,q

and Hq,p).

Discussion: CM elliptic curves and Hecke characters

For this we will work over a general number field L, and we will only use global Langlands
for GL1.

Suppose we had an E/L with CM by the ring of integers O in an imaginary quadratic
field K ⊂ C. Let M = h1(E) denote the relevant motive over L.
First suppose that L contains K. Then the motive M = h1(E) decomposes as a sum

of rank 1 motives M = M+ ⊕M− according to the two embeddings K ↪→ Q and the two
motives are interchanged by complex conjugation on L. Thus we expect an algebraic Hecke
character ψE defined on A×

L such that

L(E/L, s) = L(ψE, s)L(ψE, s).

Note that the L-functions on the RHS are not Artin L-functions.
Now suppose that L does not contain K. Then M is irreducible. Let L′ = LK and let c

generate Gal(L′/L). Now we have ML′ = M+
L′ ⊕M−

L′ and the two motives are interchanged
by c. Let τ : SpecL′ → SpecL; then we have a natural map τ∗M

+
L′ → M , which is an

isomorphism (as can be checked on Betti or ℓ-adic realizations). If ψ′
E denotes the expected

Hecke character over L′ corresponding to M+
L′ , then we have

L(E/L, s) = L(τ∗M
+
L′ , s) = L(M+

L′ , s) = L(ψ′
E, s)

The construction of ψE and ψ′
E in the two cases, and proof of the L-function identities,

are old theorems of Deuring. They can be found in Silverman Advanced Topics... II.9.
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